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Integrated multi-omics reveals cellular and
molecular interactions governing the
invasive niche of basal cell carcinoma

Laura Yerly 1, Christine Pich-Bavastro 1, Jeremy Di Domizio 1, Tania Wyss2,
Stéphanie Tissot-Renaud3, Michael Cangkrama4, Michel Gilliet 1,
Sabine Werner 4 & François Kuonen 1

Tumors invade the surrounding tissues to progress, but the heterogeneity of
cell types at the tumor-stroma interface and the complexity of their potential
interactions hampered mechanistic insight required for efficient therapeutic
targeting. Here, combining single-cell and spatial transcriptomics on human
basal cell carcinomas, we define the cellular contributors of tumor progres-
sion. In the invasive niche, tumor cells exhibit a collective migration pheno-
type, characterized by the expression of cell-cell junction complexes. In
physical proximity, we identify cancer-associated fibroblasts with extracellular
matrix-remodeling features. Tumor cells strongly express the cytokine Activin
A, and increased Activin A-induced gene signature is found in adjacent cancer-
associated fibroblast subpopulations. Altogether, our data identify the cell
populations and their transcriptional reprogramming contributing to the
spatial organization of the basal cell carcinoma invasive niche. They also
demonstrate the power of integrated spatial and single-cell multi-omics to
decipher cancer-specific invasive properties and develop targeted therapies.

Tumor cell invasion into the surrounding tissue is a hallmark of
cancer1,2. By hijacking cellular and molecular processes governing
normal tissue morphogenesis, tumor cells migrate into tissues to
escape starvation.Moving towards a favorable environment ultimately
leads to dissemination throughout the body, a process called
metastasis1. As a part of tumor survival and progression, various
mechanisms of tumor migration, dependent on specific cell–cell
interactions and/or cell–substrate adhesion, have been reported3.
Mesenchymal tumor migration typically relies on strong cell adhesion
to the extracellular matrix (ECM) via focal adhesion complexes and
associated stress fibers, leading to transient protrusion4. Ameboid
tumor migration is rather driven by actomyosin or bleb protrusions
with low ECM adhesion, allowing fast and versatile migration4,5. By
contrast, collectivemigration of epithelial tumors relies on strong cell-

cell adhesions, allowingmigration as clusters, sheets, or strands within
surrounding tissues6. Importantly, these hierarchical cell motility
modes can be finely tuned by cell–matrix (single-cell migration mode)
or cell–cell (collective migration mode) adhesion forces7. In fact, as a
result of the reciprocal reprogramming of tumor cells and stromal
components8,motilitymayadapt. The resulting plasticity favors tumor
progression and resistance to treatment, emphasizing the need to
further understand the complex biology of tumor–stroma
interactions8–10. However, given the heterogeneity of cell types
involved at the leading edge, previous studies using traditional
experimental techniques have lacked spatial information or suffered
from insufficient cell resolution.

Basal cell carcinomas (BCCs), which are themost frequent type of
cancer in humans11, offer an attractive model to address the role of
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reciprocal tumor-stroma interactions in tumor invasion, since they
display both a large clinical and histopathological spectrum, despite
genetic homogeneity12,13. Superficial and nodular BCCs are considered
low-risk tumors, whereas infiltrative BCCs have a higher risk of
progression14. The latter is associated with a higher recurrence rate
after surgery15, lower response to radiotherapy16,17, and rare but fatal
metastatic dissemination18,19. Classically, nodular and infiltrative BCCs
are primarily distinguished by the histological morphology of their
respective tumor-stroma interface. Nodular morphology is character-
ized by tumor nests that are demarcated from a loose myxoid stroma
by a well-defined basement membrane and peritumoral cleft sug-
gesting poor tumor matrix adhesion11,20. By contrast, infiltrative mor-
phology is characterized by irregular tumor strands within a densely
packed fibrotic stroma (hence the “sclerodermiform” denomination),
where the basement membrane and peritumoral cleft are mostly
absent11,20. Importantly, nodular and infiltrativemorphologies found at
the tumor-stroma interface are not categorical entities but rather
represent a continuum reflected by both the inter- and intra-tumor
heterogeneity. Therefore, BCCs offer the intriguing possibility to study
the dynamics of transcriptional reprogramming at the tumor-stroma
interface required for cancer invasion.

Here, we integrate single-cell RNA sequencing (scRNA-seq)
transcriptomes from infiltrative BCCs with spatially-resolved tran-
scriptomes obtained from BCC tumor and adjacent stroma areas.
Thereby, we identify the spatial transcriptional reprogramming at
the leading edge niche, where tumor cells with collective migration
feature co-localize with ECM-remodeling fibroblasts. Importantly,
we identify Activin A as a paracrine-acting factor regulating
the transcriptional crosstalk and spatial organization of the
invasive niche.

Results
scRNA-seq resolves the heterogeneous cell composition of
infiltrative BCCs
To gain insight into the cellular and molecular mechanisms that gov-
ern tumor invasion in skin cancer, we first performed scRNA-seq on
fresh biopsies of infiltrative BCCs collected from five individuals
(Supplementary Fig. 1a, b). Tumor tissues were enzymatically digested
into single-cell suspension followed by FACS sorting of living single
cells, and scRNA-seq using the 10× Genomic platform. After quality
control and removal of low-quality cells and doublets, a total of 28,810
cells were retained for further analyses (Fig. 1a and Supplementary
Fig 1c). Once the cells were clustered, they were annotated to major
cell types according to the expression level of canonical marker
genes21–23 (Fig. 1b, c). Overall, ten major cell types were characterized:
epithelial cells, T cells, melanocytes, myeloid cells, endothelial cells,
fibroblasts, cycling cells, B cells, pericytes, and mast cells (Fig. 1b, c).
Epithelial cells represented the majority of cells (50.63%, Supplemen-
tary Fig. 1d) followed by immune T cells (22.79%, Supplementary
Fig. 1d). Fibroblasts (2.81%), pericytes (1.69%) and endothelial cells
(3.27%) were less abundant, potentially due to the suboptimal single-
cell dissociation24,25 (Supplementary Fig. 1d). Except for B cells, the 10
distinct cell types were represented in all 5 samples (Fig. 1d, e and
Supplementary Fig. 1e, f) and were consistent with data obtained from
scRNA-seq studies of other solid tumors21,26,27. To identify tumor cells,
epithelial and T cells were subclustered (Fig. 1f) and analyzed for the
chromosomal landscape of inferred copy number variations (using
InferCNV28). When using T cells as a reference, the epithelial cluster C0
displayed higher copy number variations compared to the epithelial
clusters C1-C2-C3 in all five samples (Fig. 1g, Supplementary Fig. 2). In
particular, when excluding gene expression changes commonly
observed in all five BCC samples (and thus potentially reflecting cell
lineage-dependent transcription rather than genomic structural
changes), inferred CNVs were exclusively found in the epithelial clus-
ter C0, with a few being shared by virtually all cells of the cluster.

Consistently, BCCmarkers (PTCH1,GLI1,GLI2,HHIP, andMYCN) aswell
as Hedgehog signaling pathway and BCC KEGG signatures were enri-
ched in cluster C0 when compared to clusters C1, C2 and C3
(and T cells) (Fig. 1h and Supplementary Fig. 3a–b). In contrast, cluster
C3 showed specific enrichment for hair follicle signatures29 (Supple-
mentary Fig. 3c), cluster C1 gradual enrichment for basal epidermis
signatures29 (Supplementary Fig. 3d), and cluster C2 gradual enrich-
ment for spinous/granular epidermis signatures29 (Supplementary
Fig. 3e), consistently with their normal keratinocyte nature. Based on
combined Seurat clustering and inferred CNV analysis, we thus iden-
tified epithelial cluster C0 as tumor cells, while epithelial clusters C1,
C2, and C3 represent basal, differentiated, and hair follicle keratino-
cytes, respectively (Fig. 1f). Taken together, these data provide a
representative picture of infiltrative BCC composition.

Spatial transcriptomics defines compartment-specific sig-
natures for nodular and infiltrative tumor–stroma interfaces
scRNA-seq highlights the cellular and molecular heterogeneity of the
tumor tissue as a whole but lacks information about the relevant
tumor–stroma interactions at the invasive front of the tumor. To
address this issue, we used digital spatial profiling (DSP) technology
from GeoMx30 (Nanostring) to selectively target 24 regions of interest
(ROIs) covering tumor-stroma interfaces with infiltrative morphology
(distributed across 6 infiltrative BCC samples) (Supplementary Fig. 1a).
Twenty-four ROIs covering tumor–stroma interfaces with nodular
morphology (distributed across 6 nodular BCC samples) were used as
controls (Supplementary Fig. 1a). Each ROI was then divided into
tumor area of interests (AOIs) based on pan-cytokeratin positivity
(panCKpos) and stroma AOIs based on panCK negativity (panCKneg)
(Fig. 2a and Supplementary Fig. 4a), and individually sequenced using
the cancer transcriptome atlas library (CTA, 1812 genes). Importantly,
after quality control and normalization, the number of counts per AOI
was not affected by the tumor type or the scanning process (Supple-
mentary Fig. 4b). To establish specific signatures reflecting tumor-
stroma morphology, we then compared the differentially expressed
genes (DEGs) in tumor and stroma AOIs between infiltrative and
nodular BCCs. A total of 86 genes were differentially expressed
between the infiltrative and nodular tumor AOIs (Fig. 2b, Supplemen-
tary Data 1, and Supplementary Fig. 4c), and 52 genes were differen-
tially expressed between the infiltrative and nodular stroma AOIs
(Fig. 2c, Supplementary Data 2, and Supplementary Fig. 4c). Con-
sistently, the expression profile of the genes included in our DEG sig-
nature (138 genes) segregated tumor nodular (TNOD), tumor infiltrative
(TINF), stroma nodular (SNOD) and stroma infiltrative (SINF) AOIs (Sup-
plementary Fig. 4d). Intriguingly, TINF AOIs appeared closer to stroma
AOIs compared to TNOD AOIs, while SNOD AOIs appeared closer to tumor
AOIs compared to SINF AOIs, suggesting that TINF and SINF, as well as TNOD

and SNOD transcriptomes respectively, may cross-contaminate each
other. Indeed, when overlapping TNOD and SNOD DEGs as well as TINF and
SINF DEGs, we observed 5 and 18 shared genes, respectively (Supple-
mentary Fig. 4e). To avoid that cross-contamination affects spatial
signatures, we thus filtered the DEGs using scRNA-seq data from
KRT14pos clusters (for tumor AOIs) or KRT14neg clusters (for stroma
AOIs). FN1, for example, was not expressed in KRT14pos clusters based
on scRNA-seq (Supplementary Fig. 4f, upper panels). Consistently,
fluorescence in situ hybridization (FISH) using RNAscope® analysis for
FN1 on infiltrative BCC confirmed the exclusive expression of this gene
in the stromal compartment (Supplementary Fig. 4f, lower panel).
Because they resulted from cross-contamination between adjacent
AOIs, genes like FN1 were removed from Tumor DEGs. For similar
reasons, genes likeCOL1A1with lowexpression inKRT14pos clusters and
high expression in KRT14neg clusters based on scRNA-seq were exclu-
ded from Tumor DEGs because of possible contamination (Supple-
mentary Fig. 4f). Additionally, genes with ubiquitous expression based
on scRNA-seq data were removed. Altogether, we obtained four
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filtered signatures (Supplementary Fig. 4c; Supplementary Data 3): a
spatial TumorDEG signature (57genes) composedof a nodular (spatial
TNOD, 45 genes) and an infiltrative (spatial TINF, 12 genes) signatures; and
a spatial Stroma DEG signature (46 genes) composed of a nodular
(spatial SNOD, 3 genes) and an infiltrative (spatial SINF, 43 genes) sig-
natures. As expected, the spatial Tumor DEG signaturewas enriched in

the tumor compared to stroma AOIs (Fig. 2d). Conversely, the spatial
Stroma DEG signature was enriched in the stroma compared to tumor
AOIs (Fig. 2e).Consistently, when applied to tumorAOIs, spatial Tumor
DEG signature segregated nodular from infiltrative AOIs on PCA plot
(Fig. 2f). Similarly, when applied to stroma AOIs, spatial Stroma DEG
signature segregated nodular from infiltrative AOIs (Fig. 2g).
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Furthermore, individual TNOD, TINF, SNOD, and SINF signatures showed
specific enrichment in TNOD, TINF, SNOD, and SINF AOIs, respectively
(Supplementary Fig. 4g). Intriguingly, SNOD signature showed sig-
nificant specificity for TNOD AOI as well, suggesting potential shared

transcriptional programs between adjacent compartments28. Taken
together, these data show how DSP enabled the establishment of
Tumor and Stroma interface signatures, specifically for nodular and
infiltrative morphologies.

Fig. 1 | ScRNA-seq resolves the heterogeneous cell composition of infiltrative
BCCs. a Schematic of the single cell isolation from tumor excision to data
analysis. bUMAP plot of 28,810 single cells integrated from five infiltrative BCCs
colored according to ten distinct cell types that were annotated using canonical
cell type markers (see c). c Expression level of canonical cell type markers in
single cells of five huBCC samples represented as a color scale overlaid on the
UMAP plots. d UMAP plot colored according to huBCC samples. e Bar graph
illustrating the contribution by sample to each cell type subpopulation. f UMAP
plot of KRT14pos epithelial and T cell subpopulations integrated from five infil-
trative BCCs and colored according to subclustering used for the inferCNV

analysis. gRepresentative CNV heatmap from inferCNV analysis of epithelial cell
clusters compared to T cells as reference (BCC1). Arrowheads and rectangles
highlight inferred CNVs, after exclusion of gene expression changes shared by
the KRT14pos epithelial cells from the five BCC samples. h Expression level of
PTCH1 (BCC marker) in epithelial cells and T cells of five huBCC samples,
represented as a color scale overlaid on the UMAP plot and as a violin plot per
cell cluster. FACS fluorescence-activated cell sorting, scRNA-seq single-cell RNA
sequencing, huBCC human basal cell carcinoma, UMAP uniform manifold
approximation and projection, BCC basal cell carcinoma, C cluster, chr
chromosome.
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Fig. 2 | Spatial transcriptomics defines compartment-specific signatures for
nodular and infiltrative tumor–stroma interfaces. a Immunofluorescence images
of nodular and infiltrative BCC samples stained with DAPI and a panCK antibody
showing the ROIs selection process and AOIs subdivision based on panCK staining.
The table indicates the number of AOI for each tumor subtype (6 nodular and 6
infiltrative samples) and compartment (Tumor or Stroma). Scale bars indicate
300 µm (upper panels) and 100 µm (lower panels). b Volcano plot of the DEGs
comparing the infiltrative to thenodular tumorAOIs. Eighty-six genes (highlighted in
purple) show a log2 fold change (log2FC) >0.4 or <−0.4 with a p value <0.05.
c Volcano plot of the DEGs comparing the infiltrative to the nodular stroma AOIs.

Fifty-two genes (highlighted in green) show a log2FC>0.4 or <−0.4 with a p value
<0.05. d Violin plot of the spatial Tumor DEG signature (57 genes) enrichment in
tumor and stroma AOIs. e Violin plot of the spatial Stroma DEG signature (46 genes)
enrichment in tumor and stromaAOIs. f PCAplot andheatmapof the enrichment for
the spatial TumorDEG signature in individual tumor AOI.g PCAplot and heatmap of
the enrichment for the spatial Stroma DEG signature in individual stroma AOI. p
Values in d, e were calculated using unpaired two-sided Student’s t test. Tumor and
Stroma AOIs in a, d, e are depicted in purple and green, respectively. AOI area of
interest, panCK pan-cytokeratin, log2FC log2 fold change, DEG differentially
expressed genes, PC principal component, PCA principal component analysis.
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Spatial signatures map cell subtypes composing the
tumor–stroma interface in infiltrative BCCs
Having defined spatial tumor and stroma interface signatures, we
thought to deconvolute the gene expression profiles into the cellular
subpopulation obtained by scRNA-seq (Fig. 3a), and the apparent
complexity of their potential interactions. To identify cell subpopula-
tions in physical proximity at the tumor–stroma interface, we applied
DSP-defined spatial Tumor and Stroma DEG signatures on scRNA-seq
UMAP of infiltrative BCCs. Consistently, the spatial Tumor DEG sig-
nature (57 genes) showed the highest enrichment in the previously
identified tumor cell cluster (Fig. 3b and Supplementary Fig. 5). The

spatial Stroma DEG signature (46 genes) demonstrated the highest
enrichment in the fibroblast cluster (Fig. 3c), previously reported to
drive BCC infiltration31. Collectively, by integrating DSP and scRNA-seq
technologies, our data identify the cellular contributors to the tumor-
stroma interface in infiltrative BCCs.

Tumor cellswithin the invasivenicheharbor epithelial collective
migration features
To further dissect the mechanisms driving tumor invasion, we next
thought to interrogate the transcriptional program of tumor cells
found within the invasive niche, taking advantage of tumor cell
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Fig. 3 | Spatial signatures map cell subtypes composing the tumor–stroma
interface in infiltrative BCCs. a Overview of the analysis pipeline for the applica-
tion of spatial signatures to scRNA-seq data. In brief, spatial Tumor and StromaDEG
signatures established with DSP were applied to the scRNA-seq dataset to enable
the localization of cells with physical proximity on the UMAP plot. b Average
expression level of the spatial Tumor DEG signature in single cells of five huBCC
samples, representedas a color scale overlaid on theUMAP (left panel) and as violin

plots per cell type (right panel). c Average expression level of the spatial Stroma
DEG signature in single cells of five huBCC samples, represented as a color scale
overlaid on the UMAPplot (left panel) and as violin plots per cell type (right panel).
DSP digital spatial profiling, scRNA-seq single-cell RNA sequencing, UMAP uniform
manifold approximation and projection, huBCC human basal cell carcinoma, DEG
differentially expressed genes.
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heterogeneity observed by scRNA-seq. To do so, we subclustered the
tumor cell subpopulation previously identified and obtained 15 unsu-
pervised clusters with satisfactory patient integration and gene
expression complexity (Fig. 4a and Supplementary Fig. 6). We then
computed the difference between spatial TINF and TNOD signature
enrichment scores for individual tumor cells (Fig. 4b). Clusters were
ranked based on their mean difference between spatial TINF and TNOD

signature enrichment scores, and the 15 ranked clusters divided into 3
groups according to their infiltrative profile: Low (TC1–4), Med
(TC5–11), andHigh (TC12–15) (Fig. 4c, d). As expected from the nodular
to infiltrative histological progression BCCs typically manifest in
patients, we observed a negative correlation between spatial TNOD and
TINF enrichments (Supplementary Fig. 7a),with progressive enrichment
for spatial TINF signature from TC1 to TC15 (Supplementary Fig. 7b,
upper panels, 7c), and reversed enrichment for spatial TNOD signature
from TC15 to TC1 (Supplementary Fig. 7b, lower panels, 7c). Thus, to
identify the transcriptional reprogramming underlying nodular to
infiltrative progression,we looked at thedifferentially expressed genes
between Low and High infiltrative clusters (Supplementary Fig. 7d,
Supplementary Data 4). Intriguingly, gene set enrichment analysis of
the significantly up-regulated genes highlighted skin differentiation-
related biological processes (epithelial cell differentiation, cell differ-
entiation) (Supplementary Fig. 7e, f). Consistently, the enrichment of a
basal signature21, KEGG Hedgehog signaling signature, and KEGG BCC
signature were globally higher in the Low (TC1–4) compared to the
High (TC12–15) infiltrative clusters (Fig. 4e, upper panels, Supple-
mentary Fig. 7g). In contrast, epidermal differentiation signature21

enrichment was globally higher in the High (TC12–15) compared to the
Low (TC1–4) infiltrative clusters (Fig. 4e, lower panels). The presence
of differentiation features in the High infiltrative clusters (TC12–15)
raised the hypothesis of epithelial collective migration depending on
cell-cell adhesion complexes32,33 for BCC invasion. Consistently, High
(TC12–15) infiltrative clusters demonstrated a higher enrichment for
the collective migration signature34 compared to the other clusters
(Fig. 4f, upper panels). In contrast, the epithelial-to-mesenchymal
transition (EMT) signature did not show significant preferential
enrichment (Fig. 4f, lower panels).

Because we observed a gradual and inversed enrichment of TNOD

andTINF signatures in scRNA-seq,we took advantageof thepseudotime
analysis to perform an unsupervised ordering of the cells along a path
according to their transcriptional profile35. Remarkably, when starting
from the Low infiltrative clusters, the pseudotemporal trajectory
progressed toMed infiltrative and ended with High infiltrative clusters
(Fig. 4g, upper panel), as illustrated by the progressive decrease in
expression of TNOD signature genes (MPPED1, PTCH1) alongside a pro-
gressive increase in expression of TINF signature genes (KRT6A, SFN)
(Fig. 4g, lower panels).

Importantly, we confirmed the negative correlation of the spatial
TNOD marker MPPED1 and the spatial TINF marker KRT6A expression at
the tumor-stroma interface by RNA FISH (Supplementary Fig. 8a).
Consistently with the pseudotemporal trajectory, the progression of
KRT6Alow/MPPED1high to KRT6Ahigh/MPPED1low staining intensities paral-
leled Low-infiltrative to High-infiltrative morphological progression
(Supplementary Fig. 8b, c). Along this pseudotemporal trajectory
mirroring the histopathological progression seen in BCCs, we con-
firmed a progressive reduction in the expression of genes that are
specifically expressed in basal epidermal keratinocytes (DST, COL17A1)
(Fig. 4h), while a progressive increase in the expression of
differentiation-specific genes (KRT1, CALML5) as well as epidermal
cohesion genes (CLDN4, NECTIN1, DSG3) supporting collective migra-
tion (Fig. 4i). Previous studies revealed higher expression of ECM, ECM
receptor and ECM-remodeling genes like FN113,31, POSTN13, CCN413,
COL3A113, ADAMTS213, LRRC1513, ITGA531, ITGAV36, and ITGB636 in infil-
trative compared to nodular BCCs, questioning their tumoral expres-
sion and potential EMT. Consistent with epithelial collective migration

rather than EMT, these genes were barely or not expressed in the
tumor cell subpopulations (Supplementary Fig. 9), suggesting their
predominant stromal expression.

Altogether, spatial signatures mapped tumor cells composing the
invasive niche in scRNA-seq data, revealing how their transcriptional
reprogramming supports collective migration.

CAFs found in the invasive niche harbor ECM-remodeling
features
Collective migration requires adjacent stromal fibroblasts to support
invasion37. We previously identified fibroblasts as preferential spatial
interactors at the tumor-stroma interface of infiltrative BCCs (Fig. 3c).
We thus thought to further dissect the transcriptional reprogramming
offibroblasts foundwithin the invasive niche, taking advantage of their
heterogeneity on scRNA-seqUMAP (Fig. 5a). To do so,we subclustered
the fibroblast cell subpopulations and obtained 4 unsupervised clus-
ters with satisfactory patient integration and gene expression com-
plexity (Figs. 3c and 5a and Supplementary Fig. 10).We then computed
the difference between spatial SINF and SNOD signature enrichment
scores for individual fibroblasts (Fig. 5b). Clusters were ranked based
on their mean difference between spatial SINF and SNOD signatures
enrichment scores: Low (FC1), Med low (FC2), Med high (FC3), and
High (FC4) (Fig. 5c, d). As expected,weobserved a negative correlation
between spatial SNOD and SINF enrichments (Supplementary Fig. 11a),
with progressive enrichment for the spatial SINF signature from Low
(FC1) to High (FC4) infiltrative fibroblast clusters (Supplementary
Fig. 11b, upper panels, 11c), and reversed enrichment for the spatial
SNOD signature from High (FC4) to Low (FC1) infiltrative fibroblast
clusters (Supplementary Fig. 11b, lower panels, 11c). Activated fibro-
blasts located in close proximity to the tumor are called cancer-
associated fibroblasts (CAFs). They express vimentin, and a large
subset of CAFs also expresses high levels of alpha smoothmuscle actin
(αSMA)38,39. In contrast, quiescent fibroblasts are non-contractile,
spindle-shaped, and in a resting state38,39. Whereas quiescent
fibroblasts40 were identified in FC3 (Fig. 5e, upper panels), CAF sig-
naturemarkers identified by scRNA-seq in several studies41 showed the
highest enrichment in both Low (FC1) and High (FC4) infiltrative
fibroblast clusters (Fig. 5e, lower panels), although with different
profiles (Fig. 5f). Indeed, when looking at the significantly up-regulated
genes in High (FC4) versus Low (FC1) infiltrative fibroblast clusters
(Supplementary Fig. 11d, e and Supplementary Data 5), gene set
enrichment analysis highlighted ECM-remodeling-related biological
processes (extracellular matrix organization, extracellular structure
organization) (Supplementary Fig. 11f). The identified ECM-remodeling
profile of High infiltrative CAFs (FC4) was further confirmed by their
enrichment for the KEGG regulation of actin cytoskeleton and the
KEGG ECM-receptor interaction signatures (Fig. 5g). We also con-
firmed the stromal fibroblast origin of the previously reported infil-
trative BCC-specific markers (FN113,31, POSTN13, CCN413, COL3A113,
ADAMTS213, LRRC1513), with specific enrichment in CAFs found within
the invasive niche (Supplementary Fig. 11g). Importantly, analysis for
inferred copy number variations showed significantly lower rate of
chromosomal aberrations in the fibroblast compared to the tumor cell
clusters (Supplementary Fig. 11h), arguing against tumor epithelial
transdifferentiation upon EMT into CAF-like populations42. Altogether,
spatial signatures mapped fibroblasts composing the invasive niche in
scRNA-seq, revealing how their prominent ECM-remodeling features
may support tumor cell collective migration.

INHBA is preferentially expressed in the highly infiltrative
tumor tips
We next inferred from pseudotime analysis the various genes driving
tumor cell progression trajectory (Supplementary Data 6) and over-
lapped the identified genes with a series of known secreted CAF acti-
vators (transforming growth factor-β (TGF-β), other TGF-β superfamily
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members, platelet-derived growth factors (PDGFs), epidermal growth
factor (EGF) family members, fibroblast growth factors (FGFs) and
sonic hedgehog (SHH))38 (Fig. 6a). Although expressed in infiltrative
tumor cells, TGFB1, previously reported to drive BCC infiltration31, did
not show significant autocorrelation with the pseudotime trajectory
(Supplementary Fig. 12a). By contrast, INHBA, coding for the inhibin

beta A subunit of other TGF-β superfamily members, including the
homodimer Activin A, the heterodimer activin AB or their antagonist
Inhibin A (a heterodimer of INHBA and an α subunit)43, showed the
highest pseudotime autocorrelation and very specific association with
Highly infiltrative tumor clusters (TC12–15) (Fig. 6a, b). The related
INHBB was expressed at lower levels and more homogeneously
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(Supplementary Fig. 12b). Expressionof INHA, coding for theα-subunit
of Inhibin, and FST, coding for the secreted activin antagonist follis-
tatin, was also very low (Supplementary Fig. 12b), suggesting that the
increased levels of INHBA mainly give rise to homodimeric Activin A.
To consolidate these data, we interrogated tumor AOIs for INHBA and
INHBB expression (as part of the CTA panel). INHBA expression was
significantly enriched in infiltrative tumor AOIs, while INHBB expres-
sion was significantly decreased compared to nodular tumor AOIs
(Supplementary Fig. 12c). Using RNA FISH, we found consistent
increased expression of tumor INHBA at the tumor–stroma interface of
infiltrative compared to nodular BCCs (Fig. 6c, d), particularly in tumor
areas with High infiltrative morphology (Fig. 6d). In contrast, TGFB1
showed a more homogenous expression pattern (Supplementary
Fig. 12d). Importantly, we confirmed the tumor origin of INHBA
expression at the invasive tip (Fig. 6e). As expected from the combi-
nation of the spatial and scRNA sequencing data, we found positive
correlations between the expression of INHBA and collectivemigration
marker genes (CLDN4, NECTIN1, and DSG3) at the tumor-stroma
interface (Supplementary Fig. 13). Taken together, these results high-
light the preferential expression of INHBA in tumor cells located at the
invasive tip of infiltrative BCCs.

Activin A signals between spatially-connected infiltrative tumor
cells and associated CAFs
Having identified Activin A as a potential signaling molecule that is
released by infiltrative tumor cells, we next checked whether Activin A
may influence the identified ECM-remodeling CAFs. Therefore, we first
checked the expression of Activin A receptors. Activin A typically sig-
nals through ACVRII/ACVRIB (ALK4) heterodimers44,45. Indeed, skin
fibroblast and skin CAF responsiveness to Activin A was previously
shown to bemediated at least in part by ALK446–48. Here, we confirmed
ACVRIIA/B andACVRIB (ALK4) expression in BCCCAFs (Supplementary
Fig. 14). To confirm downstream activation, we applied a signature of
CAFs exposed to Activin A previously established in ref. 46. The sig-
nature of Activin A-exposure was highly enriched in ECM-remodeling
CAFs found in the invasive niche (FC4) (Fig. 7a). Consistently, tumor
cell expression of INHBA positively correlated with the expression of
Activin A-exposure genes in the adjacent stroma, based on DSP (Sup-
plementary Fig. 15a). To demonstrate the physical proximity between
tumor cells expressing INHBA and ECM-remodeling CAFs, we co-
stained nodular and infiltrative BCCs for INHBA andActivin A-exposure
signature genes like FN1 and POSTN using RNA FISH. Remarkably, we
found a positive correlation between INHBA expression in tumor cells
and the surrounding expression of Activin A-exposure genes (FN1 or
POSTN) in CAFs (Fig. 7b and Supplementary Fig. 15b), with preferential
expression in tumor areas with High infiltrative morphology (Fig. 7c
and Supplementary Fig. 15c). Of note, out of the previously identified
major contributors of infiltrative BCCs, FN1, POSTN, COL3A1, and
LRRC15 were identified as Activin A target genes46,47. Altogether, these
expression patterns strongly suggest that the INHBA homodimer

Activin A, through paracrine signaling, governs tumor cell and CAF
interactions in the invasive niche (Fig. 7d).

Overall, using integrated spatial and scRNA-seq, we deciphered
the cellular constituents, their transcriptional reprogramming, and
potential crosstalk within the invasive niche of aggressive skin tumors.
Importantly, we highlight a continuous progression in the infiltrative
properties of tumors supported by adjacent ECM-remodeling CAFs,
ending up in the spatially organized invasive niche, where Activin A
signaling may serve for reciprocal intercellular crosstalk.

Discussion
We combined scRNA-seq and spatial transcriptomics to decipher the
complex biological organization of the invasive front in aggressive
BCCs. To do so, we integrated 28,810 single cell transcriptomes with
spatially-resolved transcriptomes of 48 tumor areas and 47 adjacent
stroma areas in infiltrative and non-infiltrative BCCs. Among the var-
ious cell types composing infiltrative tumors, we identified a com-
mitted tumor cell subpopulation with collective migration features
and ECM-remodeling CAFs as being the principal contributors to the
invasive niche. Using differential gene expression and pseudotime
analysis, we showed that Activin A paracrine signaling governs their
reciprocal transcriptional reprogramming. Thus, integration of spatial
and single-cell transcriptomics can resolve the cellular and molecular
complexity of tumor invasion to provide unique mechanistic insights.

scRNA-seq captures the transcriptional activity of individual cells
in tissues but lacks spatial information. By contrast, spatial tran-
scriptomics provides transcriptional activities in spatially defined tis-
sue areas but does not provide information about individual cells. By
integrating single-cell and spatial RNA-seq, we may now map the
transcriptional profile of single cells to their native tissue
environment49, to foster our understanding of tumor biology21,50–52. In
contrast with these previous publications, we used here an alternative
approach, where a high number of spatially-restricted areas of interest
in tumors are defined transcriptionally, integrated, and then mapped
onto scRNA-seq data to obtain cellular resolution. Our integrative
approach was also used to filter data containing RNA cross-
contaminations between adjacent AOIs30. Depending on the size of
the capture spots and the gene library available, spatial resolutionmay
improve in the future. Nevertheless, our filtered spatial signatures,
when used on scRNA-seq data, identified transcriptionally-
characterized clusters in physical proximity at the leading edge of
infiltrative tumors. Importantly, the data may serve as a resource to
interrogate additional tumor types or compare leading edge sig-
natures and composition.

Previous studies using bulk RNA transcriptomics reported the
expression of mesenchymal ECM and ECM-remodeling genes like
FN113,31, POSTN13, CCN413, COL3A113, ADAMTS213, and LRRC1513 in infil-
trative BCCs. These studies, however, lacked spatial resolution, ques-
tioning their expression by tumor cells undergoing EMT. Our
integrated spatial and scRNA-seq confirmed the expression of these

Fig. 4 | Tumor cells within the invasive niche harbor epithelial collective
migration features. aUnsupervised clustering of the tumor cell subpopulations
represented as a UMAP plot. b Average expression level of the difference
between the spatial TINF and spatial TNOD signature scores in tumor cell sub-
populations of the scRNA-seq dataset, represented as a color scale overlaid on
the UMAP plot. c UMAP illustrating the unsupervised clusters ranked according
to their mean difference between the spatial TINF and spatial TNOD signature
scores in tumor cell subpopulations of the scRNA-seq dataset. d Average
expression level of the difference between the spatial TINF and spatial TNOD sig-
nature scores in tumor cell subpopulations of the scRNA-seq dataset, repre-
sented as violin plots per ranked cluster. e Average expression of the “basal” and
“differentiation” signatures in tumor cell subpopulations of the scRNA-seq
dataset, represented as a color scale overlaid on the UMAP plot (left panels) and
as violin plots per ranked cluster (right panels). f Average expression level of the

“collective migration” and “Hallmark of epithelial to mesenchymal transition”
signatures in tumor cell subpopulations of the scRNA-seq dataset, represented
as a color scale overlaid on the UMAP plot (left panels) and as violin plots per
ranked cluster (right panels). g Pseudotemporal trajectory across tumor cell
subpopulations, starting point in Low infiltrative cluster TC1 (upper panel).
Expression of spatial TNOD (MPPED1, PTCH1) and spatial TINF (KRT6A, SFN) mar-
kers along the pseudotemporal trajectory of tumor cell subpopulations (lower
panels). h Expression of basal (DST, COL17A1) markers along the pseudo-
temporal trajectory of tumor cell subpopulations. i Expression of differentia-
tion (KRT1, CALML5), tight junction (CLDN4), adherens junction (NECTIN1), and
desmosomal junction (DSG3) markers along the pseudotemporal trajectory of
the tumor cell subpopulations. scRNA-seq single-cell RNA sequencing, huBCC
human basal cell carcinoma, UMAP uniform manifold approximation and pro-
jection, TINF infiltrative tumor, TNOD nodular tumor, TC tumor cluster.
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genes in infiltrative tumors, but predominantly by CAFs and not tumor
cells. In the contrary, transcriptional reprogramming in infiltrative
tumor cells mostly involved genes implicated in epithelial commit-
ment and collective migration, which typically relies on epithelial
cell-cell interactions based on tight and adherens junctions. Ji et al.
previously reported a tumor-specific population with EMT features at

the leading edge in the proximity of CAFs in SCC21, harboring specific
INHBA expression. While it supports a common role for Activin A in
governing the invasive niche of epithelial skin cancers, it questions the
connection between INHBA expression and tumormigrationmode. Of
note, our study highlights the transcriptional heterogeneity of
INHBApos cells seenwithin scRNA-seq data, but not captured by theDSP
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Fig. 5 | CAFs found within the invasive niche harbor ECM-remodeling features.
aUnsupervised clustering of the fibroblast subpopulations represented as a UMAP
plot. b Average expression level of the difference between spatial SINF and spatial
SNOD signature scores in fibroblast subpopulations of the scRNA-seq dataset,
represented as a color scale overlaid on the UMAP plot. c UMAP illustrating the
unsupervised clusters ranked according to their mean difference between the
spatial SINF and spatial SNOD signature scores in fibroblast subpopulations of the
scRNA-seq dataset.dAverage expression level of the differencebetween the spatial
SINF and spatial SNOD signature scores in fibroblast subpopulations of the scRNA-seq
dataset, representedas violinplots per ranked cluster.eAverageexpression level of
the “Quiescent fibroblast” and “CAF” signatures in fibroblast subpopulations of the

scRNA-seq dataset, represented as a color scale overlaid on the UMAP plot (left
panels) and as violin plots per ranked cluster (right panels). f Heatmap of the
average expression level of genes present in the “CAF” signature in fibroblast
subpopulations of the scRNA-seq dataset. g Average expression level of the “KEGG
regulation of actin cytoskeleton” (left panels) and “KEGGECM-receptor interaction”
(right panels) signatures in fibroblast subpopulations of the scRNA-seq dataset,
represented as a color scale overlaid on the UMAP plot and as violin plots per
ranked cluster. scRNA-seq single-cell RNA sequencing, huBCC human basal cell
carcinoma, UMAP uniformmanifold approximation and projection, SINF infiltrative
stroma, SNOD nodular stroma, FC fibroblast cluster, CAF cancer-associated fibro-
blasts, ECM extracellular matrix.
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profiling. Despite predominant differentiation and collective migra-
tion features, a few INHBApos cells identified in our study may harbor
discrete EMT features. Overall, it is suggestive of few, rare, partial EMT
tumor cells governing collective migration during development and
cancer progression9,53 but requires additional studies with improved
gene and spatial resolution to be confirmed.

Our data highlight how aggressive tumors repurpose tissue
regeneration mechanisms to progress54,55. During tissue repair, kera-
tinocytes stimulate fibroblasts, which in turn drive keratinocyte pro-
liferation, migration, and differentiation to restore the epidermal
barrier32,56. By analogy, spatial annotation of scRNA-seq data highlights
the transcriptional reprogramming of committed, migrating tumor

cells and adjacent fibroblasts, supporting reciprocal biological cross-
talk (Fig. 7d). Consistently, Activin A paracrine signaling, identified at
the tumor leading edge of BCCs, is involved in tissue repair and
fibrosis. This activity involves the activation of ECM-remodeling
fibroblasts45,57,58 and is associated with poor prognosis in various can-
cer types, including skin cancer46,59–61. While mechanisms may differ
between cancer types, enhanced ECM stiffness induced by Activin A,
which was observed in healing skin wounds47, may drive tumor
progression62,63. We previously reported the implication of TGF-β1, a
key regulator of myofibroblast differentiation, in driving BCC
infiltration31. Interestingly, TGFB1 and INHBA display different expres-
sion patterns in infiltrative BCCs, suggesting that TGF-β1 and Activin A

Fig. 6 | INHBA is preferentially expressed in the highly infiltrative tumor tips.
a Venn diagram showing the overlap between genes with a positive (>0.1) pseu-
dotime autocorrelation index and known CAF activators (upper panel). Lower
panel shows the average expression level per ranked cluster of the three over-
lapping genes, ordered by decreasing autocorrelation index, in tumor cell sub-
populations of the scRNA-seq dataset. b Expression level of INHBA in the tumor
cell subpopulations of the scRNA-seq dataset, represented as a color scale
overlaid on theUMAPplot (upper left panel) and as violin plots per ranked cluster
(lower panel). Expression level per cell of INHBA along the pseudotemporal tra-
jectory of tumor cell subpopulations (upper right panel). c Bar graph repre-
senting the relative intensity of INHBA expression in tumor cells located at the
tumor-stroma interface of nodular (N = 4) and infiltrative (N = 8) BCC samples
(measured in n ≥ 15 regions/sample). Horizontal bars indicate the mean ± SD.

p Value was calculated by unpaired two-sided Student’s t test. d Representative
scan images of nodular and infiltrative BCC sections stained with DAPI (blue) and
INHBA (red) probe for RNA FISH. Upper, intermediate and lower zoomareas show
tumor-stroma interface with distinct Nodular, Low, and High infiltrative
morphologies respectively. Dotted lines highlight the tumor-stroma interface.
Scale bars indicate 200μm (main panel) and 50μm (zoom panels).
e Representative confocal images of Nodular and High infiltrative tumor-stroma
interfaces stainedwithDAPI (blue), pan-cytokeratin antibody (panCK, green), and
INHBA (red) probe for RNA FISH. Dotted lines highlight the tumor-stroma inter-
face. Scale bars indicate 10 μm. CAF cancer-associated fibroblasts, TC tumor
cluster, scRNA-seq single-cell RNA sequencing, huBCC human basal cell carci-
noma, UMAP uniform manifold approximation and projection, BCC basal cell
carcinoma. Source data for c are provided as a Source data file.
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expression are regulated distinctly in tumors. While TGFB1 is homo-
geneously expressed, INHBA expression is restricted to highly infil-
trative tumor tips. TGF-β1 inhibitors, including TGFβRI kinase
inhibitors with ALK4 blocking activity, failed to deliver anticipated
results in clinical trials involving patients with different types of
cancer64. However, their limited clinical success was not related to the
ALK4 blocking activity. Currently tested Activin A/activin receptors
inhibitors, including recombinant follistatin (FST), neutralizing Activin
A antibodies and soluble activin receptors, target Activin A without
affecting TGFβR1. As such, Activin A signaling-targeting strategies

(tested in phase I/IIa clinical trials formuscular dystrophy65) may differ
in terms of adverse effects and efficacy and offer an attractive alter-
native to TGF-β1 inhibitors.

Altogether, our data show how tumor cell differentiation, collec-
tive migration, and ECM-remodeling CAFs are spatially and tran-
scriptionally connected. Our data support that Activin A-mediated
collective migration and matrix remodeling required for tissue repair
are repurposed by committed skin tumor cells to invade surrounding
tissues, and may be specifically targeted in the clinics45. While the
limited sample cohort in our study may not reflect the potential
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Fig. 7 | Activin A signals between spatially-connected infiltrative tumor cells
and associated CAFs. a Average expression level of the signature resulting from
Activin A exposure in the fibroblast subpopulations of the scRNA-seq dataset,
represented as a color scale overlaid on the UMAP plot (left panel) and as violin
plots per ranked cluster (middle panel). Right panel shows the heatmap of average
expression level of genes present in the signature in ranked clusters of the fibro-
blast subpopulations. b Correlation analysis between tumor INHBA and adjacent
stromal FN1 relative intensities in nodular (N = 4) and infiltrative (N = 8)BCCs (n ≥ 10
regions/sample). R coefficient and p value were calculated by the Spearman cor-
relation test and a two-sided statistical significance test, respectively.
c Representative scan images of nodular and infiltrative BCC sections stained with

DAPI (blue), INHBA (red), and FN1 (green) probes for RNA FISH. Upper, inter-
mediate and lower zoom areas show tumor-stroma interface with distinct Nodular,
Low, and High infiltrative morphologies respectively. Dotted lines highlight the
tumor-stroma interface. Scale bars indicate 200μm (main panels) and 20μm
(zoom panels). d Summary scheme depicting the continuum of tumor infiltrative
properties, with a zoomon the cellular andmolecular interactions identifiedwithin
the invasive niche. Image designed with Servier Medical Art (smart.servier.com).
scRNA-seq single-cell RNA sequencing, huBCC human basal cell carcinoma, UMAP
uniform manifold approximation and projection, FC fibroblast cluster, BCC basal
cell carcinoma, ECMextracellularmatrix. Sourcedata forb areprovided asa Source
data file.
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heterogeneity of invasionmodes in BCC, our findings demonstrate the
power of integrated single-cell and spatial transcriptomics to decipher
the spatial organization and intercellular signals governing the invasive
niche of skin cancer.

Methods
Human samples
Studies were approved by the institutional review board of Lausanne
University Hospital CHUV, and the local ethics committee, in accor-
dance with the Helsinki Declaration (CER-VD 2020-02204). Written
informed consent was obtained from each patient. Based on the
principle of voluntary participation, no compensation was provided to
the patients in this study. Samples from scRNA-seq were collected
from Mohs specimen residual debulking piece and processed imme-
diately after surgical resection. Samples for DSP and RNA FISH were
obtained from formalin-fixed paraffin-embedded tumor tissues, from
respectively different patients. Histological diagnoses were obtained
from an independent dermatopathologist. None of the patients were
immunosuppressed. Comprehensive information on age, gender,
tumor localization, and previous treatment are listed in Supplemen-
tary Fig. 1a.

Tissue dissociation and single-cell sorting
Fresh tumor tissues were transported in Medium 154CF (GibcoTM, M-
154CF-500) on ice to preserve viability. The tumor tissues were then
minced with scalpels to pieces <1mm3 and transferred in 10ml Med-
ium 154CF with collagenase (5mg/ml, (GibcoTM, 17018029)) to digest
the tissue. The mixture was incubated for 90min at 37 °C with manual
shaking every 10min. Then, 5ml 0.05% trypsin-EDTA (GibcoTM, 25300-
054) was added to the mixture and the digestion cocktail was incu-
bated again for 10min at 37 °C. After incubation, the mixture was
centrifuged at 500 × g for 5min at 4 °C. In all, 5ml 10% fetal bovine
serum (FBS, (VWR, S181B-500)) was added to the pellet to inhibit the
digestion enzymes. Themixturewas centrifuged at 500 × g for 5min at
4 °C. Cells were suspended in 10ml MACS buffer (2% FBS, 2mM EDTA
(Promega, V4231) diluted in phosphate-buffered saline (PBS) (Bichsel,
100 0 324)). The cell suspension was then filtered through a 70-µmcell
strainer (Plexus-Santé, PL000223). Afterward, the cells were stained
with SYTOTM 13 Green Fluorescent Nucleic Acid Stain (Invitrogen,
S7575) and SYTOXTMOrangeNucleic Acid Stain (Invitrogen, S11368) for
viability assessment. Stained cells were suspended in MACS buffer.
Single living cells (SYTOTM greenPos, SYTOXTM orangeNeg) were then
FACS sorted and collected in a collecting medium (10% FBS, 2mM
EDTA in PBS). Sorted cellswere centrifuged at 500 × g for 5min at 4 °C.
The cells were then suspended in 10% FBS and counted. The cell sus-
pension was centrifuged at 500 × g for 5min at 4 °C. Cells were sus-
pended in the appropriate volume of 10% FBS to obtain a final
concentration of approximately 1000 cells/µl.

scRNA-seq processing (emulsion/library preparation/
sequencing)
Single-cellmRNA capture and sequencingwere performed immediately
after reaching the optimal cell suspension by the Lausanne Genomic
Technologies Facility (GTF, https://wp.unil.ch/gtf/) using theChromium
Next GEM single cell 3’ v3.1 reagent kit (10× Genomics) following the
manufacturer’s protocol. The target number of captured cells was
10,000 per sample. Sequencing libraries were prepared per the manu-
facturer’s protocol. Paired-end sequencing was performed on Illumina
HiSeq 4000 (Hiseq Control Software, v.3.4.0) (for BCC1 and BCC2) and
NovaSeq 10× (Novaseq Control Software v.1.7.5) (for BCC3, BCC4 and
BCC5) devices using HiSeq 3000/4000 SBS Kit reagents according to
10x Genomics recommendations (28 cycles read1, 8 cycles i7 index
read, and 91 cycles read2) at a median depth of 23,272 reads/cell for
BCC1, 34,848 reads/cell for BCC2, 32,995 reads/cell for BCC3, 25,693
reads/cell for BCC4 and 29,406 reads per cell for BCC5.

Sequencing data were demultiplexed using the bcl2fastq2 Con-
version Software (v. 2.20, Illumina). Raw sequencing data provided as
fastq files were processed using the count function of the Cell Ranger
pipeline (v.5.0.1, 10× Genomics (https://support.10xgenomics.com/
single-cell-gene-expression/software/downloads/5.0)). The count
function allowed us to demultiplex sequencing reads to individual
cells, to align the reads to the human GRCh38 genome reference
(refdata-gex-GRCh38-2020-A), and to generate filtered matrices of
gene counts by cell barcodes.

scRNA-seq data analysis
Filtered gene by cell barcode counts matrices were imported into R (v.
4.1.0, https://www.R-project.org/) for further analyses using the
Seurat66 package (v. 4.0.4). We first filtered the cells to only retain cells
that had between 500 and 6000 detected genes, <20% of reads
mapping to mitochondrial genes, and less than 20% of reads mapping
to dissociation protocol-related genes67. The single cells of each sam-
ple were first processed separately: Raw counts were normalized using
the NormalizeData function using the “LogNormalize” method and a
scale factor of 10,000. The top 2000 variable genes were selected
using the FindVariableFeatures function with the “vst” selection
method. For visualization purposes, the five samples were integrated
by using the FindIntegrationAnchors and IntegrateData functions with
default parameters. Dimensionality reduction was performed by first
scaling and centering the integrated data, running a principle com-
ponent analysis (PCA), followedby aUniformManifold Approximation
and Projection (UMAP) dimensional reduction on 25 principal com-
ponents. Finally, cells were clustered using the sheared nearest
neighbor (SNN) modularity optimization-based clustering algorithm
implemented in the FindNeighbors and FindClusters functions, with 25
principal components and a resolution parameter of 0.8. The expres-
sion level of canonical marker genes21–23 was used to identify the bio-
logical cell types present in each cluster of the total population.

Cell clusters expressing unexpected marker combinations (e.g.,
KRT14 andCD3E) were considered doublets andmanually removed. To
assess the degree of sample mixing performed by the dataset inte-
gration, the Local Inverse Simpson’s Index (LISI) score was calculated
using the published code68 and the lisi (v.1.0) package.

When subclustering, the same analysis method as described
above was applied, including dimensionality reduction on 25 principal
components and clustering, with resolution parameters of 1.0 and 0.3
for tumor cells and fibroblasts, respectively. Subclusters with an
abnormal distribution of detected genes or abnormal distribution of
mitochondrial/ribosomal gene percentages were excluded for further
analysis.

We usedWilcoxon rank sum tests to determine which genes were
differentially expressed between two groups, as implemented in the
FindMarkers function of the Seurat package, with default parameters.
Differentially expressed genes were determined between the defined
High (TC12, TC13, TC14, TC15) and Low (TC1, TC2, TC3, TC4) infiltrative
groups of the tumor cell subpopulations, as well as between the
defined High (FC4) and Low (FC1) infiltrative clusters of the fibroblast
subpopulations.

Over-representation analysis of Gene Ontology biological process
gene sets69 was performed using the gseGO function implemented in
the clusterProfiler (v.4.0.5) and the org.Hs.eg.db (v.3.13.0) packages.

Using the AddModuleScore function implemented in the Seurat
package, we calculated the average expression per cell of genes
belonging to several gene signatures (Supplementary Data 7). This
function calculates the average expression of the genes in a signature,
subtracted by the average expression of control genes that are selec-
ted at random among genes with similar expression levels as the genes
included in the signature of interest28.

Using the cor.test function implemented in the stats package
(v.4.1.0), we calculated the correlation coefficient R and the p value
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between TINF and TNOD signatures in the tumor cell subpopulations and
between the SINF and SNOD signatures in the fibroblast subpopulations.

Copy number variation analysis
To infer genomic copy number structure, we performed InferCNV
(v.1.8.1) as per the developer’s suggestions using standard parameters
(https://github.com/broadinstitute/inferCNV). We used a cutoff of 0.1
for theminimum average read counts per gene among reference cells.
We used T cells as an internal reference control.

Trajectory and pseudotime analysis
Pseudotime calculations were performed using the R package Mono-
cle 3 (v.1.0.0)35. We first imported the tumor cells Seurat object and
adapted it to obtain a Monocle3 object using the new_cell_data_set
function. Then, we calculated 100 principal components using the
preprocess_cds function of Monocle 3 package. Next, a UMAP was
generated with the reduce_dimension (default parameters), and cells
were clustered using the cluster_cells function, with a resolution
parameter of 0.00025. Then UMAP embeddings and clustering at
resolution 0.8 previously calculated using Seurat were transferred to
theMonocle3 object. Tumor cells were subjected to trajectory analysis
using the learn_graph function with default parameters except for
use_partition = FALSE. A pseudotime value was assigned to each cell
using the order_cells function, selecting TC1 as the root state. Finally,
genes differentially expressed along the tumor cell trajectory were
identified usingMoran’s I test implemented in the graph_test function,
using the principal graph as the selected neighbor graph35. Branch-
point variations in expression are not indicated in graphs showing
gene expression along the pseudotemporal trajectory.

GeoMx digital spatial profiling
Six nodular and 6 infiltrative BCC samples were selected and evaluated
using the GeoMx Cancer Transcriptome Atlas with 1812 RNA targets
(https://www.nanostring.com/products/geomx-digital-spatial-
profiler/geomx-rna-assays/geomx-cancer-transcriptome-atlas/). Spa-
tial transcriptomics analysis included up to 24 regions of interest (ROI)
per tumor type, divided into tumor and stroma areas of
illumination (AOI).

For slide preparation, we followed the GeoMx DSP slide pre-
paration usermanual (MAN-10087-04). In brief, FFPE tissue sections of
5-µmweremountedonpositively charged histology slides by grouping
3 patients per slide. Sections were incubated at 65 °C for 1 h. Slides
were deparaffinized in 3 xylene baths of 5min, then rehydrated in
ethanol gradient: 2 baths of 5min in 100% EtOH, followed by 5min in
95% EtOH. Slides were then washed with PBS 1×. Antigen retrieval was
performed in Tris-EDTA pH 9.0 at 100 °C for 15min at low pressure.
Slides were first dived into hot water for 10 s, and then into Tris-EDTA
buffer. The cooker vent stayed open during the procedure to ensure
low pressure. Slides were then washed in PBS 1×, incubated in protei-
nase K in PBS (1 µg/ml) for 15min at 37 °C, and washed again with PBS
1×. Tissues were post-fixed in 10% neutral-buffered formalin (NBF) for
5min, washed twice for 5min inNBF stopbuffer (0.1MTris Base, 0.1M
Glycine), and finally once in PBS 1×. The RNA probe mix (CTA (https://
www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-
rna-assays/geomx-cancer-transcriptome-atlas/), a pool of in situ
hybridization probes with UV photocleavable oligonucleotide bar-
codes) was placed on each section and covered with HybriSlip Hybri-
dization Covers. Slides were then incubated for hybridization
overnight at 37 °C in a Hyb EZ II hybridization oven (Advanced Cell
Diagnostics). The day after, HybriSlip covers were gently removed and
25-min stringent washes were performed twice in 50% formamide and
2× Saline Sodium Citrate (SSC) at 37 °C. Tissues were washed for 5min
in 2× SSC, then blocked in Buffer W (Nanostring Technologies) for
30min at room temperature in a humidity chamber. Next, tissues were
stained with panCK-532 (clone AE1 + AE3) (Novus, NBP2-33200) at 1:20

and SYTO 13 at 1:10 (Thermo Scientific S7575) in Buffer W for 1 h at
room temperature. Slides were washed twice in fresh 2× SSC and then
loaded on the GeoMx Digital Spatial Profiler (DSP).

For GeoMx DSP sample collections, entire slides were imaged at
×20 magnification and morphologic markers were used to select ROI
using organic shapes. Automatic segmentation of ROI based on
panCKpos markers was used to define AOIs, allowing to separate tumor
cells (panCKpos) from adjacent stromal cells (panCKneg). A total of 95
AOIs were exposed to 385 nm light (UV), releasing the indexing oli-
gonucleotides that were collected with amicrocapillary and deposited
into a 96-well plate for subsequent processing. The indexing oligo-
nucleotides were dried overnight and resuspended in 10μl of DEPC-
treated water.

Sequencing libraries were generated by PCR from the photo-
released indexing oligos and AOI-specific Illumina adapter sequences.
Unique i5 and i7 sample indexes were added. Each PCR reaction used
4μl of indexing oligonucleotides, 4μl of indexing PCR primers, 2μl of
Nanostring 5× PCR Master Mix. Thermocycling conditions were 37 °C
for 30min, 50 °C for 10min, 95 °C for 3min; 18 cycles of 95 °C for 15 s,
65 °C for 1min, 68 °C for 30 s; and 68 °C for 5min. PCR reactions were
pooled and purified twice using AMPure XP beads (Beckman Coulter,
A63881), according to the manufacturer’s protocol. Pooled libraries
were paired-sequenced at 2 × 27 base pairs and with a unique dual
indexesworkflowon an IlluminaHiSeq 4000 instrument (aspreviously
described). HiSeq-derived FASTQ files for each sample were compiled
for each compartment using the bcl2fastq program of Illumina, and
then demultiplexed and converted to digital count conversion (DCC)
files using the GeoMx DnD pipeline (v.1) of Nanostring according to
manufacturer’s pipeline. DCC files were imported back into theGeoMx
DSP instrument for QC and data analyses using GeoMx DSP analysis
suite version 2.2.0.111 (Nanostring). A minimum of 10,000 reads were
required for each sample. Probes were checked for outlier status by
implementing a global Grubb’s outlier test with alpha set to 0.01. The
counts for all remaining probes for a given target were then collapsed
into a singlemetric by taking the geometricmean of probe counts. For
each sample, an RNA-probe-pool-specific negative probe normal-
ization factor was generated on the basis of the geometric mean of
negative probes in each pool. To ensure good data quality, we calcu-
lated the 75th percentile of the gene counts (that is, the geometric
mean across all non-outlier probes for a given gene) for each AOI, and
normalized to the geometric mean of the 75th percentile across all
AOIs to give theupper quartile (Q3)normalization factors for eachAOI.
The distribution of these Q3 normalization factors was then checked
for outliers (Supplementary Fig. 2b). DEGs and PCA analyses were
performed on the GeoMx DSP instrument software.

Fluorescence in situ hybridization (FISH)
FFPE skin blocks were cut and 5-µm sections were mounted onto
Superfrost Plus® microscope slides FFPE skin sections were heated
10min at 60 °C. Slides were deparaffinized in 2 xylene baths of 3min,
then rehydrated in an ethanol gradient from 100% EtOH (2 baths of
3min), followed by 95% EtOH (3min) and 70% EtOH (3min). Slides
were then washed in distilled water. RNAscope® Hydrogen Peroxide
(ACD, 322335) was added to the tissue sections and slides were incu-
bated for 10min at room temperature. Slides were then washed for
5min in distilled water followed by 5min in PBS 1×. Antigen retrieval
was done in Tris-EDTApH9.0 at 100 °C for 10min, followed by cooling
for 30min at room temperature. Slides were washed twice for 5min in
PBS 1×. Slides were then immersed for 20 s in 0.012% Triton X-100 and
washed twice for 5min in PBS 1×. Tissue sections were then sur-
rounded with an ImmEdge Pen (Vector Laboratories, H-4000). Pro-
tease treatment, probe hybridization, amplifications, and stainings
were performed with the RNAscope® Multiplex Fluorescent Reagent
Kit v2 Assay kit (ACD, 323100) according to the manufacturer’s
instructions. The following probes were used: RNAscope® Probe-Hs-
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FN1-C3 (310311-C3), RNAscope® Probe-Hs-COL1A1-C2 (401891-C2),
RNAscope® Probe-Hs-KRT6A-C3 (520721-C3), RNAscope® Probe-Hs-
MPPED1 (426131), RNAscope® Probe-Hs-INHBA-C2 (415111-C2), RNA-
scope® Probe-Hs-INHBA (415111), RNAscope® Probe-Hs-TGFB1
(400881), RNAscope® Probe Hs-CLDN4-C2 (421041-C2), RNAscope®
Probe-Hs-PVRL1 (403071), RNAscope® Probe-Hs-DSG3 (470181), RNA-
scope® Probe-Hs-POSTN (409181). Opal 570 Reagent (AKOYA
Bioscience, OP-001003), and Opal 650 Reagent (AKOYA Bioscience,
OP-001005) were used for fluorescence visualization. The slides were
acquired with Pannoramic 250 slide scanner and processed using the
CaseViewer 2.4 and (Fiji Is Just) ImageJ softwares.

Immunofluorescence and FISH co-detection
FFPE skin blocks were cut and 5-µm sections were mounted onto
Superfrost Plus® microscope slides FFPE skin sections were heated
10min at 60 °C. Slides were deparaffinized in 2 xylene baths of 3min,
then rehydrated in an ethanol gradient from 100% EtOH (2 baths of
3min), followed by 95% EtOH (3min) and 70% EtOH (3min). Slides
were then washed in distilled water. RNAscope® Hydrogen Peroxide
(ACD, 322335) was added to the tissue sections and slides were incu-
bated for 10min at room temperature. Slides were then washed for
5min in distilled water followed by 5min in PBS 1×. Antigen retrieval
was done in 1× Co-detection Target Retrieval buffer (ACD, 323163) at
100 °C for 10min, followed by cooling for 30min at room tempera-
ture. Slideswere thenwashed twice 1min in distilledwater and 2min in
1× PBSwith 0.1% Tween-20 (PBS-T) (PBS: Bichsel, 100 0 324, Tween-20:
Sigma, P1379-500ML). Each tissue section was then covered with the
primary antibody solution (Monoclonal antibody to human cytoker-
atin (pan) (clone Lu-5) (BMA Biomedicals, T-1302) diluted 1:250 in Co-
DetectionAntibodyDiluent (ACD, 323160)) and incubatedovernight at
4 °C in a humidifiedbox. Followingprimary antibody incubation, slides
werewashed twice in PBS-T for 2min. Slideswere then fixed for 30min
in Buffered Zinc Formalin (Thermo Scientific, 5701ZF) at room tem-
perature. After fixation, slides were washed four times in PBS-T for
2min. Protease treatment, probe hybridization, amplifications, and
stainings were performed with the RNAscope® Multiplex Fluorescent
Reagent Kit v2 Assay kit (ACD, 323100) according to the manu-
facturer’s instructions. After the final in situ hybridization horseradish
peroxidase (HRP)-blocker step, each tissue section was covered with
the secondary antibodydilution (goat F(ab’)2 fragment IgG (H + L) anti-
mouse Alexa Fluor 488 antibody (Life Technologies, A11017) diluted
1:500 in Co-Detection Antibody Diluent) for 30min at room tem-
perature. Slides were then washed twice for 2min in PBS-T. Finally,
slides were mounted with a mounting medium with DAPI-Aqueous
Fluoroshield (abcam, ab104139). The slides were acquired with Zeiss
LSM 700 confocal microscope and processed using the ZEN 2.3 lite
and (Fiji Is Just) ImageJ softwares.

Statistical analyses
Data represent results from three or more independent biological
samples unless otherwise specified. Bar and line graphs results reflect
the mean with standard deviation (SD). For spatial sequencing, statis-
tics were conducted between infiltrative and nodular Tumor, respec-
tively Stroma AOI. Spatial sequencing samples in the same disease
category can be considered biological replicates. Statistical compar-
isons were performed using unpaired two-sided Student’s t test or
Mann–WhitneyU-test, according to the variances. Correlation analyses
were calculated by Spearman correlation test. The softwares used for
statistical analyses are GraphPad Prism (version 8.3.0) and GeoMxDSP
analysis suite (version 2.2.0.111, Nanostring). pValues arementioned in
the figures. Normal distributionwas observed for all data. No technical
replication was performed. No statistical method was used to pre-
determine sample size. No samples were excluded from the analyses.
The experiments were not randomized.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited in the
Gene Expression Omnibus database under accession code GSE181907.
The DSP data generated in this study have been deposited in the Gene
Expression Omnibus database under accession code GSE210648. The
following databases and datasets were used in this study: GRCh38
human reference genome reference (refdata-gex-GRCh38-2020-A)
(https://support.10xgenomics.com/single-cell-gene-expression/
software/downloads/latest), GeoMx® Cancer Transcriptome Atlas
(https://www.nanostring.com/products/geomx-digital-spatial-
profiler/geomx-rna-assays/geomx-cancer-transcriptome-atlas/). The
remaining data are available within the Supplementary Information or
Source data file. Source data are provided with this paper.
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