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Abstract: The synthesis of paracyclophane-based tetrathiafulvalene precursors is described in the
context of the importance of these compounds in the field of material chemistry. Pseudo-geminal
bis(1,3-dithia-2-thione) was synthesized via the corresponding 1,3-dithiol-2-ylium salt. The latter was
obtained by a synthetic procedure that involves 4,15-bis(acetyl)[2.2]paracyclophane, a new compound
of interest for many researchers.
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1. Introduction

[2.2]Paracyclophane derivatives have been the subject of particular interest since their first
appearance in the literature, more than seven decades ago [1–3]. Since then, most studies have been
devoted to the elucidation of the structural characteristics of [2.2]paracyclophanes, particularly their
geometry and steric properties, transannular interactions, and ring strain [4–6]. Most of the unique
properties of these cyclophanes are the result of the rigid framework and the short distance between
the two aromatic rings within the [2.2]paracyclophane unit. In one such application, unsaturated
cyclophane bis(esters) provided the corresponding ladderanes by intramolecular photocyclization [7].
The [2.2]paracyclophane core can undergo chemical transformations specific to both aliphatic and
aromatic compounds, resulting in a wide variety of functionalized [2.2]paracyclophanes. Both the parent
hydrocarbon and its derivatives have been used in asymmetric catalysis [8–11], optoelectronics [12],
and polymer synthesis [13].

Special attention has been paid to the ability of these compounds to form charge transfer
complexes [14]. Tetrathiafulvalene (TTF) and its derivatives have been extensively studied with respect
to their applications as organic metals and superconductors [15,16]. These properties are a consequence
of the π-donor properties of TTF and of its important intermolecular interactions in the solid state
through extended π-orbitals. The design of new tetrathiafulvalene derivatives has targeted those
systems where the intermolecular interactions between planar molecules are more efficient and the
solid-state architecture tends to organize as stacks or layers, with their long axes mutually parallel [17].
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We report here the synthesis and characterization of pseudo-geminal [2.2]paracyclophane
1,3-dithia-2-thione as a precursor for hybrid [2.2]paracyclophane-tetrathiafulvalene systems.

2. Results and Discussion

The synthetic pathway for the synthesis of pseudo-geminal [2.2]paracyclophane 1,3-dithia-2-thione
is depicted in Schemes 1 and 2. The reactions use 4,15-bis(carboxyl)[2.2]paracyclophane (1) as the
starting material.

As can be seen in Scheme 1, pseudo-geminal derivative 1 [18] was converted to the pseudo-geminal
bis(acetyl) derivative 2 by treatment with methyl lithium in the presence of copper(I) cyanide. We note
that 4,15-bis(acetyl)[2.2]paracyclophane is a new derivative that has great potential to become an
important synthetic intermediate in [2.2]paracyclophane chemistry. After the reaction workup, the
desired product was isolated in 93% yield. Single crystals of 2 were obtained by layering hexane over a
solution of 2 in dichloromethane; the structure of 2 is shown in Figure 1. Several bromination methods
of 2 were investigated, involving molecular bromine, copper(I) bromide, and N-bromosuccinimide as
brominating agents. Among these, N-bromosuccinimide proved to be the most efficient, providing the
corresponding bis(dibromide) 3 in reasonable yield (52%) as well as the tribrominated derivative 4 as a
side-product (10% yield). Single crystals of both 3 and 4 have been obtained by the same method and
the structures are shown in Figure 2.
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corresponding to the perchlorate anion. Heterocyclization of dithiocarbamates 6 is also supported by 
the NMR spectrometry. Thus, the 1H-NMR spectrum of the 1,3-dithiol-2-ylium perchlorate indicates 
the disappearance of the signal of the α-carbonyl hydrogen atom from compound 6 (4.08 ppm). The 
13C-NMR spectrum also supports the synthesis of 1,3-dithiolium salt 7 by the disappearance of the 
carbonyl and thiocarbonyl carbon atoms and the appearance of a new signal at very low field (186 
ppm) which corresponds to the electron-deficient C-2 atom (see supplementary material). Finally, 
the desired bis(1,3-dithia-2-thione) 8 was obtained by treatment of 7 with ammonium sulfide. 
Although sodium sulfide was also investigated as a sulfur nucleophile, ammonium sulfide provided 

Figure 2. Molecular structure of 4,15-bis(bromoacetyl)[2.2]paracyclophane (3) (left) and
4-bromoacetyl-15-dibromoacetyl[2.2]paracyclophane (4) (right); ellipsoids represent 50% probability
levels [20]. O1 and O2 represent the two oxygen atoms and Br1, Br2 and Br3 the bromine atoms.

The next step involved the synthesis of bisdithiocarbamate derivative 6 is by treatment of 3
with dimethylammonium N,N-dimethyldithiocarbamate 5, as presented in Scheme 2. The reaction
proceeds readily in refluxing acetone, providing the desired product in 79% yield. From a series of
various aminocarbodithioates derived from secondary amines (pyrrolidine, piperidine, morfoline),
the use of the dimethylammonium derivative provided the best yield and a cleaner crude reaction
product. Dithiocarbamate 6 was then converted into bis(1,3-dithiolium) perchlorate 7 through a
method extensively used by us in the past [21–24], which involved heating 6 in a mixture of sulfuric
and acetic acid over a period of 10 min, followed by addition of perchloric acid to the reaction mixture.
Bis(1,3-dithiolium) perchlorate 7 was thereby obtained in 96% yield.
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Scheme 2. Synthesis of pseudo-geminal [2.2]paracyclophane trithiones.

The cyclization of dithiocarbamates 6 was accompanied by important spectral changes. The IR
spectra revealed the disappearance of the absorption band corresponding to the carbonyl group
(1676 cm−1) and the presence of new, strong, and broad absorption bands at 1100–1200 cm−1,
corresponding to the perchlorate anion. Heterocyclization of dithiocarbamates 6 is also supported by
the NMR spectrometry. Thus, the 1H-NMR spectrum of the 1,3-dithiol-2-ylium perchlorate indicates
the disappearance of the signal of the α-carbonyl hydrogen atom from compound 6 (4.08 ppm).
The 13C-NMR spectrum also supports the synthesis of 1,3-dithiolium salt 7 by the disappearance
of the carbonyl and thiocarbonyl carbon atoms and the appearance of a new signal at very low
field (186 ppm) which corresponds to the electron-deficient C-2 atom (see Supplementary Materials).
Finally, the desired bis(1,3-dithia-2-thione) 8 was obtained by treatment of 7 with ammonium sulfide.
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Although sodium sulfide was also investigated as a sulfur nucleophile, ammonium sulfide provided
the best yield (76%) and a better quality of the crude reaction mixture. NMR spectra support the
formation of compound 8 by the disappearance of the signals of the dimethylamino groups in 1H
NMR. The 13C-NMR spectrum also indicates the disappearance of the signals of the methyl carbon
atoms and that of the electron-deficient C-2 atom. The formation of the carbon–sulfur double bond is
accompanied by the appearance of a new signal at 211.1 ppm (see Supplementary Materials).

1,3-Dithia-2-thiones derivatives are important precursors for the corresponding substituted
tetrathiafulvalenes either by a homocoupling or heterocoupling approach. Under homocoupling
conditions, pseudo-geminal derivative 8 should provide paracyclophane-based tetrathiafulvalenes, one of
the possible stereoisomers being depicted in Figure 3. Preliminary investigations on phosphite-mediated
homocoupling of 8 have not provided convincing results so far. These studies are still under evaluation.

Molecules 2020, 25, x 4 of 8 

 

the best yield (76%) and a better quality of the crude reaction mixture. NMR spectra support the 
formation of compound 8 by the disappearance of the signals of the dimethylamino groups in 1H 
NMR. The 13C-NMR spectrum also indicates the disappearance of the signals of the methyl carbon 
atoms and that of the electron-deficient C-2 atom. The formation of the carbon–sulfur double bond is 
accompanied by the appearance of a new signal at 211.1 ppm (see supplementary material).  

1,3-Dithia-2-thiones derivatives are important precursors for the corresponding substituted 
tetrathiafulvalenes either by a homocoupling or heterocoupling approach. Under homocoupling 
conditions, pseudo-geminal derivative 8 should provide paracyclophane-based tetrathiafulvalenes, 
one of the possible stereoisomers being depicted in Figure 3. Preliminary investigations on 
phosphite-mediated homocoupling of 8 have not provided convincing results so far. These studies 
are still under evaluation. 

S
S S

S

S
S S

S
 

Figure 3. A possible stereoisomer of pseudo-geminal [2.2]paracyclophane-based tetrathiafulvalene. 

3. Materials and Methods 

3.1. Chemistry 

Melting points were obtained on a KSPI melting-point meter (A. KRÜSS Optronic, Hamburg, 
Germany) and are uncorrected. IR spectra were recorded on a Bruker Tensor 27 instrument (Bruker 
Optik GmbH, Ettlingen, Germany). NMR spectra were recorded on a Bruker 500 MHz spectrometer 
(Bruker BioSpin, Rheinstetten, Germany). Chemical shifts are reported in ppm downfield from TMS. 
Mass spectra were recorded on a Thermo Scientific ISQ LT instrument (Thermo Fisher Scientific Inc., 
Waltham, MA, USA). All reagents were commercially available and used without further 
purification. 

3.1.1. 4,15-Bis(acetyl)[2.2]paracyclophane (2) 

MeLi (1.6 M in Et2O, 12.5 mL, 20 mmol) was added dropwise to a suspension of CuCN (0.9 g, 10 
mmol) in Et2O (20 mL). After 5 min, 4,15-bis(carboxyl)[2.2]paracyclophane 1 (0.296 g, 1 mmol) was 
added and the reaction mixture was left at 0 °C for 20 min. A solution of NH4Cl was then added and 
the organic layer was extracted with CH2Cl2 and dried over Na2SO4. Evaporation and 
recrystallization from ethanol gave 2 (0.272 g, 93%) as colorless crystals. m.p. 145–146 °C. IR (ATR, 
cm−1) 2927, 2851, 1666, 1585, 1552, 1434, 1341, 1261, 1203, 958, 850, 729, 636, 606, 576. 1H-NMR (CDCl3) 
δ 6.85–6.89 (m, 2H), 6.54–6.58 (m, 4H), 3.79–3.82 (m, 2H), 3.1 (s, 4H), 2.97–2.99 (m, 2H), 2.35 (s, 6H). 
13C-NMR (CDCl3) δ 200.3, 140.9, 139.4, 138.4, 135.90, 135.88, 132.7, 35.2, 34.8, 29.3. MS (EI) m/z: 292.2 
(M+, 70%) for C20H20O2. 

3.1.2. Bromination of 4,15-bis(acetyl)[2.2]paracyclophane 

NBS (1.2 g, 6.7 mmol) and p-TsOH (0.25 g, 1.34 mmol) were added to a solution of 2 (0.978 g, 
3.35 mmol) in CHCl3 (30 mL). The reaction mixture was refluxed for 30 min and then cooled to rt. 
Subsequent washing with water and sodium bicarbonate solution (5%) provided the crude reaction 
mixture, which was purified by column chromatography on silica gel using 
dichloromethane/pentane 1:1 as the eluent. Compounds 3 and 4 were isolated following this 
procedure. 

Figure 3. A possible stereoisomer of pseudo-geminal [2.2]paracyclophane-based tetrathiafulvalene.

3. Materials and Methods

3.1. Chemistry

Melting points were obtained on a KSPI melting-point meter (A. KRÜSS Optronic, Hamburg,
Germany) and are uncorrected. IR spectra were recorded on a Bruker Tensor 27 instrument
(Bruker Optik GmbH, Ettlingen, Germany). NMR spectra were recorded on a Bruker 500 MHz
spectrometer (Bruker BioSpin, Rheinstetten, Germany). Chemical shifts are reported in ppm downfield
from TMS. Mass spectra were recorded on a Thermo Scientific ISQ LT instrument (Thermo Fisher
Scientific Inc., Waltham, MA, USA). All reagents were commercially available and used without
further purification.

3.1.1. 4,15-Bis(acetyl)[2.2]paracyclophane (2)

MeLi (1.6 M in Et2O, 12.5 mL, 20 mmol) was added dropwise to a suspension of CuCN (0.9 g,
10 mmol) in Et2O (20 mL). After 5 min, 4,15-bis(carboxyl)[2.2]paracyclophane 1 (0.296 g, 1 mmol) was
added and the reaction mixture was left at 0 ◦C for 20 min. A solution of NH4Cl was then added and
the organic layer was extracted with CH2Cl2 and dried over Na2SO4. Evaporation and recrystallization
from ethanol gave 2 (0.272 g, 93%) as colorless crystals. m.p. 145–146 ◦C. IR (ATR, cm−1) 2927, 2851,
1666, 1585, 1552, 1434, 1341, 1261, 1203, 958, 850, 729, 636, 606, 576. 1H-NMR (CDCl3) δ 6.85–6.89 (m, 2H),
6.54–6.58 (m, 4H), 3.79–3.82 (m, 2H), 3.1 (s, 4H), 2.97–2.99 (m, 2H), 2.35 (s, 6H). 13C-NMR (CDCl3)
δ 200.3, 140.9, 139.4, 138.4, 135.90, 135.88, 132.7, 35.2, 34.8, 29.3. MS (EI) m/z: 292.2 (M+, 70%) for C20H20O2.

3.1.2. Bromination of 4,15-bis(acetyl)[2.2]paracyclophane

NBS (1.2 g, 6.7 mmol) and p-TsOH (0.25 g, 1.34 mmol) were added to a solution of 2 (0.978 g,
3.35 mmol) in CHCl3 (30 mL). The reaction mixture was refluxed for 30 min and then cooled to rt.
Subsequent washing with water and sodium bicarbonate solution (5%) provided the crude reaction
mixture, which was purified by column chromatography on silica gel using dichloromethane/pentane
1:1 as the eluent. Compounds 3 and 4 were isolated following this procedure.

3.1.3. 4,15-Bis(bromoacetyl)[2.2]paracyclophane (3)

0.78 g 52%, yellow crystals. m.p. 132–133 ◦C. IR (ATR, cm−1) 3040, 2957, 2931, 2852, 2091,
1665, 1589, 1550, 1480, 1426, 1008, 965, 699, 629, 608. 1H-NMR (CDCl3) δ 6.89 (d, 4J = 2.3 Hz, 2H),
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6.72 (dd, 3J = 8.1, 4J = 2.3 Hz, 2H), 6.65 (d, 3J = 8.1 Hz, 2H), 4.38 and 4.27 (ABq, 2J = 12.4 Hz, 4H),
3.73–3.81 (m, 2H), 3.05–3.13 (m, 6H). 13C-NMR (CDCl3) δ 194.3, 141.1, 139.8, 136.8, 136.2, 135.1, 132.8,
35.4, 34.7, 34.1. MS (EI) m/z: 448 (M+, 8%) for C20H18

79Br2O2.

3.1.4. 4-Bromoacetyl-15-(dibromo)acetyl[2.2]paracyclophane (4)

0.1 g, 10%, yellow crystals. m.p. 156–157 ◦C. IR (ATR, cm−1) 2941, 2874, 2046, 1657, 1578, 1540,
1470, 1436, 1011, 685, 621. 1H-NMR (CDCl3) δ 6.93–6.98 (m, 1H), 6.87–6.92 (m, 1H), 6.74–6.81 (m, 2H),
6.64–6.73 (m, 2H), 6.48 (s, 1H), 4.49 and 4.33 (ABq, 2J = 12.5 Hz, 2H), 3.93–4.01 (m, 1H), 3.49–3.58
(m, 1H), 3.09–3.25 (m, 5H), 3.0–3.09 (m, 1H). 13C-NMR (CDCl3) δ 193.2, 189.8, 141.6, 140.9, 140.2, 139.8,
137.5, 136.7, 136.6, 136.1, 134.3, 133.4, 132.8, 132.5, 42.6, 36.4, 35.1, 34.8, 34.7, 33.6. MS (EI) m/z: 529.8
(M+, 20%) for C20H17

79Br3O2.

3.1.5. 4,15-Bis(N,N-dimethyldithiocarbamate) (6)

A solution of N,N-dimethyldithiocarbamate 5 (0.9 g, 3.58 mmol) in acetone/water (1:1, 8 mL) was
added to a solution of 3 (0.805 g, 1.79 mmol) in acetone (20 mL). The reaction mixture was refluxed
for 30 min, then cooled and poured into water. The resulting solid was filtered and purified by
recrystallization from ethanol to give 0.75 g, 79%, colorless crystals. m.p. 197–198 ◦C. IR (ATR, cm−1)
2962, 2787, 2165, 2026, 1676, 1499, 1376, 1290, 1246, 1144, 972, 857, 740, 723, 645, 525, 506. 1H-NMR
(CDCl3) δ 7.05–7.08 (m, 2H), 6.70–6.74 (m, 2H), 6.62–6.66 (m, 2H), 4.08 (s, 4H), 3.83–3.90 (m, 2H),
3.06 (s, 6H), 3.12 (s, 6H), 3.12–3.19 (m, 4H), 3.04–3.09 (m, 2H). 13C-NMR (CDCl3) δ 196.1, 195.7, 140.9,
139.6, 137.2, 136.3, 136.1, 132.5, 47.5, 45.7, 41.7, 35.1, 34.8. MS (EI) m/z: 530.0 (M+, 3%) for C26H30N2O2S4.

3.1.6. 4,15-Bis(1,3-dithiol-2-ylium) perchlorate (7)

Dithiocarbamate 6 (0.7 g, 1.3 mmol) was added to a mixture of sulfuric acid (1 mL) and acetic
acid (3 mL), and the resulting solution was heated to 80 ◦C for 10 min. The reaction mixture was
then left to cool to room temperature and HClO4 70% (0.5 mL) was added. The resulting precipitate
was then filtered off, washed thoroughly with water, and recrystallized from ethanol, yielding the
desired 1,3-dithiolium perchlorate 7 in the form of colorless crystals (0.885 mg, 96%). m.p. 305–306 ◦C.
IR (ATR, cm−1) 1598, 1441, 1080, 802, 787, 724, 622, 566. 1H-NMR (DMSO-d6) δ 7.63 (s, 2H), 6.80–6.93
(m, 6H), 3.51–3.59 (m, 12H), 3.46–3.51 (m, 2H), 3.28–3.34 (m, 2H), 3.13–3.20 (m, 2H), 3.07–3.13 (m, 2H).
13C-NMR (DMSO-d6) δ 186.6, 141.4, 138.5, 137.4, 137.3, 135.6, 131.6, 129.1, 120.9, 48.2, 47.2, 34.3, 34.2.
MS (EI) m/z: 496.1 (M+-ClO4, 8%) for C26H30N2S4]+.

3.1.7. 4,15-Bis(1,3-dithia-2-thione) (8)

(NH4)2S (20%, 0.56 mL, 0.6 mmol) was added to a solution of 1,3-dithiolium perchlorate 7 (0.17 g,
0.25 mmol) in a mixture of CH2Cl2 and CH3CN (1:1, 10 mL). The reaction mixture was stirred at room
temperature for 5 h and then poured into water. Extraction with CH2Cl2, evaporation, and purification
from ethanol provided bis(trithione) 8 as a yellow solid (0.358 g, 76%). m.p. 242–243 ◦C. IR (ATR,
cm−1) 1587, 1453, 1403, 1192, 1070, 1054, 876, 789, 712, 513. 1H-NMR (CDCl3) δ 6.94 (s, 2H), 6.72–6.75
(m, 2H), 6.68–6.72 (m, 2H), 6.54–6.58 (m, 2H), 3.63–3.72 (m, 2H), 3.15–3.24 (m, 4H), 3.04–3.11 (m, 2H).
13C-NMR (CDCl3) δ 211.1, 144.9, 140.6, 136.0, 136.5, 134.1, 131.3, 130.6, 124.8, 34.8, 34.6. MS (EI) m/z:
471.9 (M+, 94%) for C22H16S6.

3.2. X-ray Structure Determination

Crystals were mounted in inert oil on glass fibers and transferred to the cold gas stream of an
Oxford Diffraction diffractometer (Oxford Diffraction Limited, Abingdon, UK) (2: Nova A using
mirror-focussed Cu Kα radiation; 3 and 4: Xcalibur E using monochromated Mo Kα radiation).
Absorption corrections were implemented on the basis of multi-scans. The structures were refined
anisotropically on F2 using the programs SHELXL-1997 [25] (2) or -2018 [26] (3 and 4). Due to the
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inherent strain of cyclophane systems, hydrogen atoms of the cyclophane rings were refined freely but
with C–H distance restraints; other hydrogens were included using rigid methyl groups or a riding
model starting from calculated positions (see Supplementary Materials).

Special features: Structure 3 was refined as a pseudo-merohedral twin based on a
pseudo-orthorhombic cell generated by the matrix –1 0 0/1 0 2/0 1 0. The TWIN matrix was 1 0
0/–1 0 0/–1 0 –1, and the scale factor (relative volume of the smaller twin component) was refined
to 0.0791(8). For structure 4, the largest difference peaks (1.3 and 1.0 e/A3) may correspond to an
alternative position for the entire molecule (e.g., with the CHBr2 and CH2Br groups exchanged) or
to contamination by a more highly brominated species. However, attempts to refine the peaks as
alternative bromine positions led to occupation factors of only ca. 1%.

4. Conclusions

The synthesis of paracyclophane-based tetrathiafulvalenes precursors is described in the context
of the importance of these compounds in materials chemistry. Pseudo-geminal bis(1,3-dithia-2-thione)
was synthesized via the corresponding 1,3-dithiol-2-ylium perchlorate. The latter was obtained by a
synthetic procedure that involves 4,15-bisacetyl[2.2]paracyclophane, a new derivative that opens up a
new range of possibilities in [2.2]paracyclophane chemistry. We hope to report on the conversion of 8
into its TTF-derivative in the near future.

Supplementary Materials: The following are available online. Crystallographic data. Table S1: Crystallographic
data and structure refinement details for compounds 2–4. Table S2: Elemental analysis data for compounds 2–4
and 6–8. Copies of 13C-NMR spectra.
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