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AVERON notebook to discover actionable
cancer vulnerabilities enabled by neomorph
protein-protein interactions

Hongyue Chen,1 Brian Revennaugh,1 Haian Fu,1,2,3,4 and Andrey A. Ivanov1,2,3,5,*
SUMMARY

Genomic alterations, such asmissensemutations, often lead to the activation of oncogenic pathways and
cell transformation by rewiring protein-protein interaction (PPI) networks. Understanding how mutant-
directed neomorph PPIs (neoPPIs) drive cancer is vital to developing newpersonalized clinical strategies.
However, the experimental interrogation of neoPPI functions in patients with cancer is highly chal-
lenging. To address this challenge, we developed a computational platform, termedAVERON for discov-
ering actionable vulnerabilities enabled by rewired oncogenic networks. AVERON enables rapid system-
atic profiling of the clinical significance of neomorph PPIs across different cancer types, informing
molecular mechanisms of neoPPI-driven tumorigenesis, and revealing therapeutically actionable neo-
PPI-regulated genes. We demonstrated the application of the AVERON platform by evaluating the bio-
logical functions and clinical significance of 130 neomorph interactions, experimentally determined for
oncogenic BRAFV600E. The AVERON application to broad sets of mutant-directed PPIs may inform
new testable biological models and clinical strategies in cancer.
INTRODUCTION

Genomics alterations, such as missense mutations, play a crucial role in cancer initiation and progression.1,2 Missense mutations can alter

protein structure, activity, cellular localization, and other properties, affecting how proteins interact with each other. While some mutations

can weaken existing interactions, others can induce neomorph protein-protein interactions (neoPPIs) that are not natural for the wild-type

counterparts. Such mutation-induced changes in PPI networks produce system-wide effects on key oncogenic pathways.3,4 Identifying

variant-enabled neoPPIs and their oncogenic functions is vital to reveal much-needed tumor-specific molecular targets for therapeutic inter-

vention.5 Moreover, understanding how cancer driver mutations change oncogenic signaling networks through altered PPIs may reveal new

strategies to target currently undruggable genes.3,6,7

The high-throughput PPI screening studies have revealed an emerging landscape of both loss-of-function and gain-of-function

neoPPIs for both oncogenic and tumor suppressor mutations.5,8 However, comprehensive experimental profiling of functional effects

induced by mutant-directed neomorph PPIs and translation of the neoPPI networks into therapeutically actionable biological

models is highly challenging. Many informatics tools, databases, and algorithms have been developed to inform the discovery of

new targets and biomarkers in cancer.9–11 For example, the OncoKB,12 TumorPortal,2 Mutation Assessor,13 CIViC,14 OncoMX,15

BioMuta,16 and other tools provide comprehensive annotations and prioritization of tumor driver mutations based on their oncogenic

potential and clinical significance. Multiple approaches were proposed to either predict PPIs or estimate changes in protein binding

affinities due to mutations.17–19 To explore cancer-focused PPI networks integrated with cancer genomics, and clinical, pharmacological,

and structural data, we have established the OncoPPi Portal.20,21 Together, this informatics toolbox is highly instrumental in evaluating

global biological and clinical responses to tumor driver mutations. However, no informatics tools were specially designed to identify

druggable cancer dependencies acquired due to distinct neomorph protein-protein interactions at single amino acid residue

resolution.

Here, we report the development of a novel computational platform, termed AVERON, for discovering actionable vulnerabilities enabled

by rewired oncogenic networks. The AVERONprovides the first computational environment to rapidly identify therapeutically actionable tar-

gets and pathways enabled by mutant-directed protein-protein interactions to inform target discovery in cancer.
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Figure 1. The AVERON Notebook design and utility

The AVERON Notebook provides a computational platform to uncover new actionable tumor dependencies on mutant-directed protein-protein interactions.

(1) Based on themRNA expression or proteomics data determined for individual binding partners in cancer samples, the AVERON calculates the levels of mutant

and wild-type protein-protein complexes in terms of PPIneo and PPIwt scores. The PPI scores enable a differential neoPPI level analysis across cancer types and

patient cohorts.

(2) The calculated neoPPI scores also provide a new metric to determine the correlations between neoPPI levels, rather than individual gene levels, and clinical

outcomes.

(3) A comparative analysis of correlations between PPIneo and PPIwt scores and gene expression enables the determination of neoPPI positively and negatively

regulated gene sets and defined oncogenic pathways.

(4) The survival analysis of neoPPI-regulated genes helps uncover neoPPI-enabled tumor vulnerability and clinically significant neoPPI-dependent genes with

available approved drugs and clinical compounds. Together, the AVERON provides a computational approach to determine therapeutically actionable

oncogenic programs regulated by mutant-enabled protein-protein interactions to inform new clinical strategies and biological models in cancer.
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RESULTS

The AVERON notebook design and utility

Available genomics and proteomics data define the landscape of individual genes and proteins across different cancer types. However, the

large-scale experimental determination of the levels and functions of protein-protein complexes in patients with cancer is highly challenging,

and currently, such data are not available. To overcome this challenge and inform the discovery of actionable vulnerabilities enabled by re-

wired oncogenic networks, we developed a set of informatics methods termed AVERON. Implemented as a widely used Python Jupyter

Notebook, the AVERON provides tools specially designed to i) rapidly estimate the levels of experimentally determined PPIs in cancer

samples, ii) determine clinical significance of individual neoPPIs and neoPPI subsets, iii) uncover neoPPI-dependent oncogenic pathways

and cellular programs, and iv) identify clinically significant neoPPI-regulated genes with available clinical compounds and approved drugs

to inform new therapeutic strategies (Figure 1). The AVERON is freely available on GitHub repository: https://github.com/aivanovlab/

averon_notebook and through https://chemicalbiology.emory.edu/averon.html.

The AVERON enables the comparative profiling of neoPPI amounts across different cancer samples. Multiple studies have demonstrated

the relationship between PPIs and mRNA expression of the interactors.22,23 Therefore, we can expect that the amount of a protein-protein

complex in a cancer sample can be approximated based on the amounts of individual binding partners. Accordingly, the AVERON estimates

neoPPI levels by calculating PPI scores defined as the arithmeticmean of the log(x+1) transformedmRNAexpression or protein concentration

of the binding partners. A detailed procedure for PPI Score calculations is described in the STAR methods section. The PPI scores provide a

new metric that reflects the neoPPI level, enabling subsequent differential analysis of neoPPI levels across cancer types and patient cohorts

and neoPPI-based survival analysis to evaluate the clinical significance of protein-protein complexes rather than individual proteins.

To gain insights into molecular mechanisms underlying the neoPPI-mediated tumorigenesis, the AVERON determines the neoPPI-regu-

lated genes. By establishing correlations between the neoPPI scores and gene expression in samples harboring the corresponding neoPPI-

enabling mutation, the AVERON identifies gene sets either positively or negatively associated with the neoPPI level. The implemented

pathway enrichment analysis maps the neoPPI-associated genes with defined signaling and metabolic pathways and tumor hallmarks, which

can be visualized within the AVERON environment or using external programs, such as Cytoscape.24

Then, through embedded survival analysis, the AVERON enables unveiling new cancer vulnerabilities enabled by mutant-directed PPIs

and determining specific neoPPI-dependent genes whose expression contributes to worsened clinical outcomes of patients with cancer.

It further connects the identified clinically relevant genes with available approved drugs and compounds under clinical testing to inform

new therapeutic approaches and drug repurposing (Figure 1).

Together, AVERON provides a computational platform to uncover biological functions and molecular mechanisms of neoPPI-driven

tumorigenesis and reveal therapeutically actionable cancer vulnerabilities created by mutant-directed protein-protein interactions in cancer.
2 iScience 27, 110035, June 21, 2024
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Figure 2. Evaluation and comparison of neoPPI levels across cancer samples

(A) The frequency of BRAF V600E mutation across different cancer types. See also Table S2.

(B) a heatmap shows the distribution of the averaged PPI scores calculated for multiple BRAFV600E neoPPIs in skin melanoma (SKCM), colon (COAD), and thyroid

(THCA) cancers.

(C) Detailed clusterograms help identify the clusters of cancer samples and neoPPIs with similar PPI levels. See also Figure S1, Tables S1, and S3.

(D) The boxplot shows the distribution of BRAFV600E/AURKA neoPPI scores calculated for individual samples in different cancer types. Error bars indicate 95%

confidence intervals. See also Figure S2.

(E) The AVERONprovides on-the-fly annotation of patient samples with demographic data and diagnosis characteristics and hyperlinks the samples with detailed

information available through the NCI GDC Data Portal for further exploration.
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To exemplify the AVERON functionality and demonstrate its utility, we analyzed a set of 130 neoPPIs experimentally determined for BRAF

V600E mutation8 (Table S1), as described later in discussion.

The inference of neomorph protein-protein interaction levels from gene expression data

BRAFV600E is a frequent oncogenic mutation in the thyroid (THCA), skin melanoma (SKCM), and colon (COAD) cancers (Figure 2A; Table S2).

Recently, we found that this mutation leads to numerous neoPPIs, which either do not exist or are significantly weaker for BRAF wild type.8

Here, we applied AVERON to determine which of those neoPPIs are most clinically important, identify mechanisms of BRAFV600E neoPPI-

dependent tumorigenesis, and inform new therapeutical approaches to control BRAF-driven cancers.

First, to evaluate the levels of BRAFV600E neoPPIs in cancer samples, we calculated the PPIneo scores. In this study, the PPI scores were calcu-

lated using the batch-normalized RNASeqV2 mRNA data along with mutation, and clinical data available through the NCI GDC Portal for

TCGA PanCancer Atlas cohorts25 as described in STAR methods.

The comparison of the calculated scores with the mRNA expression of the neomorph binding partners indicated that the PPIneo score is a

distinct parameter, which is not redundant with the binding partner expression. We found that for more than 30% of tested genes, the corre-

lation between genemRNAexpression and PPIneo scores was below 0.7, and for 20% the correlation was below 0.6 (Figure S1A). Furthermore,

the overall correlation between PPIneo scores calculated for different BRAFV600E binding partners was also limited (on average, R = 0.45, Fig-

ure S1B), supporting the sensitivity of the PPI scores to the levels of different neoPPIs. Meanwhile, the correlation analysis revealed distinct

communities of neoPPIs, co-regulated in patients with cancer. For example, we identified at least four distinct clusters of BRAFV600E neoPPIs
iScience 27, 110035, June 21, 2024 3



Figure 3. Identification of clinically significant neoPPIs in cancer

(A) The multivariate COX regression revealed a statistically significant (likelihood ratio test p-value <0.005) association between multiple BRAFV600E neoPPIs and

clinical outcomes of patients with SKCM. The Y axis indicates statistically significant BRAFV600E neoPPIs served as the covariates in themodel. The X axis shows the

hazard ratio (HR) coefficients along with the 95% confidence intervals (CI). See also Table S4.

(B) Examples of BRAFV600E neoPPIs whose high level correlates (p-value <0.1) with decreased SKCM patient survival in the univariate Kaplan-Meier analysis. The

log rank p-values are shown. See also Figure S3 and Table S5.

(C) For multiple genes, the mRNA expression demonstrated a decreased statistical significance in the Kaplan-Meier analysis as compared to the neoPPI scores.
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co-upregulated in patients with colon cancer (Figure S1C). Cluster 1 was enriched (FDR <1%) in BRAFV600E binding partners involved in JAK/

STAT and interleukin signaling pathways.Cluster 2was enriched in genes regulated by E2F and involved in theG2-M checkpoint as well as the

p53 pathway feedback loops 2 as defined in the Panther database. Cluster 3 showed significant enrichment (FDR <1%) in the Ras pathway,

interleukin signaling pathway, p53 pathway by glucose deprivation, and insulin/IGF pathway-protein kinase B signaling cascade. Cluster 4

demonstrated the enrichment in IL-2/STAT5 signaling andB-cell activation. These results suggest that a single BRAFV600Emutation can induce

distinct groups of neomorph interactions that can work together to regulate multiple oncogenic pathways and transcriptional programs.

The calculated PPIneo scores allowed us to evaluate the relative levels of individual neoPPIs across thyroid, skin, and colon cancers. The

neoPPI levels appeared significantly different for different cancer types (Figures 2B and 2C). Among all tested neoPPIs, only the PPIneo scores

calculated for BRAFV600E neoPPis with GOT1 (Figure S2), POU2AF1, KRAS, CYBB, ACVR1B, andNEFL demonstrated a limited variation across

the three cancer types with the Kruskal-Wallis H-test p-value >0.01 and the false discovery rate (FDR) > 1%. In contrast, most neoPPIs demon-

strated significant variations in the PPIneo scores (FDR � 0.01%) in different cancer types (Table S3). For example, BRAFV600E PPIneo scores

obtained for SNKSR1 and AJUBA were the highest in thyroid cancer, and the lowest in skin melanoma (Figure S2). BRAFV600E/NOX1 PPI

showed the highest level in colon cancer. The levels of BRAFV600E neoPPIs with AURKA (Figure 2D), DDL3, and CHD1L (Figure S2), and mul-

tiple other genes showed the highest levels in patients with skin melanoma.

To enable detailed exploration of sample-associated metadata, we implemented on-the-fly annotations of individual tumor samples with

demographic and diagnosis characteristics and hyperlinked the samples with sample annotations available through the NCI GDCData Portal

(Figure 2E).

Impact of neomorph protein-protein interactions on cancer patient clinical outcomes

The estimated levels of neoPPIs in cancer samples enable the evaluation of neoPPI clinical significance as potential biomarkers or targets for

therapeutic discovery. To achieve this goal, we used the neoPPI scores as covariates for multivariate COX regression as well as univariate

Kaplan-Meier analysis. For example, the application of the COX regression analysis to neoPPI scores calculated for BRAFV600E neoPPI in pa-

tients with skin cutaneous melanoma (SKCM) resulted in a model containing 16 neoPPIs as statistically significant (p-value <0.05) covariates

(Figure 3A; Table S4) and characterized by the likelihood ratio test p-value of 7.093 10�13 and the concordance of 0.79. Among the BRAFV600E

neoPPIs included in the model, ASXL1, ATP5F1B, CDK6, CNKSR1, CTLA4, NOS3, and NTN4 neoPPIs showed the hazard ratios (HR) < 1, sug-

gesting that high levels of those neoPPIs may have tumor suppressive functions. In contrast, the elevation of AURKB, CCN6, CD79B, FOXO3,

INHBA, MAPK6, PRSS8, SMO, and THRA neoPPIs was associated with increased risk (HR > 1).

In addition to the multivariate COX regression, the AVERON can determine the association of individual neoPPIs with clinical outcomes

through the univariate Kaplan-Meier survival analysis of individual neoPPIs as described in STAR methods. The univariate analysis of

BRAFV600E neoPPIs confirmed a strong association of decreased patient survival with high levels of AURKAB and MAPK6 which showed

the highest HR values of 3.96 and 4.5, respectively, in the COX regression model (Figure 3B). In addition, the univariate analysis revealed

that high levels of BRAFV600E neoPPIs with AURKA, CDK4, EFNA3, ERBB3, MAPK7, NEFL, RAB25, SERPINB13, and TEAD3 can contribute

to worsened clinical outcomes of patients with skin melanoma with the log rank p-values <0.1 (Figure 3A). Among them, AURKA, AURKB,

ERBB3, MAPK6, and NEFL demonstrated p-values %0.05 and FDR 25% (Table S5; Figure S3A). In colon cancer, BRAFV600E neoPPIs with

ASXL1, BCL2L2, BCOR, CCN6, DLL3, GNA11, JAK3, NFATC1,NOS3,NTN4, PLCG2, SOCS1, TNFRSF14, and TSC2 correlatedwith decreased
4 iScience 27, 110035, June 21, 2024
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patient survival (p-value <0.1). Among them, GNA11 (p-value = 0.003, FDR 17%) and NTN4 (p-value 0.001, FDR 13%) demonstrated the high-

est statistical significance (Figure S3B; Table S5).

Importantly, we observed notable differences in the association of clinical outcomes with neoPPI levels and mRNA expression of the neo-

binding partners. For example, the BRAFV600E/AURKA neoPPI score showed a log rank p-value of 0.034, while the association of AURKA

expression with decreased patient survival was characterized a by p-value of 0.069. The p-value of 0.066 obtained for NEFL expression con-

trasted with the NEFL neoPPI p-value of 0.008. In addition, the p-value of 0.094 obtained for TEAD3 neoPPI increased to p-value = 0.243,

shown by TEAD3 expression, and the AURKB neoPPI p-value = 0.003 also increased to 0.019 for AURKB expression, which can be rejected

with a stringent statistical cutoff of 0.01. Thus, the estimated PPI levels may uncover new clinically significant cancer dependencies hidden for

individual gene expression analysis.

Neomorph protein-protein interaction-dependent oncogenic programs

To get mechanistic insights into how neoPPIs promote tumorigenesis, the AVERON identifies genes that can be regulated through individual

neoPPIs.We hypothesize that the expression of neoPPI-regulated genes correlates with the neoPPI level. Accordingly, the AVERON conducts

a systematic Pearson correlation analysis to reveal genes that show a statistically stronger positive or negative correlation with the neoPPI

scores than with the wild-type PPI scores (see STAR methods for details).

The analysis of BRAFV600E neoPPI-regulated genes (Table S6) demonstrated that neoPPI-regulated gene sets can vary in both size and

composition. For example, most (85) of BRAFV600E neoPPIs were strongly associated with the upregulation of 10–100 genes, 41 neoPPIs

were predicted to upregulate more than 100 genes, and for 4 neoPPIs less than 10 genes showed a statistically significant positive correlation

(Figure S4A). The overlap between the signature genes identified for different neoPPIs was also limited as indicated by the averaged Jaccard

index of 3.1% (Figure S4B). These data suggest that different neoPPIs induced by the samemutation, such as BRAFV600E, can activate distinct

sets of genes leading to the differential regulation of diverse oncogenic programs.

To uncover such neoPPI-dependent oncogenic pathways, we implemented pathway enrichment analysis (PEA) using the MSigDB Cancer

Hallmarks gene sets26,27 along with signaling and metabolic pathways defined in the KEGG28 and the Reactome29 databases (Figure 4A;

Table S7; Figure S5).

The PEA application to BRAFV600E neoPPIs revealed their role in the regulation of multiplemajor oncogenic pathways. For example, genes

upregulated through BRAFV600E neoPPIs with PLCG2, CD79B, BTK, CNKSR1, ARRB2, IRF2, CD1D, and RALGD1 were associated with the

interferon-gamma response, inflammatory response, and allograft rejection (Figure S3C; Table S7). The SRSF2, MUTYH, HDAC3, FANCF,

GATAD2B, and ASXL1 neoPPI-dependent genes showed enrichment in the Apoptosis hallmark gene set defined in the MSigDB (Figure 4B).

The BRAFV600E/KEAP1 neoPPI was associatedwith the upregulation of genes involved inWNT/b-Catenin signaling (Figure 4B), supporting the

previously reported cross-talk between KEAP1/NRF2 andWNT/b-Catenin pathways.30,31 Genes controlled by BRAFV600E neoPPIs with AKT1,

POLE, E2F6, AURKA, E2F7, SMARCB1, ATP5F1B, ERCC2, TEAD4, BCOR, SEMA6A, SDHB, CDK4, EZH2, and SMO showed the enrichment in

G2M Checkpoint (Figure 4B) and E2F Targets hallmark gene sets. In addition, multiple neoPPIs, including AKT1, POLE, SMARCB1, ATP5F1B,

ERCC2, TEAD4, andAURKAdemonstrated the enrichment in the target genes of themajor tumor driver transcription factorMYC (Figure S4C;

Table S7).

Uncovering clinically significant neomorph protein-protein interaction-enabled cancer vulnerabilities

Toprioritize themost clinically significant neoPPI-regulatedgenes, AVERON identifies geneswhose high expression correlateswithworsened

clinical outcomes in the Kaplan-Meier survival analysis. Such genes may represent new vulnerabilities enabled by mutant-directed PPIs and

serve as new therapeutic targets in mutant-driven cancers. Using this approach, we found that a total of 314 genes upregulated by

BRAFV600E neoPPIs strongly correlate with decreased clinical outcomes (p-value <0.05) in patients with SKCM with BRAFV600E mutation. We

further prioritized a set of 110 ‘‘high confidence’’ genes whose high expression correlates with decreased patient survival with the FDR <1%

(Table S5). Thus, the pharmacological inhibition of those genes may provide new opportunities for therapeutic intervention in BRAF-driven

skin melanomas. While some genes may represent novel promising targets for therapeutic discoveries, we found that 25 BRAFV600E neo-

PPI-regulated genes whose high expression correlates with decreased clinical outcomes in patients with SKCM have already been validated

as the druggable targets with available small molecule inhibitors, including approved drugs (Figure 5A). For example, ingenol mebutant was

approved for protein kinase C (PKC) the Epsilon isoform of which, appeared to be regulated by BRAFV600E/PRSS8 neoPPI. The BRAFV600E/

PRSS8 neoPPI-upregulated ribonucleotide reductase (RPM2) can be controlled by FDA-approved gemcitabine, fludarabine, clofarabine,

and hydroxyurea. We found that BRAFV600E neoPPI with TP53 correlates with an increased expression of ERBB2, one of the major oncogenes

and a well-validated therapeutic target, with multiple FDA-approved drugs32 (Figure 5B). Previous studies have demonstrated that TP53 mu-

tations inhibit TP53 function as a suppressor of ERBB2 expression.33,34 However, in patients with SKCM, TP53 mutations and BRAFV600E mu-

tations are mutually exclusive, and the majority of patients with SKCMwith BRAFV600E have TP53 wild type. Our data suggest, that oncogenic

BRAF V600E mutation may induce its interaction with TP53, and inhibit TP53 tumor suppressor activity resulting in ERBB2 upregulation. Thus,

we can hypothesize that patients with SKCM with elevated BRAFV600E/TP53 neoPPI may benefit from targeting ERBB2 with FDA-approved

drugs, for example, trastuzumab.35 Multiple drugs have also been approved for cyclin-dependent kinase 4 (CDK4). While CDK4 can directly

interact with BRAFV600E, the AVERONpredicted that CDK4 expression can be controlled through other neoPPIs, including BRAFV600E neoPPIs

withPOLE, TEAD4, andAURKA (Figure 5B). Thus, the tumordependencyon thoseneoPPIs canbe targetedbyCDK4 inhibitors. TheBRAFV600E/

AURKAneoPPI was among the neoPPs, that showeda significant negative impact on SKCMpatient clinical outcomes (Figure 6A) andwhichwe
iScience 27, 110035, June 21, 2024 5



Figure 4. Discovery of neoPPI-dependent oncogenic programs

(A) The network of BRAFV600E neoPPI-dependent pathways illustrates the diversity of signaling and metabolic pathways that can be controlled through different

BRAFV600E neoPPIs. BRAFV600E is shown in green, the neo-binding partners are colored in cyan, and the neoPPI-regulated pathways defined in MSigDB, KEGG,

and Reactome databases are shown in yellow. Pathways that show enrichment for BRAFV600E neoPPI-regulated genes with FDR <5% are shown.

(B) Representative examples of BRAFV600E neoPPI-regulated pathways. The neoPPI-regulated genes are shown in pink. See also Figures S4, S5, Tables S6, and S7.

ll
OPEN ACCESS

iScience
Article
have experimentally confirmed in multiple assays.8 The AVERON showed that besides CDK4 regulation, the BRAFV600E/AURKA neoPPI level

correlates with the expression of more than 60 genes (Figure 6A) that are enriched in MYC- and E2F-target genes and cell cycle-regulating

genes (Figures 6B and 6C). For instance, PLK1 expression correlated much stronger with BRAFV600E/AURKA PPIneo scores calculated for sam-

ples with BRAFV600E mutation (R = 0.669, Figure 5D) than with PPIwt scores obtained for BRAF wild-type samples (R = 0.395, Figure 6E).

The analysis of the patient survival data revealed that high PLK1 expression contributes to decreased survival of patients with SKCM with

BRAFV600Emutation with the log-rang p-value = 0.016 (Figure 6F). PLK1 is a well-studied kinase and an established target for therapeutic inter-

vention.36 For example, the AVERON search for PLK1 inhibitors provided multiple small molecule compounds, including onvansertib, the

FDA Fast Track designated drug.37 These findings led us to a new model by which BRAFV600E mutation induces the neomorph PPI with

AURKA leading to the upregulation of PLK1 and PLK1-dependent MYC activation,38 which in turn contribute to cancer cell growth and

poor clinical outcomes in skin cancer (Figure 6G). The model also suggests that patients with SKCM with BRAFV600E mutation and high levels

of AURKA can benefit from PLK1 suppression.

DISCUSSION

Dysregulation of the PPI networks by oncogenic genomic alterations, such as mutations, can lead to the perturbation of major oncogenic

pathways and the acquisition of tumor hallmarks. The uncovering of the most biologically and clinically significant mutant-directed PPIs

may significantly expand the understanding of molecular mechanisms of tumorigenesis and facilitate the discovery of new clinical strategies

and predicting markers in cancer. However, the experimental determination of the protein-protein complexes and their functions in patients

with cancer is highly challenging, and today, such information is unavailable for an arbitrary PPI. To overcome these critical challenges, we

designed a computational approach, termed the AVERONNotebook, to systematically evaluate biological functions and clinical significance

of neomorph protein-protein interactions enabled by single tumor-driving mutations.
6 iScience 27, 110035, June 21, 2024



Figure 5. Discovery of druggable and clinically significant neoPPI-regulated genes

(A) The network shows clinically significant genes (red) upregulatedbyBRAFV600E neoPPIs (cyan) in patientswith skinmelanoma. Thegradient of red color indicates

the log rank p-values, ranging from 0.05 (light red) to 0.0005 (strong red). CDK4, AURKA, and AURKB represent both neo-binding partners and neoPPI-regulated

genes, as highlighted with a cyan border. The yellow circles indicate available small molecule inhibitors and the green circles show the approved drugs.

(B) A subnetwork of BRAFV600E neoPPI-regulated genes with FDA-approved drugs.
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For most PPIs, their concentration in cancer samples is unknown, and precise calculation of the complex concentration would require in-

formation about the dynamics and kinetics of the interaction as well as the protein stability, post-translation modification state, and the states

of other binding partners. Today, such information ismainly unavailable, especially in patients with cancer. However, for experimentally deter-

mined complexes, we can assume that the higher the concentrations of each binding partner, the higher the concentration of their complex.

Thus, the relative amounts of protein-protein complexes can be estimated as the averaged levels of two interactors, as implemented in

AVERON with the PPI scores. Here, we showed that the PPI scores can provide a new metric distinct from the amounts of individual binding

partners. Accordingly, we used the PPI scores in the AVERON informatics pipeline to enable the rapid evaluation of relative neoPPI levels

across multiple cancer types and the impact of neoPPIs on cancer patient clinical outcomes. As one example, a systematic profiling of 130

experimentally determined BRAFV600E neoPPIs revealed that distinct neoPPIs induced by V600E mutation may differently impact clinical out-

comes in different cancer types. For instance, the effects of high levels of BRAFV600E/AURKA neoPPI on skin melanoma patient survival can be

more prominent than in patients with thyroid or colon cancer. In contrast, other BRAFV600E neoPPIs, such asNTN4orGNA11, can contribute to
iScience 27, 110035, June 21, 2024 7



Figure 6. AVERON informs new biological models to control tumor growth and survival

(A) The network shows BRAFV600E/AURKA neoPPI-regulated genes. Genes whose expression correlates with worsened clinical outcomes in patients with SKCM

harboring BRAF V600E mutation are highlighted in red.

(B) BRAFV600E/AURKA neoPPI-regulated genes showed the enrichment in MSigDB cancer hallmark gene sets and (C) pathways defined in the KEGG database.

(D) PLK1 expression correlates stronger with the BRAFV600E/AURKA neoPPI levels in BRAFV600E mutant samples than with (E) BRAFWT/AURKA PPI levels in BRAF

wild-type samples.

(F) High PLK1 expression correlates with decreased survival of patients with SKCM with BRAFV600E mutation.

(G) A working model suggests that BRAFV600E/AURKA neoPPI promotes MYC-dependent skin cancer growth by enhancing PLK1 expression and increasing

cancer dependency on PLK1, which can be targeted by PLK1 inhibitors.
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decreased survival of patients with colon cancer. Such associations between neoPPI levels and clinical outcomes can provide valuable guid-

ance to select appropriate models for detailed experimental studies, which otherwise is unavailable. Moreover, the multivariate COX regres-

sion analysis allowed us to identify a group of 16 neoPPIs, which may serve as predictors for SKCM clinical outcomes.

To help understand how neoPPIs contribute to tumorigenesis, AVERON identifies neoPPI-dependent gene sets and oncogenic programs.

For instance, the AVERON analysis suggests that BRAFV600E mutation may produce a broad network effect dysregulating multiple onco-

genic programs through distinct neomorph PPIs or neoPPI communities, including the regulation of cell cycle, apoptosis, immune response,

and others. These data provide experimentally testable hypotheses to guide the development of new biological models.

Despite the advances in PPI targeting by small molecules for therapeutic development, a systematic discovery of clinically suitable PPI

inhibitors remains challenging. A discovery of druggable and clinically significant neoPPI-regulated may provide a powerful alternative to

target neoPPI-enabled cancer vulnerabilities. Toward this goal, AVERON enables the systematic profiling of neoPPI-regulated genes whose

high expression correlates with decreased cancer patient survival. The genes are further connected with available clinical compounds and

approved drugs. As one example, our data suggests new connectivity between BRAFV600E mutation and PLK1/MYC-dependent cell prolifer-

ationmediated through BRAFV600E/AURKA neoPPI in patients with SKCM. PLK1 is a well-validated therapeutic target and a druggable kinase,

and inhibiting PLK1 with available clinical compounds, such as onvansertib, can be beneficial for patients with skin melanoma with BRAFV600E

mutation and high AURKA expression.

In summary, the AVERONNotebook provides the first tools to uncover cancer dependencies created by mutant-directed protein-protein

interactions. Its application to BRAFV600E neoPPIs has revealed new mechanisms by which V600E mutation can drive tumorigenesis and sug-

gested specific genes as promising targets to control BRAF-driven cancers.We believe that AVERONwill provide a valuable resource to iden-

tify new molecular mechanisms of oncogenic signaling, determine new cancer dependencies on specific mutant-directed PPIs, and inform

new personalized clinical strategies in mutant-driven cancers.

Limitations of the study

In some cases, a limited number of samples with a driver mutation can decrease the statistical power of the AVERON analysis. The integration

of multiple datasets from different sources could overcome this common limitation. Since the experimental data on the concentrations of

protein complexes in cancer samples is unavailable, the AVERON approximates the neoPPI levels based on the mRNA expression or protein

concentrations available for the single proteins. Although this is one of the most appropriate strategies currently available, such an approx-

imation cannot fully recapitulate the actual amounts and dynamics of PPIs in patients with cancer. A limited agreement between clinical data

and the data derived from available cancer models can also challenge a direct experimental validation of AVERONpredictions. Nevertheless,

we believe that AVERON will provide a highly informative platform to identify i) molecular mechanisms of neoPPI-dependent tumorigenesis,

ii) patient cohorts with the highest dependency on individual neoPPIs and their signature genes, and iii) drug repurposing and combinations

to control mutant-driven cancers.
8 iScience 27, 110035, June 21, 2024



ll
OPEN ACCESS

iScience
Article
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B AVERON notebook implementation

B Evaluation of neoPPI levels in cancer patients

B Identification of neoPPI-regulated genes

B Pathway enrichment analysis

B Survival analysis

B Integration of pharmacological data

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.110035.

ACKNOWLEDGMENTS

This work has been supported in part by NCI’s Informatics Technology for Cancer Research (ITCR) Program (R21CA274620, A.A.I.), Winship

Cancer Institute #IRG-17-181-06 from the American Cancer Society (A.A.I.). NCI Emory Lung Cancer SPORE (P50CA217691, H.F.), NCI

P01CA257906 (H.F.), Career Enhancement Program (A.A.I., P50CA217691), Winship Cancer Institute (NIH 5P30CA138292), Mary Kay Ash

Foundation Cancer Research Award (A.A.I).

AUTHOR CONTRIBUTIONS

AAI: Conceptualization; AAI, HC:methodology, investigation, formal analysis, and visualization; AAI, HF, andHC: writing – review and editing;

AAI and HC: writing – original draft; AAI, HC, and BR: software and data curation; AAI and HF: funding acquisition.

DECLARATION OF INTERESTS

There are no conflicts of interest to disclose.

Received: February 14, 2024

Revised: April 30, 2024

Accepted: May 16, 2024

Published: May 20, 2024
REFERENCES

1. ICGC/TCGA Pan-Cancer Analysis of Whole

Genomes Consortium (2020). Pan-cancer
analysis of whole genomes. Nature 578,
82–93. https://doi.org/10.1038/s41586-020-
1969-6.

2. Lawrence, M.S., Stojanov, P., Mermel, C.H.,
Robinson, J.T., Garraway, L.A., Golub, T.R.,
Meyerson, M., Gabriel, S.B., Lander, E.S., and
Getz, G. (2014). Discovery and saturation
analysis of cancer genes across 21 tumour
types. Nature 505, 495–501. https://doi.org/
10.1038/nature12912.

3. Ivanov, A.A., Khuri, F.R., and Fu, H. (2013).
Targeting protein-protein interactions as an
anticancer strategy. Trends Pharmacol. Sci.
34, 393–400. https://doi.org/10.1016/j.tips.
2013.04.007.

4. Vogelstein, B., Papadopoulos, N.,
Velculescu, V.E., Zhou, S., Diaz, L.A., Jr., and
Kinzler, K.W. (2013). Cancer genome
landscapes. Science 339, 1546–1558. https://
doi.org/10.1126/science.1235122.

5. Cheng, F., Zhao, J., Wang, Y., Lu, W., Liu, Z.,
Zhou, Y., Martin, W.R., Wang, R., Huang, J.,
Hao, T., et al. (2021). Comprehensive
characterization of protein-protein
interactions perturbed by disease mutations.
Nat. Genet. 53, 342–353. https://doi.org/10.
1038/s41588-020-00774-y.

6. Arkin, M.R., Tang, Y., and Wells, J.A. (2014).
Small-molecule inhibitors of protein-protein
interactions: progressing toward the reality.
Chem. Biol. 21, 1102–1114. https://doi.org/
10.1016/j.chembiol.2014.09.001.

7. Li, Z., Ivanov, A.A., Su, R., Gonzalez-Pecchi, V.,
Qi, Q., Liu, S., Webber, P., McMillan, E.,
Rusnak, L., Pham, C., et al. (2017). The
OncoPPi network of cancer-focused protein-
protein interactions to inform biological
insights and therapeutic strategies. Nat.
Commun. 8, 14356. https://doi.org/10.1038/
ncomms14356.

8. Mo, X., Niu, Q., Ivanov, A.A., Tsang, Y.H.,
Tang, C., Shu, C., Li, Q., Qian, K., Wahafu, A.,
Doyle, S.P., et al. (2022). Systematic discovery
of mutation-directed neo-protein-protein
interactions in cancer. Cell 185, 1974–
1985.e12. https://doi.org/10.1016/j.cell.2022.
04.014.

9. Galaxy Community (2022). The Galaxy
platform for accessible, reproducible and
collaborative biomedical analyses: 2022
update. Nucleic Acids Res. 50, W345–W351.
https://doi.org/10.1093/nar/gkac247.

10. Reich, M., Liefeld, T., Gould, J., Lerner, J.,
Tamayo, P., and Mesirov, J.P. (2006).
GenePattern 2.0. Nat. Genet. 38, 500–501.
https://doi.org/10.1038/ng0506-500.

11. Tsherniak, A., Vazquez, F., Montgomery, P.G.,
Weir, B.A., Kryukov, G., Cowley, G.S., Gill, S.,
iScience 27, 110035, June 21, 2024 9

https://doi.org/10.1016/j.isci.2024.110035
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/nature12912
https://doi.org/10.1038/nature12912
https://doi.org/10.1016/j.tips.2013.04.007
https://doi.org/10.1016/j.tips.2013.04.007
https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.1235122
https://doi.org/10.1038/s41588-020-00774-y
https://doi.org/10.1038/s41588-020-00774-y
https://doi.org/10.1016/j.chembiol.2014.09.001
https://doi.org/10.1016/j.chembiol.2014.09.001
https://doi.org/10.1038/ncomms14356
https://doi.org/10.1038/ncomms14356
https://doi.org/10.1016/j.cell.2022.04.014
https://doi.org/10.1016/j.cell.2022.04.014
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1038/ng0506-500


ll
OPEN ACCESS

iScience
Article
Harrington, W.F., Pantel, S., Krill-Burger, J.M.,
et al. (2017). Defining a Cancer Dependency
Map. Cell 170, 564–576.e16. https://doi.org/
10.1016/j.cell.2017.06.010.

12. Chakravarty, D., Gao, J., Phillips, S.M.,
Kundra, R., Zhang, H., Wang, J., Rudolph,
J.E., Yaeger, R., Soumerai, T., Nissan, M.H.,
et al. (2017). OncoKB: A Precision Oncology
Knowledge Base. JCO Precis. Oncol. 1, 1–16.
https://doi.org/10.1200/PO.17.00011.

13. Reva, B., Antipin, Y., and Sander, C. (2011).
Predicting the functional impact of protein
mutations: application to cancer genomics.
Nucleic Acids Res. 39, e118. https://doi.org/
10.1093/nar/gkr407.

14. Griffith, M., Spies, N.C., Krysiak, K.,
McMichael, J.F., Coffman, A.C., Danos, A.M.,
Ainscough, B.J., Ramirez, C.A., Rieke, D.T.,
Kujan, L., et al. (2017). CIViC is a community
knowledgebase for expert crowdsourcing the
clinical interpretation of variants in cancer.
Nat. Genet. 49, 170–174. https://doi.org/10.
1038/ng.3774.

15. Dingerdissen, H.M., Bastian, F., Vijay-
Shanker, K., Robinson-Rechavi, M., Bell, A.,
Gogate, N., Gupta, S., Holmes, E., Kahsay, R.,
Keeney, J., et al. (2020). OncoMX: A
Knowledgebase for Exploring Cancer
Biomarkers in the Context of Related Cancer
andHealthy Data. JCOClin. Cancer Inform. 4,
210–220. https://doi.org/10.1200/CCI.19.
00117.

16. Dingerdissen, H.M., Torcivia-Rodriguez, J.,
Hu, Y., Chang, T.C., Mazumder, R., and
Kahsay, R. (2018). BioMuta and BioXpress:
mutation and expression knowledgebases
for cancer biomarker discovery. Nucleic Acids
Res. 46, D1128–D1136. https://doi.org/10.
1093/nar/gkx907.

17. Rodrigues, C.H.M., Pires, D.E.V., and Ascher,
D.B. (2021). mmCSM-PPI: predicting the
effects of multiple point mutations on
protein-protein interactions. Nucleic Acids
Res. 49, W417–W424. https://doi.org/10.
1093/nar/gkab273.

18. Romero-Molina, S., Ruiz-Blanco, Y.B., Mieres-
Perez, J., Harms, M., Münch, J., Ehrmann, M.,
and Sanchez-Garcia, E. (2022). PPI-Affinity: A
Web Tool for the Prediction and
Optimization of Protein-Peptide and Protein-
Protein Binding Affinity. J. Proteome Res. 21,
1829–1841. https://doi.org/10.1021/acs.
jproteome.2c00020.

19. Wang, M., Cang, Z., and Wei, G.W. (2020). A
topology-based network tree for the
prediction of protein-protein binding affinity
changes following mutation. Nat. Mach.
Intell. 2, 116–123. https://doi.org/10.1038/
s42256-020-0149-6.

20. Ivanov, A.A., Revennaugh, B., Rusnak, L.,
Gonzalez-Pecchi, V., Mo, X., Johns, M.A., Du,
Y., Cooper, L.A.D., Moreno, C.S., Khuri, F.R.,
and Fu, H. (2018). The OncoPPi Portal: an
integrative resource to explore and prioritize
protein-protein interactions for cancer target
discovery. Bioinformatics 34, 1183–1191.
https://doi.org/10.1093/bioinformatics/
btx743.

21. Ivanov, A.A. (2020). Explore Protein-Protein
Interactions for Cancer Target Discovery
Using the OncoPPi Portal. Methods Mol. Biol.
2074, 145–164. https://doi.org/10.1007/978-
1-4939-9873-9_12.
10 iScience 27, 110035, June 21, 2024
22. Su, L., Liu, G., Guo, Y., Zhang, X., Zhu, X., and
Wang, J. (2022). Integration of Protein-
Protein Interaction Networks and Gene
Expression Profiles Helps Detect Pancreatic
Adenocarcinoma Candidate Genes. Front.
Genet. 13, 854661. https://doi.org/10.3389/
fgene.2022.854661.

23. Bhardwaj, N., and Lu, H. (2005). Correlation
between gene expression profiles and
protein-protein interactions within and across
genomes. Bioinformatics 21, 2730–2738.
https://doi.org/10.1093/bioinformatics/
bti398.

24. Shannon, P., Markiel, A., Ozier, O., Baliga,
N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., and Ideker, T. (2003).
Cytoscape: a software environment for
integrated models of biomolecular
interaction networks. Genome Res. 13, 2498–
2504. https://doi.org/10.1101/gr.1239303.

25. Grossman, R.L., Heath, A.P., Ferretti, V.,
Varmus, H.E., Lowy, D.R., Kibbe, W.A., and
Staudt, L.M. (2016). Toward a Shared Vision
for Cancer Genomic Data. N. Engl. J. Med.
375, 1109–1112. https://doi.org/10.1056/
NEJMp1607591.

26. Liberzon, A., Subramanian, A., Pinchback, R.,
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TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal BRCA

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal CESC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal CHOL

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal COAD

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal DLBC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal ESCA

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal GBM

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal HNSC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal KICH

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal KIRC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal KIRP

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal LAML

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal LGG

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal LIHC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal LUAD

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal LUSC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal MESO

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal OV

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal PAAD

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal PCPG

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal PRAD

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal READ

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal SARC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal SKCM

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal STAD

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal TGCT

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal THCA

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal THYM

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal UCEC

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal UCS

TCGA Pan-Cancer RNA-seq, Mutation, and clinical data NCI GDC Data Portal UVM

Ligand-target interactions IUPHAR/BPS Guide to

Pharmacology database

https://blog.guidetopharmacology.org/

2024/03/27/database-release-2024-1/

(Continued on next page)

iScience 27, 110035, June 21, 2024 11

https://doi.org/10.1016/j.cell.2022.04.014
https://www.gsea-msigdb.org/gsea/msigdb
https://www.genome.jp/kegg
https://reactome.org
https://www.guidetopharmacology.org
https://blog.guidetopharmacology.org/2024/03/27/database-release-2024-1/
https://blog.guidetopharmacology.org/2024/03/27/database-release-2024-1/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

AVERON Notebook This paper https://github.com/aivanovlab/

averon_notebook

Python 3 Python Software Foundation https://www.python.org

Jupyter Notebook environment Ragan-Kelley et al.44 www.jupyter.org

MSigDB Liberzon et al.27 https://www.gsea-msigdb.org/gsea/msigdb

Cytoscape Shannon et al.24 https://cytoscape.org
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Andrey A. Ivanov (andrey.

ivanov@emory.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

All original code has been deposited on GitHub and is publicly available as of the date of publication. The link is provided in the key re-

sources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The AVERONNotebook uses cancer genomics and clinical data from TCGA Pan Cancer Atlas available for over 10,000 tumors and 33 cancer

types through the NCI Genomic Data Commons Data Portal.25

METHOD DETAILS

AVERON notebook implementation

The AVERONNotebook is available onGitHub https://github.com/aivanovlab/averon_notebook and at https://chemicalbiology.emory.edu/

averon.html. To streamline the availability of the AVERON to the scientific community, we implement it as an open-source freely available

Python Jupyter Notebook, a format widely used in different areas of cancer data analysis.39,40 The AVERON uses the following Python li-

braries: glob, ipycytoscape, IPython, ipywidgets, json, lifelines, math,matplotlib, numpy, os, pandas, pygtop, requests, scikit_posthocs, scipy,

seaborn, sklearn, statsmodels, sys, tabulate, tkinter, warnings.

Evaluation of neoPPI levels in cancer patients

We define a neoPPI as a physical interaction between a mutated tumor driver protein (Dmut), and a binding partner (B), which demonstrates a

significantly weaker or no interaction with the wild-type counterpart (Dwt).Dmut can correspond to a single pointmutation or a set of mutations

in the tumor driverD. TheAVERON is based on neoPPIs, experimentally determined in cancer cells. In this study, we analyzed 130 BRAFV600E

neoPPIs experimentally determined in HEK293T cells using theNanoLuc-based bioluminescence resonance energy transfer (BRETn) platform.

To estimate the levels of neoPPIs in patients the AVERON uses the mRNA expression data. The NCI Genomic Data Commons (GDC) Data

Portal provides genomics data for 33 cancer types andmore than 23,500 genes.25We use the batch-normalized RNASeqV2mRNAdata along

with mutation, DNA copy number, and clinical data available through the GDC for TCGA PanCancer Atlas cohorts. Genes with zero expres-

sion inmore than 30% of samples are excluded from the analysis. The AVERONalso allows calculating the PPIScores based on the proteomics

data available through the NCI Clinical Proteomic Tumor Analysis Consortium.

First, for a given cancer type, we identify samples with theDmutmutation (samplesmut) and without the mutation (sampleswt). Samples with

deletions of either D or B are eliminated from the analysis. Then, we calculate the neoPPI scores based on the expression of D and B in sam-

plesmut and sampleswt samples. We have determined that the arithmetic mean of the log(x+1) transformedmRNA expression ofD and B out-

performs other ways of data scaling and transformation such as the geometricmean of the untransformeddata or z-scaling. The neoPPI scores

are calculated for each mutated sample i as PPIneoi =
Dmut

i
+Bi

2 ;i˛ samplesmut . Similarly, the AVERON calculates the wild-type PPI scores for the

wild-type samples j˛ sampleswt as PPIwtj =
Dwt

j +Bj

2 ; where and Dwt
j ;Bj are the log2(x+1) transformed mRNA expression of Dwt and B.
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Identification of neoPPI-regulated genes

We hypothesize that neoPPIs exert oncogenic functions by regulating the expression of specific gene sets. To determine genes whose

expression correlates with the neoPPI levels in the mutant samples we use the PPIneo scores. We determine Pearson correlations between

the PPIneo scores and the expression of all human genes in samplesmut. To avoid artificial correlations, we eliminate the outliers using Cook’s

distance method. By default, if in samplesmut gene g has an uncorrected p-value pg < 0.05 and correlation Rneo
g R |0.3|, then we will say that

the expression of gene g can be associated with the neoPPI level. The AVERON Notebook provides a user interface to adjust these param-

eters. The positive correlation indicates that gene g can be upregulated through the neoPPI, and the negative correlation indicates its

downregulation.

If a geneg has an uncorrectedp-valuepg< 0.05 and a correlationRwt
g R |0.3| in sampleswt, it can be also associatedwith thewild-typePPIwt.

The AVERON can identify genes with more significant correlations with PPIneo scores than PPIwt scores. For this purpose, the Rneo
g and Rwt

g are

transformed into z-scores Zneo
g and Zwt

g using Fisher’s Z-transformation, and z-test statistics are obtained as Zg =
Zneo
g �Zwt

gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nmut � 3
+

1

Nwt � 3

r , where

Nmut and Nwt are the sizes of samplesmut and sampleswt after the elimination of outliers. The p-value (converted from Zg) p < 0.05 and
���Rneo

g

���>���Rwt
g

��� indicate that gene g is regulated by the neoPPI. Rneo
g > 0.3 indicates positively regulated genes Gup = fg1;g2;.;gig. Rneo

g < �0.3 will

indicate negatively regulated genes Gdown = fg1;g2;.;gjg.

Pathway enrichment analysis

The AVERON can conduct enrichment analysis based on any gene sets provided in the GeneMatrix Transposed (GMT) format. For example,

in this study, we used the pathway gene sets publicly available through the MSigDB databases.27 The statistical significance of the pathway

enrichment is evaluated through Fisher’s exact test and the Benjamini-Hochberg procedure to control for the false discovery rate (FDR).41 The

p-value <0.05 and FDR <5% are used as thresholds for statistical significance.

Survival analysis

The survival analysis implemented in the current version of the AVERON is based on the clinical outcomes of cancer patients available through

the NCI GDC Portal for the TCGA PanCancer Atlas cohorts.42 The analysis is performed for the patients with the correspondingmutation(s) of

the tumor driver gene. The AVERON determines the association between survival times of patients harboring the mutation(s) in the tumor

driver gene and either calculated neoPPI levels or expression of neoPPI-regulated genes. Both the multivariate COX regression analysis

and univariate Kaplan-Meier analysis implemented in the AVERON Notebook are based on the lifelines 0.27.8 Python library. For the

Kaplan-Meier analysis, we compare the survival times of patients with high (above the median) and low (below the median) PPIneo scores.

To determine neoPPI-regulated genes that may contribute to poor clinical outcomes, the AVERON compares the survival times of patients

with high and low expression of the target gene. With default parameters, the high expression of a gene g is defined as the expression above

the 67th percentile, and the low expression is defined as the gene expression below the 33rd percentile in samplesmut. The AVERON Note-

book allows the user to change those thresholds. The statistical significance of the correlation between neoPPI levels and patient survival is

determined in terms of the log rank test p-values and represented with the Kaplan-Meier plot.

Integration of pharmacological data

The AVERON links neoPPI-target genes with clinical and FDA-approved compounds. The IUPHAR database release v. 2024.1 includes 3,067

human targets, 12,590 ligands, including 1,981 approved drugs, and 3,704 ligands with clinical use summaries. The compound-protein asso-

ciations available through the IUPHAR database43 are determined using the pyGtoP Python wrapper for the IUPHAR API. For each gene, the

target-ligand pairs are identified based on the standard gene symbol. The search is conducted for the human genes. The ligand names asso-

ciated with the target gene are extracted along with the IUPHAR ligand IDs, ligand type, and approval status. The data can be exported to a

comma-separated (csv) file for further analysis. In addition, the total number of associated ligands as well as the number of approved and not

approved ligands is counted for each gene and saved in a separate table.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using custom Python scripts implemented in AVERONNotebook. Details of all statistical analyses can be

found above in the relevant subsections of the method details section.
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