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ABSTRACT: Nipah (NiV) and Hendra (HeV) viruses are members of the
newly defined Henipavirus genus of the Paramyxoviridae. Nipah virus
(NiV) is an emergent paramyxovirus that causes fatal encephalitis in up
to 70% of infected patients, and there is increasing evidence of human-
to-human transmission. NiV is designated a priority pathogen in the
NIAID Biodefense Research Agenda, and could be a devastating agent
of agrobioterrorism if used against the pig farming industry. Endothelial
syncytium is a pathognomonic feature of NiV infections, and is mediated
by the fusion (F) and attachment (G) envelope glycoproteins. This review
summarizes what is known about the pathophysiology of NiV infections,
and documents the identification of the NiV receptor. EphrinB2, the NiV
and HeV receptor, is expressed on endothelial cells and neurons, consis-
tent with the known cellular tropism for NiV. We discuss how the identi-
fication of the henipahvirus receptor sheds light on the pathobiology of
NiV infection, and how it will spur the rational development of effective
therapeutics. In addition, ephrinB3, a related protein, can serve as an
alternative receptor, and we suggest that differential usage of ephrinB2
versus B3 may explain the variant pathogenic profiles observed between
NiV and HeV. Thus, identifying the NiV receptors opens the door for
a more comprehensive analysis of the envelope–receptor interactions in
NiV pathobiology. Finally, we also describe how galectin-1 (an innate
immune defense lectin) can interact with specific N-glycans on the Ni-
pah envelope fusion protein, underscoring the potential role that innate
immune defense mechanisms may play against emerging pathogens.
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NIPAH VIRUS: A LETHAL EMERGING VIRAL PATHOGEN

In 1999, Nipah Virus (NiV) was discovered to be the causal agent of an
outbreak of respiratory illness in pigs and encephalitis in humans.1–3 In 2001–
2005, NiV outbreaks occurred in Bangladesh,4–7 where pigs were not found to
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be infected, suggesting that the virus may have jumped directly from its natural
host, the fruit bat or flying fox (genus Pteropus), to humans.8–10 NiV infec-
tion typically leads to death from fatal encephalitis in humans, with a 40%
to 70% mortality rate in the Malaysian and Bangladesh outbreaks, respec-
tively.11,12 The latter mortality rate is similar to that seen with viral agents,
such as Ebola virus, and far exceeds the mortality associated with any of the
recent emerging viral pathogens in South East Asia (e.g., SARS coronavirus
and H5N1 influenza). While most clinically apparent cases in Malaysia were
found in patients with direct exposure to infected pigs,13 seroconversions and
subclinical brain lesions were documented in exposed health care workers,
demonstrating that human-to-human transmission of the virus is possible.14

Indeed, there is stronger evidence of human-to-human transmission in the re-
cent Bangladesh outbreaks.11,15 NiV is a BSL-4 pathogen and is designated a
Category C priority pathogen in the NIAID Biodefense Research Agenda.

BIOTERRORISM CONCERNS

NiV has been cited as a potential agent of bioterrorism due to several proper-
ties .16 Its extreme pathogenicity (∼40–70% mortality) exceeds that of small-
pox (∼30% mortality) and approaches that for Ebola (∼40–90%). In addition
to causing acute disease, 3–7% of infected patients exhibit a late onset or re-
lapsed encephalitis months to years after the initial infection,14,17,18 thereby
increasing the risk of community exposure. This is particularly worrisome
given that there is increasing evidence of human-to-human transmissions in
the most recent outbreaks.11 NiV can be grown to high titers in vitro (>108

IU/mL without concentration) ,14 and thus, it has been suggested it can be
weaponized as an aerosol.16 In addition, NiV may be a more devastating agent
of economic or agrobioterrorism when used against the pig farming industry.
During the NiV outbreak in Malaysia, which affected 265 individuals, more
than 1 million pigs were culled, resulting in economic losses that totaled far
more than their export value of US$100 million.16 In the United States, the to-
tal annual production value of hogs and pigs in 2002 exceeded $8 billion, with
farms in just three states (Iowa, Minnesota, and North Carolina) accounting
for 50% of the value .19 If Nipah-like agents were to be intentionally released
in any one of these three states, the economic devastation from the loss of
production alone could easily be more than $1 billion. This is not an unrealis-
tic scenario; while the mortality rate in pigs (∼5%) is lower than in humans,
the morbidity and transmission rate approaches 100%.2,20 The observation
that seroconversions and MRI-detectable brain lesions have been documented
in exposed health care workers,21 and in military personnel involved in the
Malaysian culling operation, and that 30% of seroconverters went on to de-
velop encephalitic sequelae,22 further underscores the need to understand the
pathogenesis of this disease.
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NIPAH VIRUS BIOLOGY

As a member of the Paramyxoviridae family, the NiV contains a negative
strand, nonsegmented, RNA genome, with a gene arrangement similar to other
family members.23 However, phlyogenetic analysis of NiV multiple genes sug-
gests a clustering with the Hendra virus (HeV),24,25 another paramyxovirus
discovered a few years prior in Australia that caused an outbreak of severe res-
piratory syndrome in thoroughbred horses.1,26 Functional and immunologic
data also support the grouping of NiV and HeV into a new genus, as evidenced
by the heterotypic complementation between their fusion (F) and attachment
(G) envelope glycoproteins,8,27 and the cross-reactivity between their respec-
tive sera.24

The NiV (and HeV) virus exhibits an unusually broad host range includ-
ing humans, pigs, dogs, cats, horses, guinea pigs, hamsters, and fruit bats
(its presumptive natural host).2,28–30 Such broad host tropism is rare among
extant paramyxoviruses. With the possible exception of fruit bats, disease
mortality of all other hosts has been shown during natural or experimental
infection.30 However, despite evidence implicating pigs as the amplifying in-
termediate reservoir, the mortality in pigs (< 5%) is far lower than that in
humans (40–70%),1,2 suggesting that zoonotic transmission to humans has
increased the pathogenicity of the virus. Understanding the determinants of
such broad tropism, but narrower pathogenicity, is critical for understanding
the etiology of the disease. Since cellular tropism is determined in large part by
the specificity of receptor–envelope interactions, identifying the NiV and HeV
receptor is the first step toward this goal. Indeed, identification of the cognate
receptor for NiV and HeV entry will likely speed the rational development of
effective therapeutics against this deadly emerging pathogen.

As the requirement for studying this virus under BSL-4 conditions would
understandably limit our ability to gain insights into the biology of this new
genus of Paramyxoviridae, researchers have taken advantage of the fact that
endothelial cell syncytia formation is a pathogenic hallmark of Nipah viral
disease (see below), and is strictly mediated by the F and G envelope gly-
coproteins.8,21,27 Thus, we and others have generated systems and reagents
to study the determinants involved in viral envelope-mediated entry at less
than BSL-4 conditions.8,27,31–33 Notably, fusion assays and pseudotyping the
NiV and HeV envelope glycoproteins on a replication incompetent vesicu-
lar stomatitis virus (VSV) reporter virus, allow studies of envelope-mediated
membrane fusion and viral entry at less than BSL-4 conditions.

NIPAH VIRUS PATHOPHYSIOLOGY

As mentioned above, NiV emerged among agricultural workers in Malaysia
in 1998. Among the 265 reported cases in the first outbreak, there were 105
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patient deaths.18 While most patients presented with a severe acute encephalitic
syndrome, many also had significant pulmonary symptoms. Viral particles
were obtained from cerebral spinal fluid (CSF) and characterized morpholog-
ically, serologically, and genetically, and the new virus was named after the
Nipah River Village where the first isolates were obtained.2,3

The careful pathological investigations of 32 patients who died of NiV in-
fection, provide a reasonably comprehensive description of NiV pathophysiol-
ogy.18 Several critical points will be summarized here. First, NiV kills infected
patients very rapidly; the average time from fever onset to death was 9.5 days,
and only 4/32 patients survived >14 days before death. Patients presented with
fever (100%) and other neurologic symptoms (drowsiness, headache, disori-
entation). About 40% patients presented with respiratory symptoms.

Second, a major cellular target of the NiV appears to be endothelial cells
that line blood vessels. At autopsy, microscopic evaluation revealed widespread
vasculitis, endothelial cell destruction, and focal perivascular necrosis in small
vessels in the lung (62%), heart (31%), kidney (24%), and central nervous
system (CNS; 80%), with the most severe damage seen to vessels in the CNS.
Importantly, syncytial or multinucleated giant endothelial cells were seen in
blood vessels in many organs, frequently accompanied by vascular inflam-
mation. This endothelial syncytia formation has been described as “perhaps
the most unique histopathological finding,” a feature not described in viral en-
cephalides caused by other virus families. Importantly, in HeV-infected horses,
increased numbers of endothelial syncytia have been associated with decreased
survival.34,35 Infection of endothelial cells and subsequent syncytia forma-
tion and endothelial damage has been proposed to trigger the thrombosis and
necrosis seen in involved vessels. Thus, host tropism and fusogenicity of the
viral glycoproteins 8,18,30 are likely to be significant determinants of viral
pathogenicity.

Third, in addition to the endothelial and end organ damage, there was ex-
tensive lymphoid necrosis and immunologic detection of virus in lymphoid
tissues, with lymphocyte apoptosis and detection of multinucleated giant cells
in the lymphoid parenchyma and the subcapsular sinus. The authors have pro-
posed that the exposure of the virus to cognate B cells probably occurs first in
lymphoid tissues, given the observation that antibodies to the virus appeared
in serum before appearing in the CSF. However, the target cells in lymphoid
tissues have not been identified; the recent discovery of the NiV receptor(s)
may shed light on this critical unanswered question.

Based on their findings, the authors suggested a temporal mode of events.
Upon infection, primary replication of the virus occurs in lymphoid tissues
(acute lymphoid necrosis), which leads to viremia and secondary replication
in endothelial cells. Subsequent syncytia formation is the sentinel pathogenic
event that leads to vasculitis, thrombosis, and necrosis and infection of
parenchymal cells in various tissues. However, even though NiV antigen can
be found in the microvasculature of many tissues, the highest antigen load
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is found in the brain parenchyma, especially in neurons. Thus, neuronal and
endothelial cell tropism is an established hallmark of NiV. The recent dis-
covery of ephrinB2 as the receptor for NiV entry (see below) is remarkably
consistent with the known tropism of NiV, as ephrinB2 is critically involved
in neurogenesis and angiogenesis, and is highly expressed in neurons and en-
dothelial cells. Ephrin genes are highly conserved, and have been found in
all animal species examined.36 Thus, the conservation of ephrinB2 may also
explain the unusually broad tropism of NiV. EphrinBs bind to a large family
of ephB receptor tyrosine kinases. It is the cognate bidirectional signaling that
occurs during ephrinB–ephB interactions that direct the migration of endothe-
lial cells and neuronal dendrites.36–40 The interference with these interactions
by NiV-G or HeV-G may also have great relevance for the pathogenicity of the
virus.

NiV also has many unusual features, some of which undoubtedly contribute
to its severe pathogenicity. For example, the NiV P, V, and W proteins, pro-
duced from the same P gene by variant RNA editing, have been demonstrated
to exhibit anti-interferon functions by a variety of novel mechanisms.41,42

These anti-interferon functions may dampen the initial innate immune re-
sponse against this pathogen and contribute to the severe pathogenicity asso-
ciated with this virus. However, whether the anti-interferon functions of NiV’s
P, V, and/or W proteins are qualitatively or quantitatively different from other
paramyxoviral homologs remains to be seen.

DISCOVERY OF EPHRINB2 AS THE RECEPTOR FOR NIPAH
AND HENDRA VIRUS ENTRY

Border and colleagues had previously demonstrated that NiV and HeV likely
use the same cellular receptor, as fusion assays showed that NiV and HeV
envelope glycoproteins exhibit the same tropism for a variety of cell lines.8

These initial experiments suggested that the receptor was widely expressed, but
not ubiquitous, as many human hematopoietic cell lines were not permissive for
NiV and HeV envelope-mediated fusion. However, these initial experiments
did identify several cell lines that were nonpermissive for viral fusion. In
separate experiments, using a viral overlay technique to identify candidate
proteins that may bind to NiV envelope glycoproteins, this group identified a
protein candidate around 50 kDa that was bound specifically by viral particles
in their viral overlay assay.43 Then, using microarray analyses to compare
a series of permissive and nonpermissive cell lines, Border and colleagues
narrowed down a candidate list of putative receptors that fit several criteria
(protein size, predicted membrane protein, highly expressed in permissive
but not nonpermissive cell lines). Each of these candidate genes was then
transfected into a nonpermissive cell line and tested for its ability to confer
fusion permissivity by NiV envelope glycoproteins. Only one of the genes,
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ephrinB2, was able to confer fusion permissivity. EphrinB2 was subsequently
confirmed to be a bonafide receptor in their hands as it enabled live NiV entry
into otherwise nonpermissive cell lines.44

Concurrently, the author’s laboratory had also identified ephrinB2 as the
bonafide NiV entry receptor by completely independent means.31 We had first
codon-optimized the ectodomain of the NiV attachment protein (G) and fused
it to the constant Fc region of human IgG1. This was a necessary technique as
paramyxoviral envelope genes are generally not expressed well from standard
RNA Pol II-dependent promoters, at least not at levels required for substan-
tive biochemical studies. Indeed, a large number of studies on paramyxoviral
envelopes had relied on vaccinia-driven envelope expression. Thus, our stud-
ies on the properties of the Nipah envelope proteins can be performed under
a less confounding experimental setting, as it has been noted that the use of
vaccinia vectors in studies of paramyxovirus fusion necessitates the consid-
eration of vaccinia structural proteins as a confounding factor,45 although to
our knowledge, reports of actual vaccinia-related confounding factors have
not been reported. Our codon-optimized immunoadhesin (NiV-G-Fc) had cell
–line-binding properties that recapitulated the published cell line tropism of
NiV. Preparative immunoprecipitation followed by mass spectrometric analy-
ses (LC-tandem MS/MS) leads to the identification of ephrinB2 as the protein
that was specifically bound by the attachment protein of NiV (NiV-G). Several
lines of evidence were used to show that ephrinB2 was the receptor for NiV
entry: (1) soluble NiV-G binding to a variety of permissive cells was inhibited
by soluble ephrinB2 and a variety of soluble ephB receptors, which are cognate
endogenous receptors that bind ephrinB2; (2) transfection of ephrinB2 into a
variety of nonpermissive cell lines made them permissive for NiV envelope-
mediated fusion and entry; and (3) NiV envelope-mediated viral entry into
endothelial cells and neurons, two primary cell types known to be infected
by NiV in vivo, were inhibited by soluble ephrinB2.31 Significantly, this latter
point provided strong evidence that ephrinB2 is likely the bonafide cellular
receptor used by NiV in vivo.

The ability to detect a specific interaction between the recombinant soluble
NiV attachment envelope glycoprotein and a soluble recombinant version of
its receptor suggests that this interaction can be exploited to screen chemical
libraries in an ELISA-based sort of assay to identify leads for small molecule
inhibitors of NiV or HeV entry. Since both NiV and HeV seem to interact with
the same two conserved surface residues in ephrinB2 (see below), it suggests
that lead compounds identified to inhibit NiV, will also likely inhibit HeV.

CONCORDANCE OF EPHRINB2 EXPRESSION PATTERN
WITH KNOWN CELLULAR TROPISM OF NIPAH VIRUS

The expression pattern of ephrinB2 is remarkably concordant with the known
cellular tropism of NiV, further underscoring that ephrinB2 is a functional
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receptor for NiV in vivo. Much of our knowledge regarding ephrinB2 expres-
sion in situ comes from LacZ reporter mice where the �-galactosidase gene
was knocked into the ephrinB2 locus on one chromosome 46–49 (ephrinB2-null
mice are embryonic lethal). The correlations between ephrinB2 expression
and NiV tropism in vivo are listed; direct quotes are taken from some of these
primary references to show the remarkable degree of concordance without
paraphrasing on our part:

1. EphrinB2 is expressed in neurons and endothelial cells, and is required
for axonal guidance and angiogenesis.36,37,40

• NiV has a tropism for neurons and endothelial cells; NiV antigen is
found in neurons and endothelial cells; and endothelial syncytia are
a hallmark of NiV infection.18,30

2. EphrinB2 also selectively marks smooth muscle surrounding arteries
but not veins.48,49

• “Vascular staining for Nipah antigen is mainly found in endothelium,
endothelial syncytia and smooth muscle of tunica media of small
arteries.” (FIG. 6 E, F in ref. 18)

3. EphrinB2 is expressed in placental tissue during normal development
in all three trimesters.50

• Evidence of HeV placental transmission to fetus in bats and guinea
pigs.35

4. EphrinB2 expression in spleen is clearly “limited to the central arter-
ies, arterioles, and capillaries of white pulp, terminating abruptly at
the marginal zone between white and red pulp” (where venous sinuses
originate).48

• In NiV-infected humans (from autopsy samples): “the spleen showed
white pulp depletion and acute necrotizing inflammation in the peri-
arteriolar sheaths; viral antigen staining is also particularly evident
in periarteriolar sheaths in the white pulp.”18,30

5. EphrinB2 expression in the sinusoidal lining of lymph nodes can be
found.46

• Syncytia were detected in sinusoidal lining of NiV-infected cats30

and also in subcapsular sinus of infected humans.18

ENVELOPE–RECEPTOR INTERACTIONS AND
PATHOGENICITY

Receptor Clustering and Signaling

Both ephrinB2, and its cognate endogenous receptor ephB4, have tyrosine
signaling and PDZ-binding motifs in their cytoplasmic domains.38 “Forward”
signaling through ephB4 mediates antiadhesive and repulsive behavior upon
contact with ephrinB2-expressing cells, while ephrinB2 “reverse” signaling
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mediates propulsive adhesion upon contact with ephB4-expressing cells. If
NiV-G acts like ephB4 and binds to ephrinB2, but lacks reverse signaling,
perhaps only forward propulsion will ensue. We speculate that this might act
to recruit more endothelial cells to areas of NiV replication. Indeed, signaling-
deficient ephB4 on tumor cells can promote invasion by ephrinB2-expressing
endothelial cells.51 It will be interesting to reexamine pathological specimens
for increased angiogenesis in areas of NiV replication. It is also possible that
PDZ domain containing proteins and other signaling proteins known to interact
with the cytoplasmic domain of ephrinB2 may also play a role in the productive
entry of NiV. For example, it has been proposed that PDZ domain containing
proteins may bind the cytoplasmic domain of Eph receptor and ephrinB lig-
ands, and stabilize higher-ordered clustering of these receptor ligand pairs into
oligomeric arrays.52 The density of this clustering may modulate the nature and
intensity of the forward and reverse signaling.52 It is known that both HeV-G
and NiV-G are tetrameric,32,53 like the proposed quaternary structures of ephB
receptors. Therefore, the clustering of NiV-G with ephrinB2 during the viral
entry process may be an essential component of the entry process, and indeed,
any putative signals sent through ephrinB2 upon interaction with NiV-G may
play a role in viral pathogenesis, as it may allow the cell to become more per-
missive for viral replication. Since the critical residues in ephrinB2 involved
in interactions with NiV-G are the same as those required for interaction with
the ephB2 receptor,33 it is likely that NiV-G will indeed induce reverse sig-
naling via ephrinB2. This is a phenomenon that requires active investigation.
Envelope-mediated receptor signaling is an established phenomenon in HIV
entry pathogenesis,54–59 and has even been proposed to play a role in promoting
HIV replication in unactivated CD4+ T cells.60,61

EphrinB3 as an Alternate Receptor

The virological literature is replete with examples of how minor changes
in envelope can lead to attenuation or increased virulence.62–67 For viruses
that can use alternate receptors, which are generally related members of the
same family, qualitatively and quantitatively different receptor usage can often
account for the different pathogenic profiles. This phenomenon has received
much attention in the HIV field where viruses that use CCR5 are generally
less cytopathic, and are found earlier on in infection, while viruses that use
CXCR4 are generally more cytopathic, and appear with the onset of clinical
AIDS.68–71

In NiV and HeV infections, despite the similar endothelial cell tropism seen,
comparative pathological studies have noted a greater likelihood of meningitis
or encephalitic pathology in NiV compared to HeV infections.30 In pigs, as
opposed to most other susceptible animals, the NiV is highly transmissible,
with viral antigen readily detectable in respiratory secretions.29,30 HeV does
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not appear to be as readily transmissible,30,35 although admittedly the number
of HeV cases is very small.

Can differential receptor usage contribute to the variant pathogenic profiles
observed between NiV and HeV disease? In the published literature, ephrinB2
is clearly the primary receptor used by NiV and HeV in a variety of permissive
cell lines.31,44 In the case for NiV, ephrinB2 also appears to be the receptor used
in primary neurons and microvascular endothelial cells.31 There are at least
three ephrinB members in the mammalian genome. While ephrinB1 appears
not to support NiV-G binding under the in vitro conditions examined,31,33

ephrinB3 appears to be an alternate receptor that can fully support NiV entry,
albeit less efficiently than ephrinB2.33

Our first hint that an alternate receptor for NiV may exist was our observa-
tion that although ephB4, which binds only ephrinB2 in vivo, was able to block
NiV entry into microvascular endothelial cells,31 it did not appear to block
NiV entry into a subset of embryonic rat neurons (unpublished data). Thus, it
is likely that while ephrinB2 is the major receptor for NiV entry into microvas-
cular endothelial cells, NiV can also use an alternate receptor for entry into a
particular subset of neurons.

We then formally identified ephrinB3 as a bonafide receptor for NiV en-
try using both Nipah envelope pseudotyped VSV reporter viruses, as well
as live Nipah viruses.33 Using biochemical and biophysical measurements,
we also show that NiV-G interacts directly with ephrinB3, but with approx-
imately 10-fold lower affinity than ephrinB2. However, due to the extraor-
dinarily high affinity of NiV-G for ephrinB2 (Kd∼0.06 nM), the affinity of
ephrinB3 was still in the subnanomolar range (Kd∼0.6 nM), which may ex-
plain why ephrinB3-mediated entry remains readily detectable.33 In addition,
we also pinpointed two key residues common to ephrinB2 and ephrinB3 that
mediate their use as receptors for NiV entry. Significantly, these two residues
were also critical for their activity as ligands for the endogenous ephB2 re-
ceptor (recall that ephrinB ligands bind to ephB receptors). We suggested that
ephrinB3 is a relevant receptor for NiV in vivo, as MRI lesions in NiV-infected
patients can be found in specific regions of the CNS (such as the corpus cal-
losum and the spinal cord)72,73 that are known only to express ephrinB3, but
not ephrinB2.74,75 Thus, ephrinB3 may serve as a receptor for NiV entry into
certain neuronal subsets.

In addition, ephrinB3 expression has been reported in lymphoid cells
(T cells),76 and could also account for acute lymphoid necrosis seen in early
NiV infection.18 While ephrinB2 knockout mice are embryonic lethals with
defects in vascular and neuro morphogenesis,37,40,47–49 ephrinB3 knockout
mice are fertile and phenotypically normal, but exhibit peculiar neurological
defects arising from the inability of the corticospinal tracts to cross the mid-
line.77,78 The lack of overt defects in vascular morphogenesis in the ephrinB3
knockout mice suggests that ephrinB3, unlike ephrinB2, is not required for
vascular development. Additional support that ephrinB3 is not expressed in
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endothelium comes from our observation that ephB4, which only binds
ephrinB2, can completely inhibit NiV entry into microvascular endothelial
cells.31 Thus, if ephrinB3 is used as an alternate receptor by NiV and/or HeV,
the efficiency by which NiV or HeV uses ephrinB2 versus ephrinB3 could
contribute to their differential pathologies. Indeed, since NiV appears to have
an increased encephalogenic potential compared to HeV, we speculate that NiV
may use ephrinB3 better than HeV, as certain neuronal subsets express both
ephrinB2 and ephrinB3 while microvascular endothelial cells only express
ephrinB2. This hypothesis is readily testable.

N-GLYCANS ON NIPAH VIRUS ENVELOPE CAN BE
RECOGNIZED BY IMMUNE SYSTEM LECTINS

Recently, we have also published that galectin-1 can potently inhibit NiV
envelope glycoprotein-mediated cell–cell fusion.32 In exploring the glycan
structures present on NiV-F/G, we noticed that both F and G have polylac-
tosamine sequences that can be bound by galectin-1, an immune system lectin
that has myriad functions and is known to be a “tuner” of the inflammatory
immune response.79,80 Since gal-1 is produced by activated endothelial cells81

(a primary target for NiV infection) and dendritic cells (unpublished observa-
tions), we asked whether gal-1 could also serve as an innate immune defense
mechanism, by recognizing the pathogen glycan structures on NiV-F/G. We
found that gal-1 can potently inhibit NiVF/G-mediated cell–cell fusion in a
manner that was dependent on its native homodimeric form, and also depen-
dent on its glycan-binding properties.32 Importantly, we also determined that
gal-1 specifically binds NiV-F and -G and indeed, pinpointed an N-linked gly-
cosylation site on NiV-F that is preferentially bound by gal-1: mutation of
that N-linked glycosylation site renders the mutant NiV-F significantly more
resistant to gal-1-mediated inhibition. This gal-1-mediated inhibition appears
to be relatively specific as gal-1 also inhibited HeV-mediated fusion, but not
a variety of other viruses tested.32 Indeed, gal-1 has been recently shown to
enhance HIV-1 infection.82 Thus, gal-1 does not appear to have a ubiquitous
antiviral effect, unlike cyanovirin, another lectin that has been shown to inhibit
a variety of viruses via steric hindrance mechanisms as a result of binding
high-mannose glycans present on their envelope glycoproteins.83,84 The exact
mechanism by which gal-1 inhibits NiV fusion remains to be determined, but
since gal-1 can aberrantly oligomerize both NiV-F and G,32 it is not unreason-
able to propose that these aberrant oligomers compromise the ability of the F
and G complex to undergo the conformational changes required for membrane
fusion.

The concentrations of gal-1 used to inhibit NiV fusion can arguably be
found in extracellular matrix.85,86 If this is so, the question remains as to why
the natural amount of gal-1 is not more protective against NiV infection. It is
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difficult to answer this teleological question, but perhaps one could also argue
that NiV infection would be even more lethal in the absence of endogenous gal-
1. In addition, natural polymorphisms in the gal-1 gene, some of which can be
predicted to affect the glycan-binding properties of gal-1, may contribute to the
variant mortality rates found between the various NiV outbreaks. However, the
frequency of these polymorphisms in the affected populations is not known.
In addition, it is also not known what the variance of gal-1 levels is in the
general population. Perhaps a threshold level of gal-1 is required for its putative
protective effect, and these levels are not present in individuals who succumb
to the more severe effects of the Nipah viral infection. Indeed, these questions
underscore the need to further understand the potential role that innate immune
defense mechanisms may play against emerging pathogens.

CONCLUSION

Nipah virus is an emerging pathogen that is likely a zoonosis that occurred
as a result of habitat destruction of its primary host, the fruit bat (Pteropus
hypomelanus and related species).87 The rapid population growth in South
East Asia and the encroachment of human activity into previously undisturbed
areas in the region increases the likelihood that more emerging viruses will be
discovered. If we are to better control and prevent any future outbreaks, the
biological investigation of any new outbreaks must be coupled with an ecolog-
ical study of the circumstances and parameters that led to these new zoonoses.
Thus, the laudable studies by Daszak, Epstein, and colleagues of the Heni-
pavirus Ecology Research Group deserve much attention and support.88–90
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