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Abstract: Titanium alloys with special macro-micro composite structures of directional hydrophobic-
ity are difficult to prepare due to poor thermal conductivity and good corrosion resistance, inhibiting
the wide engineering applications for aerospace, marine engineering, and biomedicine. To prepare
macro-micro composite structures on the surface of titanium alloys and achieve directional hydropho-
bicity, the sub-millimeter structures with an edge width of 150 µm, a groove width of 250 µm, and
a depth of 250 µm were fabricated on the titanium alloy by wire electrical discharge machining
(WEDM) technology, and high voltage-induced weak electric arc machining (HV-µEAM) was used
to fabricate micro-scale feature size micro-structures on the processed macro-structure edges. The
influence of process parameters on the morphology of microstructures was studied experimentally.
The smooth surface of the titanium alloy is isotropically hydrophilic, and its contact angle is 68◦.
After processing the macrostructure on the titanium alloy surface, it shows directional hydrophobicity
after being modified by low surface energy materials. The macro-micro composite structure formed
by HV-µEAM realizes a directional hydrophobic surface with contact angles (CA) of 140◦ (parallel
direction) and 130◦ (perpendicular direction), respectively. This surface has been modified with low
surface energy to achieve contact angles of 154◦ and 143◦. The results of the abrasion resistance
test show that under the load of 100 g, it retains directional hydrophobicity at a friction distance of
700 mm with 600# sandpaper. The existence of the sub-millimeter macrostructure is the reason for
the directionality of surface hydrophobicity. The microstructure can realize the transformation of the
titanium alloy surface from hydrophilic to hydrophobic. Under the combined effects of the macro and
micro composite structure, the surface of the titanium alloy shows obvious directional hydrophobicity.

Keywords: titanium alloy; surface; WEDM; HV-µEAM; macro-micro composite structure; direc-
tional hydrophobicity

1. Introduction

The study of the surface wettability properties [1] of materials has largely been de-
rived from observing the unique structures of the body surfaces of plants and animals in
nature, such as the self-cleaning properties of lotus leaves [2–5] and the high adhesion of
rose petals [6–9]. These properties are attributed to their unique Macro-micro composite
structures and their combined forms. Materials exhibit different hydrophobic properties
in different directions with significant differences in the anisotropic CA. This property is
known as anisotropic hydrophobic surfaces [10–13]. This property is common in biological
surface structures. For example, butterfly wings in biology [14–16] are typical examples of
directional hydrophobic surfaces achieved through macro-micro composite structures. The
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micron-sized square scales on the surface of the butterfly’s wings have a nanoscale riblet
structure, so water droplets on the surface roll off in the outward direction of the body. The
water droplets cannot roll off in the opposite direction because of the high adhesion force
and thus, roll off the next time the butterfly swings its wings. This exhibits anisotropic
hydrophobicity. The surface of rice leaves [17–19] is also an anisotropic hydrophobic
surface. It has a sub-millimeter groove array structure of large size. A large number of
micrometer-scale papilla structures are also distributed on the groove ribs. The papillae
structures are filled with nanoscale needle-like forms. The presence of this macro-micro
composite structure on rice leaves makes it easier for water droplets on rice leaves to roll in
a direction parallel to the edge of the leaf.

So far, various methods have been tried to prepare macro-micro composite structures
to achieve anisotropic hydrophobic surfaces, involving micromachining and micro-special
machining specialties. The processed materials cover non-metallic materials such as glass
and metallic materials such as aluminum alloy and stainless steel. Lian et al. [20] pro-
cessed a groove macrostructure with 100 µm spacing on the aluminum alloy surface by
nanosecond laser, combined with the microstructure generated by laser spot during laser
treatment. They successfully prepared a superhydrophobic aluminum alloy surface with an
anisotropic surface. Zhang et al. [21] processed grating microarray structures with intervals
of 200 µm on the surface of an aluminum alloy substrate by a high-speed micro-milling
method, and there were many irregular nanoscale pits and bumps on the surface of the
submillimeter grating. Under the joint action of such macro-micro composite structures,
the aluminum alloy surface showed anisotropic hydrophobic properties. Yunusa et al. [22]
bonded tubular polymer fibers with a diameter of 300 µm on the surface of the glass and
other workpiece materials in a certain order and obtained anisotropic superhydrophobic
surfaces after spraying with nano-silica. Patel et al. [23], prepared hydrophobic surfaces
by using a NaNO3 solution as electrolyte and electrochemical micromachining (ECMM)
and mask technology to fabricate microgroove structures with a depth of 70~200 µm and
a width of 250~300 µm on the stainless steel surface. Wang et al. [24] used a combination
of topography structure and chemical coating to construct a superhydrophobic surface
on titanium alloy implants and successfully constructed a layered surface with micror-
oughness and nanotubes. It has a contact angle (CA) of 44.9◦. After being modified by
fluoroalkylsilane, the contact angle was 151.4◦, which exhibited superhydrophobicity.

Titanium alloy [25] is often used in the manufacture of micro and precision parts due
to its advantages of low density, high specific strength, and good corrosion resistance. It
is widely used in aerospace [26,27], ocean engineering [28], biomedical [29,30], and other
fields. The anti-oxidation, wear reduction, and corrosion resistance of titanium alloys with
superhydrophobicity has been substantially improved. In aerospace, superhydrophobic
titanium alloys improve mechanical durability. In marine engineering, superhydrophobic
titanium alloys prevent corrosive media from coming into contact with the metal, reducing
galvanic corrosion and increasing service life. In biomedicine, the superhydrophobic sur-
face of implanted titanium alloys facilitates the reduction of alloy-blood cell interactions,
preventing bacterial adhesion and reducing the risk of infection. However, the study of its
surface wettability characteristics is more important. Directional hydrophobicity [31–33]
can move droplets in a directional manner by setting special macro-micro composite struc-
tures and their combined forms. It has special applications in directional drag reduction.

Because of the poor thermal conductivity of titanium alloy, the tool wear will be
intensified during mechanical processing, and it is difficult to remove the material during
special machining [34]. Spinwall et al. [35] studied the titanium alloy surface processed by
wire electrical discharge machining (WEDM), where good surface quality was obtained
using high pulses and low pulse widths. These phenomena are more prominent in micro-
machining. Therefore, research on the preparation of anisotropic hydrophobic surfaces in
a titanium alloy matrix is relatively rare. Peng et al. [36] Proposed a high-voltage weak
arc processing (HV-µEAM) additive manufacturing method, which can deposit complex
trajectories and form micron-level metal precipitates on the workpiece. The deposition
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is dense and continuous. In this paper, we proposed an electrical discharge machining-
based surface processing method for macro-micro composite structures. Wire WEDM
technology was used to machine sub-millimeter groove macrostructures. The high voltage
induced weak electric arc machining HV-µEAM was used to fabricate micro-scale feature
size micro-structures on the processed macro-structure edges. After further low surface
energy treatment, the hydrophobicity of the titanium alloy was further improved, and the
superhydrophobic effect was achieved.

2. Materials and Methods
2.1. Materials and Characterization Methods

The substrate material for the TC4 titanium alloy, the chemical composition of which
is shown in Table 1, was purchased from Dongguan Guangyue Metal Materials Co., Ltd.
(Dongguan, Guangdong, China). The chemical reagents in the experiment—acetone and
anhydrous ethanol—are analytically pure, and the deionized water and perfluorodecyl-
triethoxysilane (hereinafter referred to as fluorosilane) were purchased from Guangzhou
Hongcheng Biotechnology Co. Ltd., (Guangzhou, Guangdong, China).

Table 1. Chemical composition of TC4 titanium alloy.

Chemical Composition (wt%)

Al V Fe O C N H Ti

6.5 4.3 0.06 0.08 0.10 0.01 0.01 Bal.

A scanning electron microscope model MERLIN Compact from Carl Zeiss, Germany,
was used to observe the microstructure of the titanium alloy surface. The static contact angle
was measured using a contact angle measurement model JC2000C1 of Shanghai Zhongchen
Digital Technology Equipment Co., Ltd. (Shanghai, China). For each measurement, 4 µL of
ionized water drops were placed on the surface of the specimen at four different locations,
and the average value was taken as the measurement result.

2.2. Macro-Micro Composite Structure Processing Method

Macro-micro composite structures are an effective means to achieve directional hy-
drophobic surfaces. By analogy with the microstructure of rice leaves, the surface has a
multi-level composite structure consisting of sub-millimeter grooves and micro-nano-scale
papilla, as shown in Figure 1a. The macrostructure is a groove structure with a width
of several hundred micrometers and a height of several tens of micrometers. For the
fabrication of the macrostructure, the sub-millimeter groove structure was processed by
WEDM technology in this paper. Figure 1b shows the schematic diagram of the wire-cutting
process, the design dimensions of the slot width were 250 µm, edge width b of 150 µm,
and slot depth h of 250 µm. The cut surface was polished to reduce the effect of discharge
surface etching pits on the analyzed structure. The specimens were ultrasonically cleaned
in acetone, anhydrous ethanol, and deionized water, then dried and set aside.
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The WEDM process uses the heat generated instantaneously by the high-frequency
pulse discharge between the negative electrode (molybdenum wire) and the positive
electrode (titanium alloy) to remove the material. Therefore, machining parameters such
as peak current, pulse width, and pulse interval affect the machining stability, surface
topography, and the size of the discharge gap. The relationship between slot width and
discharge gap is shown in Formula (1),

a = d + 2δ, (1)

where a is the groove width (µm), d is the diameter of the wire electrode (µm), and δ is the
discharge gap (µm).

In order to better process it, we used the orthogonal experimental design [38,39] to
experiment with the processing parameters. Wire breakage is prevented by processing
conditions with large pulse widths. The pulse widths of the orthogonal test were set to
16, 24, 32, and 40 µs, and the pulse intervals were set to 30, 35, 40, and 45 µs. The current
was selected between 3 and 6 A, and the gap voltage was selected between 5 and 8 steps to
ensure the integrity of the processing structure (Table 2).

Table 2. Four-factor and four-level orthogonal test data table.

Number Pulse
Width/µs

Pulse
Interval/µs

Peak
Current/A

Gap
Voltage/V

Vacant
Column

Edge
Width /µm

1 16 30 3 5 1 112.91
2 16 35 4 6 2 114.54
3 16 40 5 7 3 93.25
4 16 45 6 8 4 106.95
5 24 30 4 7 4 145.36
6 24 35 3 8 3 146.21
7 24 40 6 5 2 100.18
8 24 45 5 6 1 92.33
9 32 30 5 8 2 89.63

10 32 35 6 7 1 91.25
11 32 40 3 6 4 93.96
12 32 45 4 5 3 96.12
13 40 30 6 6 3 90.44
14 40 35 5 5 4 77.44
15 40 40 4 8 1 115.35
16 40 45 3 7 2 87.46

The orthogonal experimental data were analyzed using range analysis methods, and
the results are shown in Table 3. The equation of the range analysis is shown in Formula (2).

Rj = max
[
Kji, Kji, · · ·

]
−min

[
Kji, Kji, · · ·

]
(i = 1, 2, 3, 4; j = 1, 2, 3, 4) (2)

where Kji is the sum of the test indicators corresponding to the i-th level of the j-th factor;
Kji is the average of the sum of the test indicators corresponding to the i-th level of the
j-th factor.

The degree of influence on the edge width size in descending order: peak cur-
rent > pulse width > gap voltage > pulse interval, which indicates that among the electrical
parameters, the peak current has the most significant influence on the edge width and the
best combination of parameters is A2B1C2D4, with specific parameters: pulse width of
24 µs, pulse interval of 30 µs, peak current of 4 A, and gap voltage of 8 V.

The micro-scale structure is processed by HV-µEAM. The surface micron-level mi-
crostructure is constructed by partial discharge on the surface of the prepared titanium alloy
groove edge. Micro-nano-scale surface microstructures are processed by using electrical
discharge energy between the poles. It is realized by the melting and re-coagulation of the
discharge microzone. According to the principle of interelectrode discharge, the discharge
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gap is proportional to the voltage between poles to achieve low voltage discharge in gas.
The gap between the poles needs to be small enough to penetrate the interpolar air medium.

Table 3. Four factors and four levels of orthogonal test analysis table.

Pulse
Width/µs

Pulse
Interval/µs

Peak
Current/A

Gap
Voltage/V

Vacant
Column

Kji

427.65 438.33 440.54 386.65 411.84
484.08 429.43 471.36 391.26 391.80
370.95 402.74 352.65 417.32 426.02
370.68 382.86 388.82 458.14 423.71

Kji

106.91 109.58 110.13 96.66 102.96
121.02 107.36 117.84 97.81 97.95
92.74 100.68 88.16 104.33 106.51
92.67 95.72 97.20 114.53 105.93

Rj 28.35 13.86 29.68 17.87 8.56

As shown in Figure 2, the low voltage discharge gap is δ1. With a high voltage
pulse, achieving the breakdown of the discharge medium in the large interpolar gap δ2
can effectively improve the discharge machining gap, forming the plasma channel. At
this time, the energy of low voltage and the large current can pass through the plasma
channel to achieve local melting of the titanium alloy surface. Along with the machining
trajectory of two poles, the melting microzone is recoagulated to form the microstructure.
The parameters of HV-µEAM are shown in Table 4.

Table 4. Machining parameters of high voltage-induced weak arc discharge.

Parameter Value

High voltage (V) 2000
High voltage current (mA) 0.3

Low voltage (V) 30
Low voltage current (A) 0.5/1.0/1.5/2.0/2.5/3.0

Discharge medium Ar
Workpiece electrode (negative electrode) TC4

Tool electrode (positive electrode) Copper (φd: 500 µm)
Discharge gap (µm) 200

Scanning speed (µm/s) 15
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Figure 2. Schematic diagram of high voltage-induced weak arc for microstructure.

In order to compare and analyze the effect of each stage of the macro-micro composite
structure, the surface was treated with low surface energy solutions. The solution is
prepared by mixing fluorosilane with ethanol. For the preparation process of sample parts
with low surface energy modification, 0.5 mL of fluorosilane (97%) was dissolved in 50 mL
of anhydrous ethanol and stirred well to prepare a low surface energy solution. The sample
was immersed in the low surface energy solution for 0.5 h and dried in a 100 ◦C oven for
2 h. The hydrophobicity of the macro-micro complex structure was comparatively analyzed
by analyzing the change of contact angle.
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3. Results and Discussion
3.1. Macrostructure Results

In this work, the grooves were processed by WEDM, and the macrostructure with
better machining accuracy was obtained, as shown in Figure 3. It can be seen that the
macrostructure processing was good. The grooves were 250 µm deep, 150 µm wide, and
250 µm wide. Due to the WEDM process, there were discharge etching particles adhered
to the surface of the grooves of the macrostructure, impacting the follow-up analysis.
Polishing the surface of the groove edge, the smooth groove-edge surface was obtained,
which was prepared for the subsequent high pressure-induced weak arc machining of the
micro-scale structure.
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side view.

3.2. Microstructure Results

The morphology and size of the surface microstructure of the material will affect the
wettability of the surface. In HV-µEAM machining, machining energy affects the surface
morphology; it further affects the wettability of the surface. In this paper, the influence of
discharge energy on the micro-scale structure morphology of the machined surface was
studied. At the same time, the influence law of surface wettability was obtained. As can be
seen from the processing conditions, the effect of interelectrode high pressure increased the
ionization degree of the discharge channel, increasing the discharge gap. High voltage and
low current machining conditions were adopted. The role of interpolar low pressure is to
inject effective energy into the local melting of the titanium alloy surface. The machining
conditions of low voltage and high current were adopted. We focused on the study of
different input low-voltage electric currents from 0.5 A to 3.0 A. The surface morphology of
the titanium alloy groove edge is shown in Figure 4.

Surface roughness seriously affects wettability [40]. The diameter, depth, and density
of the surface texture have a significant impact on the contact angle [41]. In HV-µEAM ma-
chining, machining energy affects the surface morphology; it further affects the wettability
of the surface.
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HV-µEAM is a direct writing process. The local micro material on the surface of
titanium alloy melts under the action of discharge energy. When the tool electrode is moved
out of the discharge area, the molten microzone rapidly condenses to form a microstructure.
This instantaneous non-equilibrium solidification process does not allow sufficient time
for the molten material to grow after nucleation, the fine grain microstructure is obtained,
and the local sudden cooling and heating lead to increased internal thermal stresses and
microscopic cracks. At the same time, the low thermal conductivity of titanium alloy
increases the formation of local microcracks.

With a current of 0.5 A, only a small amount of micro-bumps and crater-like structures
formed by sputtering can be formed in localized areas, and the titanium alloy substrate
can be seen in some areas, as shown in Figure 4a. The density of microtextures is small.
As the current increases, irregular bumps appear on the surface of the titanium alloy, and
the density of the surface texture increase accordingly, as shown in Figure 4b,c. When
the current reaches 2 A, the microtextures start to superimpose, and the surface quality is
uniform, forming “islands”. The microtextures not only increase in size and density but
also are uniformly distributed on the titanium alloy surface, so the roughness is greatly
improved, as shown in Figure 4d. When the low-voltage current is increased to 2.5 A, the
energy continues to become larger, the surface quality starts to deteriorate, and micro-cracks
appear, as shown in Figure 4e. When the current was increased to 3 A, copper electrodes
were ablated, micro texturing cracks increased, and surface quality was poor, as shown in
Figure 4e.

From the above microscopic morphology analysis, it can be seen that the HV-µEAM
formed microstructures of micron-scale on the smooth titanium alloy surface. With the
increase of current, the surface morphology of titanium alloy changes greatly. When the low
voltage current was 1.5 A and 2.0 A, the surface had good morphology. The microstructures
were in the range of 5 µm and distributed uniformly without large microcracks. The process-
ing requirements of micro-scale structure can be satisfied from scale and micro-morphology.

3.3. Titanium Alloy Macro-Micro Composite Surface Directional Hydrophobicity Analysis
3.3.1. Macrostructure Effects on Directional Surface

To study the effect of macrostructure on surface direction hydrophobicity, the surface
of the titanium alloy plate and titanium alloy plate with the macrostructure groove structure
was analyzed in comparison by contact angle characterization, and the results are shown in
Figure 5. The direction of the groove is called the parallel contact angle, and the direction
perpendicular to it is called the perpendicular contact angle.
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In order to investigate the relationship between the physical dimension and surface
wettability in the macrostructure, highly efficient cutting parameters were used to process
the macrostructure. The molybdenum wire diameter plus the discharge gap lead to a
slot width of 250 µm (obtained from the test cut machining) while ensuring high machin-
ing accuracy. Therefore, the influence of the groove depth and edge width on CA was
investigated with a constant slot depth.

The CA measurement results show that when the groove width is 250 µm and the
edge width is 150 µm, the CA decreases gradually with the increase of the groove depth,
and the contact angle is 0 when the slot depth exceeds 250 µm. The CA measurement
results in 2b show that when the groove width is 250 µm and the groove depth is 250 µm,
the contact angle decreases with the increase of the edge width, and CA is 0 when the edge
width exceeds 150 µm.

The macrostructures with grooves exhibit more anisotropic hydrophilicity, in ac-
cordance with the Wenzel infiltration model. The sample with the macroscopic groove
structure was modified with the low surface energy material fluorosilane for a more in-
tuitive evaluation. The results exhibit directional hydrophobicity. This indicates that the
groove macrostructure has a significant effect on the wettability of the droplets on the
titanium alloy surface and that the contact angle of the droplets in the parallel direction is
larger than that in the perpendicular direction, further indicating that the presence of the
groove macrostructure makes the surface wettability of the titanium alloy directional.

When 4 µL of deionized water droplets were placed on the surface of the unprocessed
titanium alloy plate, each CA was 68◦, as shown in Figure 6a. At this time, the unprocessed
titanium alloy plate exhibited isotropic hydrophilicity in terms of wettability. The results
of contact angle measurements on the surface of titanium alloy with macro-structured
prismatic grooves are shown in Figure 6b. At this point, the water droplets will spread
completely along the grooves and enter the grooves without surface hydrophobicity. The
reason for this is the large size of the macroscopic grooves, which is beyond the scale of
the hydrophobic surface. Further low surface energy modification of both surfaces, the CA
in both parallel and perpendicular directions of the unprocessed titanium alloy plate are
increased to 96◦, showing isotropic hydrophobicity, as shown in Figure 6c. After low surface
energy modification of the titanium alloy surface with a macro groove structure, it exhibited
a directional hydrophobic state with a measured contact angle of 135◦ in the parallel
direction and 127◦ in the perpendicular direction, as shown in Figure 6d. Comparing
Figure 6c,d, the surface with the macro groove structure has directional hydrophobicity after
low surface energy modification, further indicating that the presence of the macrostructure
is the reason for the directional hydrophobicity of the surface.
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3.3.2. Effect of Microstructure on Surface Hydrophobicity

The surface of the groove structure modified by low surface energy exhibits directional
hydrophobicity, which indicates that the macroscopic groove structure is an important
condition for directional hydrophobicity. The polished titanium alloy plate with grooves in
Figure 6b does not exhibit hydrophobic properties, which indicates that the macroscopic
groove structure itself cannot achieve the transition from hydrophilic to hydrophobic
titanium alloy surfaces. In this section, the fabrication of microstructures on the smooth
groove edge of macrostructures was realized by using the HV-µEAM technique, and the
surface hydrophobicity of macro-micro-complex structures constructed under different
low voltage currents was investigated. The directional wetting angle of the surface of the
macro-micro composite structure was measured at low voltage currents from 0.5 A to 3.0 A,
as shown in Figure 7.
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The experimental results show that the parallel contact angle and perpendicular
contact angle of the surface of the macro-micro composite structure formed under different
low-voltage electric currents are greater than 90◦, which exhibits hydrophobicity. Due to the
macro groove structure, the parallel contact angle is larger than the perpendicular contact
angle. As the low-voltage electric current increases from 0.5 A to 2.0 A, the directional
contact angle increases to a maximum value, reaching 140◦ for the parallel contact angle
and 130◦ for the perpendicular contact angle. When the current continues to increase,
due to the excessive energy, the micro-scale structure of the groove surface showed larger
craters and cracks, the surface consistency became poor, and the directional CA all showed
a decreasing trend.

3.3.3. Surface with Macro-Micro Composite Structure by Low Surface Energy Modification

Macro-micro composite structure surface formed by using the HV-µEAM technique
on the macro groove edge enables the transition from hydrophilic to hydrophobic for
titanium alloy plates. Figure 8a shows that the contact angle reached 140◦ parallelly and
130◦ perpendicularly after machining the microstructure on the macrostructure at a low
voltage current of 2.0 A. It is due to the presence of the macro-micro composite structure
that a titanium alloy directional hydrophobic surface was prepared, and its directional hy-
drophobic effect is superior to that of the grooves after fluorosilane modification. After the
low surface energy modification on the obtained macro-composite surface, the directional
contact angle was further improved, which reached 154◦ in the parallel direction and 143◦

in the perpendicular direction, as shown in Figure 8b.
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with macro-micro-composite structure.

To explore the wear resistance of the directional hydrophobic surface of the titanium
alloy, friction and wear experiments were carried out. The 600# SiC sandpaper was used,
and the specimen was pushed along the direction parallel to the groove with a uniform
motion at 100 mm intervals under a load of 100 g, reciprocating. The experiments were
conducted in six groups, and the average values were taken. The results obtained for each
contact angle are shown in Figure 9. It can be seen from the experimental results that the
CA in all directions decreases with the increase of friction distance. At the friction distance
of 700 mm, the parallel contact angle and perpendicular contact angle still retained the
directional hydrophobicity. With the increase of friction distance, the difference between
the parallel contact angle and perpendicular contact angle gradually became larger, from
the initial 11◦ to 15◦. The reason is that the macrostructure is more visible. The specimen
was mechanically damaged during sandpaper friction, resulting in a decrease in contact
angle. As the friction distance increases, the contact angle shows a decreasing trend. When
the friction distance reaches 400, the contact angle in the perpendicular direction is 136◦,
and the contact angle in the parallel direction is 150◦. However, the microstructures were
not completely destroyed during the friction process, so the specimens did not immediately
change to hydrophilic surfaces and still exhibited directional hydrophobicity.
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4. Conclusions

We construct macro-micro composite structures on the surface of a titanium alloy by
electrical discharge to realize the directional hydrophobic surface of the titanium alloy.
Analogous to the microstructure of rice leaves, the sub-millimeter structures with an
edge width of 150 µm, groove width of 250 µm, and depth of 250 µm were fabricated
on the titanium alloy by WEDM technology, which realized the fabrication of directional
hydrophobic surface macrostructure. HV-µEAM was used to fabricate micro-scale feature-
size micro-structures on the processed macro-structure edges. The effect of macro-micro
complex structures on directional hydrophobic surfaces was investigated, and the following
conclusions were obtained.

1. The submillimeter grooves with the groove edge width of 150 µm, groove width of
250 µm, and groove depth of 250 µm were fabricated on the surface of titanium alloy
by WEDM technology. The macroscopic structure is the reason for the directional
hydrophobic surface of the titanium alloy.

2. HV-µEAM technology is used to prepare microstructures on the groove edge of the
macrostructure. The influence of micro-scale structure on directional contact angle is
obtained by analyzing the surface morphology characteristics under different low-
voltage electric current conditions. A maximum parallel contact angle of 140◦ and
a perpendicular contact angle of 130◦ was achieved on the surface of the titanium
macro-micro composite structure.

3. After rubbing the directional hydrophobic titanium alloy specimens on sandpaper for
700 mm under a load of 100 g, the parallel contact angle and perpendicular contact
angle still retained the directional hydrophobicity.
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