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Abstract

We define an interface-interaction network (IIN) to capture the specificity and competition between protein-protein
interactions (PPI). This new type of network represents interactions between individual interfaces used in functional protein
binding and thereby contains the detail necessary to describe the competition and cooperation between any pair of
binding partners. Here we establish a general framework for the construction of IINs that merges computational structure-
based interface assignment with careful curation of available literature. To complement limited structural data, the inclusion
of biochemical data is critical for achieving the accuracy and completeness necessary to analyze the specificity and
competition between the protein interactions. Firstly, this procedure provides a means to clarify the information content of
existing data on purported protein interactions and to remove indirect and spurious interactions. Secondly, the IIN we have
constructed here for proteins involved in clathrin-mediated endocytosis (CME) exhibits distinctive topological properties. In
contrast to PPI networks with their global and relatively dense connectivity, the fragmentation of the IIN into distinctive
network modules suggests that different functional pressures act on the evolution of its topology. Large modules in the IIN
are formed by interfaces sharing specificity for certain domain types, such as SH3 domains distributed across different
proteins. The shared and distinct specificity of an interface is necessary for effective negative and positive design of highly
selective binding targets. Lastly, the organization of detailed structural data in a network format allows one to identify
pathways of specific binding interactions and thereby predict effects of mutations at specific surfaces on a protein and of
specific binding inhibitors, as we explore in several examples. Overall, the endocytosis IIN is remarkably complex and rich in
features masked in the coarser PPI, and collects relevant detail of protein association in a readily interpretable format.
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Introduction

Protein-protein interaction (PPI) networks aim to capture the

interactions between proteins that mediate many of their

molecular functions [1–3]. However, with one node per protein

and one edge per binary interaction, PPIs provide only a coarse

rendering of the nuanced molecular level interactions. With

exposed surfaces ranging from tens to hundreds of residues,

proteins may present multiple distinct binding interfaces. Each

interface can mediate binding to a single partner, or to multiple

partners. The cooperative or competitive character of these

interactions tunes protein availability in the cell, the formation

of higher order complexes, and ultimately many important

biological functions. Proteins with multiple binding interfaces

can bring together distinct partners to assemble transient or

permanent complexes. In contrast, multiple distinct partners

competing for a single shared interface may function to connect

disparate functional modules in the cell [4,5], with such

competitive binding having arisen, for instance, as a result of

gene duplication [6,7]. Distinguishing the types of binding

interfaces a protein uses for each interaction partner is a key step

to resolving the cooperativity inherent in functional protein

interactions. Moreover, a protein interaction network with

resolved interfaces helps to connect gene mutations with disease

[8], and to identify possible drug targets, with inhibitors of protein-

protein binding receiving increasing attention [9–12]. In partic-

ular, by targeting interfaces shared in multiple binding interac-

tions, one may be able to shut down entire pathways, whereas

targeting more isolated interactions offers a route for a more

measured intervention. Assigning interfaces to protein interactions

thus has both fundamental and practical relevance.

To refine the coarse protein-protein interaction network and to

capture these important structural and chemical aspects of

interactions [5] requires the identification of the binding domains

or interfaces on each protein. Importantly, one needs to

distinguish on the basis of clear rules between binding partners

that target overlapping or distinct surface regions. By systemati-

cally cataloguing these details it is possible to create not only a map

of shared versus distinct binding interactions [5,13,14], but an

entirely new sub-network of the protein interaction network, as we

do here. A PPI network with interfaces overlaid on the proteins

highlights the number of interfaces each protein uses to mediate

binding and the number of binding partners per interface (see

Figure 1b). An interface-interaction network (IIN) is what one gets

by visualizing the protein interface connectivity as separated from

the underlying PPI network. Unlike in the PPI network
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representation, in the IIN representation distinct patterns of

connectivity between interfaces emerge, and this network topology

can be analyzed to yield insight into the specificity and possible

cooperation and competition of protein interactions.

Although the importance of structural details in protein

interactions has led to increasing efforts to identify protein-binding

interfaces in a systematic way [13,15–18], PPI networks with

interfaces overlaid on them and detailed IINs have not previously

been created. Earlier studies have used protein structures

combined with homology modeling [5], genomic data [19], and

docking algorithms [20–22], to both assign and infer [23] binding

interfaces. While it would be possible to construct an IIN from the

residue level details collected from some structural data [21,23],

both the accuracy and coverage of the network would be limited

by the errors inherent to homology modeling or docking methods,

and by the fact that crystallized protein complexes cover only a

small percentage of known protein-protein interactions [20]. In

particular, using structural homology to infer binding partners

provides important guidance but may overestimate the number of

binding partners because structural homologs reflect evolution but

not necessarily shared functions [24], and small differences in

sequences can separate specific from non-specific binding [25].

Proteins with disordered regions and without structural or domain

information would be absent from the network, thus sampling only

subsets of interaction types within the proteome. The presence of

false positives in the IIN would obscure the diverse patterns that

emerge in the network and distinguish the network structure from

that of the parent PPI. The topology of a network reflects

functional pressures acting to connect nodes in specific ways,

whether the nodes are proteins, interfaces, or airports. One force

shaping the PPI network is the need to transmit information across

diverse functional modules, resulting in a giant connected

component with few unconnected proteins. Differences in the

IIN topology imply different functional and physical forces acting

on the component interfaces.

In order to analyze the specificity, cooperativity, and topological

properties of an IIN one requires both an accurate assessment of

shared and distinct binding interfaces and a dense collection of

protein-protein interactions. Therefore, we here combine both

structure-based computational approaches with literature-curated

biochemical data to build an IIN for the proteins involved in

clathrin-mediated endocytosis (CME) in yeast [26]. CME is a

central pathway for internalizing cargo such as nutrients and

signaling molecules into the cell. Assigning the interfaces

mediating each protein interaction would be severely limited if

we relied on structural data alone, as several of these interactions

Figure 1. Distinct binding interfaces and IIN of yeast actin protein ACT1, and its corresponding PPI network with interfaces
overlaid. (a) Actin surface structure (grey; PDB structure 1YAG) with binding interfaces in van-der-Waals representation and binding partner
interfaces listed in matching colors, indicating the IIN for the actin protein. Residues in interfaces ACT1.0 (cyan), ACT1.1 (blue) and ACT1.2 (magenta)
were determined from crystal structures of complexes (PDB structures 3J0S and 3LUE for ACT1.0 and ACT1.1, and structures 2A3Z, 2A41, 3LUE and
3J0S for ACT1.2). In the absence of structures for the ACT1.3 (yellow) complex, we used the results of genetic studies [61] to highlight surface residues
of actin subunit IV that are both essential for binding to AIP1 and not involved in COF1 binding mediated by the ACT1.2 interface. (b) Sub-network of
protein interactions involving actin-binding proteins of CME with interfaces defined. Colors indicate specific domain types listed in Figure 3.
doi:10.1371/journal.pcbi.1003065.g001

Author Summary

Much of the work inside the cell is carried out by proteins
interacting with other proteins. Each edge in a protein-
protein interaction network reflects these functional
interactions and each node a separate protein, creating a
complex structure that nevertheless follows well-estab-
lished global and local patterns related to robust protein
function. However, this network is not detailed enough to
assess whether a particular protein can bind multiple
interaction partners simultaneously through distinct inter-
faces, or whether the partners targeting a specific interface
share similar structural or chemical properties. By breaking
each protein node into its constituent interface nodes, we
generate and assess such a detailed new network. To
sample protein binding interactions broadly and accurate-
ly beyond those seen in crystal structures, our method
combines computational interface assignment with data
from biochemical studies. Using this approach we are able
to assign interfaces to the majority of known interactions
between proteins involved in the clathrin-mediated
endocytosis pathway in yeast. Analysis of this interface-
interaction network provides novel insights into the
functional specificity of protein interactions, and highlights
elements of cooperativity and competition among the
proteins. By identifying diverse multi-protein complexes,
interface-interaction networks also provide a map for
targeted drug development.

Interface Interaction Network of Proteins
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are mediated by short peptide motifs on disordered regions.

Furthermore, any uncertainty associated with using models of

possible domain interactions is completely bypassed by exploiting

the wealth of established domain and residue information known

from biochemical experiments. Through this process, we are able

to carefully evaluate whether a protein’s interaction partners bind

to the same interface, or to distinct interfaces. Figure 1a illustrates

the results of the interface assignment for the yeast actin protein,

ACT1, and Figure 1b shows the PPI network with interfaces

overlaid for the subset of actin binding proteins. This represen-

tation captures both the ability of actin to bind several proteins

simultaneously through four distinct interfaces, and the competi-

tion between multiple proteins to bind each of these interfaces.

The resolution of this network exceeds in two important ways that

of networks obtained by only defining PPI network edges as

competing. First, because all of actin’s binding partners compete

with at least a few others to bind actin, all PPI edges from actin

would be marked as competing. Therefore it would not be possible

to distinguish which of actin’s binding partners can bind at the

same time. Second, because an edge connects two proteins, a

network with edges marked as competing does not clarify which

protein surface (say, actin’s or its partner’s) is actually shared, as

sharing can occur on one or both proteins.

In addition to collecting detailed data on protein structures, a

particular advantage of our curated approach is to eliminate false

positives from the PPI by creating a coherent and consistent

picture of the protein interactions. We identify the specific

mechanism mediating an observed protein-protein interaction

and determine whether the interaction is direct or indirect. Of

particular concern are indirect interactions, mediated through

intervening proteins, because they are not always distinguishable

from direct interactions in high-throughput affinity purification/

mass spectrometry (AP/MS) [3], protein-fragment complementa-

tion assay (PCA) [27] or, to a lesser extent, yeast two hybrid (Y2H)

experiments [3]. Literature sources also document protein pairs

tested and found to not bind. Therefore, by curating the literature

we do not predict new interactions but we do remove spurious

interactions. We also compile the number and types of experi-

ments used to identify the interfaces in each protein-protein

interaction, as the interfaces can vary from high-resolution

selections of specific residues to low-resolution large regions of

the protein. This compilation provides a starting point for

improving the resolution of the structural interaction.

The CME network constructed and characterized in this way

reveals significant complexity with permanent and dynamic

assemblies of few or many proteins, a mixture of binding modes

with both shared and distinct binding, and both large and small

binding interfaces. This detailed information is necessary for

building models of protein-protein interactions where both

competitive and cooperative binding reactions contribute to

function. The accuracy and coverage of the protein IIN we have

generated allows us to draw generalizable insights about the

structure of the IIN, the overlap of binding interfaces, the

identification of indirect interactions, and the implications towards

the biological functions with the parent PPI. Compiling this

information for more parts of PPI networks will help prune

indirect and spurious interactions, highlight areas of poorly

resolved structural and biochemical characterization, and facilitate

investigation of the physical and evolutionary origins of the IIN

topology and in turn of protein binding.

The aims of the present work are (1) to develop a general

framework for the construction of IINs from a combination of

structural and biochemical data that measure the support of

proposed protein interactions; (2) to characterize the general

network properties of the resulting endocytosis IIN as compared to

PPI networks and randomized networks, and (3) to demonstrate

the applications of the IIN, including as a resource for predicting

response to mutation and to specific binding inhibitors. At the

network level, we examine whether the IIN retains the complex

characteristics of the PPI network, including a high connectivity,

hub structures, local clustering, and a scale-free character

manifested in power-law distributions of the number of binding

partners. We also quantify the fragmentation of the fully

connected parent PPI network into separate interface modules at

the IIN level. We provide several examples for the use of the IIN in

selecting possible drug targets and in predicting the effects of

mutations by identifying specific pathways of communication

between proteins via their interfaces. For the CME proteins we

discuss the central role of SH3 domains and multi-interface

proteins. We emphasize that the process of assigning protein

interfaces has generated not only a useful map of interactions

among these highly-studied proteins but has highlighted the

difficulties associated with trying to make automated assignments,

including overlapping residues and inconsistencies between

sources. Therefore, we discuss the insights derived from our

interface procurement process that are relevant for high-through-

put methods of interface determination.

Results

Construction of curated PPI network
As a first step, we constructed a curated PPI network of 56

proteins involved in CME in yeast [26]. Following the approach

described in Methods, we first combined 337 edges downloaded

from BioGRID [28] via the Saccharomyces Genome Database

(SGD) [29] and 49 additional distinct edges collected from IntAct,

MINT, DIP, and BIND. 177 edges had interfaces assigned to both

proteins in the interaction and nine additional edges were added

from literature evidence. We note that for these 56 proteins, we

observed significant overlap in the interactions reported in each

protein-protein interaction database, as listed in Table 1. Of the

assigned protein-protein interactions, sixteen had two binding

modes, and two had three binding modes, resulting in a total of

206 assigned interface-interface interactions from 186 assigned

protein-protein interactions. We removed 35 edges from the

original network because they were suspected to be indirect,

shown not to bind in further experiments, or they occurred only in

a study of yeast prions, suggesting that the observed binding may

not normally be functional. For 28 interactions identified in

multiple high-throughput studies no evidence from the literature

was found to assign interfaces, and 145 interactions were found

only in one reference without sufficient information to assign an

interface. Nearly all of the 145 unassigned interactions that were

implicated in a single experiment came from high-throughput

studies, and because the proteins in the CME subset form the

connected clathrin coat and actin patch together, many of these

observed interactions could be indirect.

The differing support for the CME protein interactions is

represented visually in Figure 2 and collected along with specific

details of their assignment in tabulated form in Table S1. The

tabulated list contains all the currently known interactions between

these 56 CME proteins and the interface assignment status

effectively ranks them in terms of their reliability. Interactions with

interfaces assigned are further classified in Figure 3 according to

the experimental data used to make the assignment. The blue

edges in the Figure 2 network are unresolved interactions that

have the most evidence (more than one study) supporting their

potential functionality in the cell. The red edges are most likely to

Interface Interaction Network of Proteins
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Table 1. Protein-protein interactions by database.

Database
Number of
interactions

% of interactions in
BioGRID

% of BioGRID in this
database

Number of interactions not in our original
database

IntAct 213 89% 63% 21

MINT 230 87% 68% 22

DIP 205 90% 61% 14

BIND 84 75% 25% 26

BioGRID had 337 interactions between the set of 56 proteins. Of the 5 databases, BioGRID contained the most edges, with high coverage of interactions in the other 4
databases. The interactions missing from BioGRID did not arise due to missed references (except for 3 studies of functional rather than physical associations) but due to
missed interactions in the same references. The other 4 databases contained a total of 69 interactions not present in BioGRID, and 52 not present in our original
database that had been augmented by added edges and through curation of the SH3/PRD and kinase references. Of these 52 interactions, three were removed for
erroneous citations, 20 were found only through functional association, and therefore removed, and the remainder were observed in only a single probe of physical
interactions.
doi:10.1371/journal.pcbi.1003065.t001

Figure 2. PPI network with 56 clathrin associated proteins and the 386 interactions downloaded from BioGRID, IntAct, MINT, DIP,
and BIND. Also shown are the 9 added interactions not found in the PPI databases. Black and green edges had interfaces assigned, with green
edges added to the network using literature data. Blue edges were interactions identified in more than one experiment but lacked sufficient
information to assign interfaces. Orange edges are interactions cited from a single reference and had insufficient evidence to assign an interface. Red
edges were suspected to be indirect or shown in other experiments not to bind. All network figures generated by Cytoscape [62].
doi:10.1371/journal.pcbi.1003065.g002

Interface Interaction Network of Proteins
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be artifacts of the experimental probes of their interaction, on the

basis of evidence listed in Table S1. Of the red ‘false positive’

edges, most were indirectly interacting through a larger complex.

A few had been shown in detailed biochemical characterizations

not to bind to one another.

In Figure 3 we also distinguish the amount and type of evidence

used to support each interface assignment by coloring each edge.

The number of interface interactions assigned directly from crystal

structures is shown in black, and represents a minor fraction of the

total assignments for this network. For blue edges, both interfaces

were resolved using biochemical studies, typically by truncating or

mutating the constituent proteins. We note that although these

binding interactions have been tested in vitro and in some cases in

vivo (thicker blue lines), some of the interfaces encompass large

folded domains rather than specific surface binding residues.

These domains could therefore be segregated further into more

than one interface given additional resolution of the specific

residues involved in each interaction. Green and cyan edges had

one or both interface inferred. For these assignments we relied on

homology to other proteins either through sequence, function or

crystal structure. Alternatively, a lack of competition for binding to

a surface or a lack of any structural or functional homology was

sometimes used to infer distinct vs shared interfaces. Finally, the

yellow edges are speculated to be distinct interfaces due to a lack of

observed similarity to known partners or domains, and as such

have the weakest support.

We determined the degree distributions of both the original and

the curated PPI networks, as a statistical measure of the number of

interaction partners of each node. Upon going from the full

combined-database PPI network (plus the added 9 edges; see

Methods) to the curated PPI network, the decrease in total edges

results in a less dense network in which the average number of

partners per protein dropped significantly from 13.5 to 6.4.

Although large PPI networks typically have degree distributions

characterized as power law or truncated power laws [30,31],

neither the curated PPI nor the combined-database PPI have

degree distributions statistically consistent with a power law

density (Figure 4a). The deviations from a power law could be

due to the small size of the two networks (only 56 proteins) and the

fact that they are all part of a functionally related module. Such

deviations would be exacerbated in the original un-curated

network, where the distribution is more uniform for N,10, by

spurious and likely indirect interactions within the set of proteins

absent in the curated PPI network. Lastly, both of the original and

curated endocytosis PPI networks had high clustering coefficients

(0.56 and 0.46, respectively; see Methods) indicating that proteins

that interacted had partners that were likely to interact with one

another. Not surprisingly, the clustering coefficient of 0.28 in a full

yeast PPI collected from several large-scale studies in yeast [3,27]

is lower, since the CME proteins were specifically chosen to be

part of the same functional module.

Protein interface properties
The majority of proteins in this endocytosis network have

multiple interfaces, with an average number of 3.5 distinct binding

interfaces per protein. The correlation between protein size and the

number of interfaces is quite weak (R = 0.26). One reason for this

weak correlation is that several of these proteins have additional

binding partners outside the CME network module considered

here. Another reason is the size of the interfaces varies broadly, from

just a few residues (for NPF motifs [32]) to hundreds of residues (e.g.,

the clathrin-clathrin leg binding [33]). For example, LAS17 is a

medium sized protein at 633 residues that has the most interfaces

thanks in part to five short proline-rich domains (PRDs) we assigned

Figure 3. PPI network for endocytosis with interfaces assigned and corresponding IIN. a) Each protein (light green square) is shown with
all of its distinct interfaces colored according to domain type. Dark and light pink indicate PRD and SH3 domains, respectively. Dark and light purple
indicate EH domains and NPF motifs. Dark and light blue indicate phosphorylation sites and kinase domains. Clathrin boxes are shown in gray, and
acidic domains in brown. Light green indicates subunit-subunit interfaces defined from a multi-subunit complex, and the rest are colored dark green.
Yellow squares indicate membrane binding domains. The edges are colored according to the experimental evidence supporting the interface
assignments. Black edges are crystal structures, blue edges had both interface domains resolved, generally via protein truncation or mutation, and
thicker blue lines were shown to bind in vivo. Dark green lines had one interface resolved and the other inferred, and for cyan both were inferred.
Yellow lines indicate interactions speculated to be distinct interfaces. Details and references are in Table S1. b) The resulting IIN with interfaces
colored as in 3a.
doi:10.1371/journal.pcbi.1003065.g003
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as distinct interfaces due to their specificity towards different binding

partners [34,35]. The black edges in Figure 3 connect interfaces

determined through crystal structures that therefore are defined by

a subset of non-contiguous residues. Interfaces from biochemical

studies tend to lack single residue resolution but instead span

stretches of residues or complete domains. In the 3D protein

structure, only a fragment of these residues would be expected to

contact binding partners and as such some of these interfaces could

be split or refined further.

Comparison of PPI network and IIN
It is interesting to compare the change in network properties

between the curated PPI network (shown in Figure 3a with

interfaces overlaid) and its IIN (Figure 3b). In general, a PPI

network and its IIN should have equal numbers of edges, but it is

possible for an IIN to have more edges if a pair of interacting

proteins has multiple modes of binding to one another. Proteins

that act as alternating subunits in a symmetric complex, for

example, will contact two copies of the same partner through

distinct interfaces. The CME IIN contains several instances of

multiple binding modes, resulting in an increase in edges from the

PPI. Such distinct modes for the same two proteins to bind one

another can act as a regulatory mechanism controlling the

accessibility of surfaces on the protein, or as sources of extra

stability to the protein-protein interaction. For example, the

protein CRN1 contains two distinct actin-binding domains that

bind separate regions on the actin surface and are modulated by

the nucleotide bound state of actin. Through these multiple

binding modes, CRN1 can have opposite roles in either inhibiting

or activating the severing of actin filaments [36]. In another

example, the SH3 domain of LSB3 binds three distinct PRDS on

LAS17. The PRDS on LAS17 follow one after another and the

flexibility to bind any one of them to the SH3 domain of LSB3

could help stabilize the binding interaction at different geometries

as part of the higher-order actin patch assembly.

The IIN contains more nodes than the PPI, with each node now

representing a distinct interface rather than a protein. In general,

one would expect such an increase because proteins are known to

have evolved multiple domains or interfaces to bind specific

partners. The increase in nodes is much greater than the increase

in edges from the PPI to the IIN, and therefore the IIN is

substantially less densely connected than the PPI, with the average

degree dropping from 6.4 to 2.06. In this now sparsely connected

network, the clustering coefficient has dropped from 0.46 in the

PPI to zero in the IIN. To quantify the significance of this result

we generated randomized versions of the IIN that maintain the

same number of nodes and the same degree distribution. We find

that the randomized networks have distinctly higher clustering

coefficients than the IIN (Table 2), suggesting that the structure of

the IIN has evolved against having interfaces that bind to one

another sharing the same partners. This is in contrast to the PPI

network, where the relatively large clustering coefficient reflects

Figure 4. Degree distribution for the endocytosis network. a) Endocytosis PPI network. Blue data are for the full interaction network
downloaded from the BioGrid, IntAct, MINT, DIP, and BIND databases, before curating the interfaces. The red data are for the protein-protein
interaction network with interfaces assigned (Figure 2b). For the curated PPI, a power-law distribution was best fit with kmin = 4 and c= 2.37 (black
dashed line), but the resulting p-value is less than 0.05, implying that the hypothesis of a power law density for the data is not accurate. The full
database PPI can only be fit with kmin = 11, leaving only about half the data points. b). Endocytosis IIN. A power law (solid line) best fits this data with
a kmin = 2 and c= 2.47, giving a p-value of 0.26 that implies good consistency with a power-law density.
doi:10.1371/journal.pcbi.1003065.g004

Table 2. Local IIN structural properties.

Randomized Observed

Clocal 0.0160.006 0 (p = 0.008)

Cglobal 0.02560.01 0 (p = 0.008)

4-node hubs 0.4360.02 0.56 (p,0.0008)

4-node chains 0.5460.02 0.37 (p,0.0008)

4-node squares 0.002860.001 0.061 (p,0.0008)

The clustering coefficients and the percentages of 4-node motifs present in the
observed CME IIN are compared with 1200 randomized versions of the network
that preserve the same degree distribution. The values in parentheses are the p-
values for the hypothesis that the CME IIN is similar to randomized networks
with the same global properties. The low p-values indicate that the CME IIN is
quite distinct from the randomized networks and unique in its local structure.
doi:10.1371/journal.pcbi.1003065.t002
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the likelihood that two proteins that interact with one another

share interaction partners.

To further quantify the significance of the local structural

elements in the IIN, we evaluate the relative abundance of all 6

different types of 4-node motifs in the network. As shown in

Table 2, their abundance in the IIN differs significantly from

randomized networks. In particular, 4-node hubs with one shared

interface binding to four non-shared interfaces are abundant in the

actual IIN, and 4-node chains with four shared interfaces forming

a linear chain of interactions are suppressed. The low abundance

of these motifs is expected from network specificity optimization

[37]. Interestingly, 4-node squares formed by four shared

interfaces binding as in A1-B1, B1-A2, A2-B2, B2-A1 are also

enriched in the IIN, forming a motif that has high specificity and

can arise from gene duplication. Collectively these abundance

shifts suggest that the local structure of the IIN is not random but

reflects distinct evolutionary mechanisms acting on its topology.

Moving to the global properties of the IIN, we find that the

distribution of binding partners per interface follows a power law

quite well, with most interfaces having only a single binding

partner (Figure 4b). The degree distribution of the IIN is

constrained by the parent PPI degree distribution but not fully

determined by it, as a PPI can theoretically give rise to many IINs

with distinct numbers of nodes and connectivity (but each IIN

uniquely defines its parent PPI). Hence a power-law distribution of

the number of partners per interface is not a trivial outcome of

having a power-law distribution of the number of partners per

protein. We do expect that the number of nodes in the IIN will

increase relative to the PPI and therefore the number of partners

per node will be split between more nodes (assuming the number

of edges stays about the same). How exactly the degree distribution

changes from PPI to IIN then depends on whether it is mostly the

highly connected hub proteins that are split about equally between

multiple interfaces, or whether some interfaces retain large

portions of binding partners and several single partner interfaces

are created. In the CME network, the maximally connected node

in the PPI (actin) is split between interfaces, but not evenly, such

that one interface retains the majority (16) of the 23 binding

partners. Overall, the IIN contains a significant number of highly

connected nodes, just as in the PPI. The biggest change in the

degree distribution from the PPI to the IIN was the formation of

many single-partner interfaces in the IIN, whereas a protein in the

PPI was more likely to have at least 3 partners. We discuss further

below whether these trends might be conserved in other IINs.

Another distinguishing feature of the IIN is its fragmentation

into modules, unlike the densely connected PPI. Compared to

randomized networks, the CME IIN has a diverse distribution of

module sizes, with many small fragments, whereas randomized

networks all have a single giant connected component alongside

many small fragments (Figure 5). In fact, the number of interfaces

in each CME fragment again appears to follow a power law

distribution with an exponent of about 22 (Figure 5). As a result,

isolated small modules dominate, but larger connected networks

even at the interface level are not uncommon. One must keep in

mind, though, that here we focus on only a limited, functionally

defined module. In future studies, it will thus be interesting to

examine other IINs resolved at the same level of detail.

IIN modules and interface clustering
The modules in the IIN start to show clustering of interfaces

with shared properties, although to varying degrees. In Figures 3a

and 3b, we colored the interfaces according to specific domain

types that are repeated in the network: PRDs and SH3 domains;

EH domains and NPF motifs; phosphorylation sites and kinase

domains; clathrin boxes; acidic domains; and subunit-subunit

interfaces. As seen in Figure 3a, at the PPI level these interface

types are mixed (i.e., distributed across different proteins); by

contrast, we find them to be clustered into separate IIN modules.

In randomized networks such clustering is not observed. This

clustering of interface types reflects the need for binding interfaces

to maintain high specificity towards their complementary binding

partners and against binding towards unrelated interface sequenc-

es [37]. We note that our choice of defining all phosphorylation

sites as distinct interfaces places them all in the same module (see

Methods), whereas an alternative definition (for example, treating

any phosphorylated residues overlapping with other interfaces as

forming shared interfaces) would distribute some of them

throughout the network. By contrast, the actin ACT1.2 interface

is part of a large module with significant heterogeneity in domain

types, as discussed further below. Because these binding interfaces

do not all contact the same residues of the ACT1.2 interface, they

do not all classify according to a single domain type. The

convergence of these distinct partners to bind a single protein

surface seems more likely a result of functional selection rather

than duplication and divergence [38].

Discussion

IIN topology
The IIN shares some of the scale-free characteristics of PPI

networks [30], yet differs markedly in a number of network

topological properties, including a lower average degree of the IIN

and a more fragmented structure. While strictly applying only to

the CME IIN, we expect many of these results to be conserved in

IINs derived from larger PPI networks. First, the comparison of

Figure 5. Cumulative distribution of module size m in the IIN.
The module size is the number of interfaces in a connected fragment of
the IIN. The cumulative distribution is shown rather than the probability
distribution because of the small sample size. For a power law
probability, p(m),1/mc, the cumulative distribution P(m),1/mc21 must
also be a power law with an exponent c21. The best power-law fit to
the probability distribution is for mmin = 3 and c= 1.94, giving a p-value
of 0.21 (red line). The black squares are the distribution for a set of
networks that have the same size and degree distribution of the CME
IIN, but with randomly reconnected edges. The randomized networks
separate into one large component and a few small ones, with a gap
between ,10 and 100, in contrast to the modular structure of the CME
IIN.
doi:10.1371/journal.pcbi.1003065.g005
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the IIN structure with randomized networks suggests evolutionary

pressure acting on the IIN to prevent both giant connected

components and a high clustering coefficient (where two

interacting interfaces have the same partners). Second, interfaces

that have only a single partner should be robustly conserved even

for larger networks because they frequently mediate inter-subunit

contacts (see light green nodes in Figure 3), and can evolve to high

specificity [37]. A noticeable increase in singly connected nodes

when transitioning from PPI to IIN would contribute to a steep

power law-type degree distribution as a general trend. If a few hub

interfaces and many single interfaces were maintained in other

IINs, their degree distributions would resemble power laws. The

degree distribution of interface partners is noteworthy because

power-law distributions indicate networks robust against attacks

on specific nodes [39], as would occur from mutations to specific

binding surfaces or targeting by binding inhibitors.

In a separate study, we will pursue the hypothesis that the

structure of the IIN evolved to minimize nonspecific binding, and

that therefore the network features of the IIN encode important

physical and biological functions of the proteins. Since minimiza-

tion of nonspecific binding is a physical pressure common to all

proteins [37,40], we would predict that these topological features

would then be conserved in all IINs, not just for CME proteins.

CME Biology
A number of distinct patterns emerge in the CME IIN. From

the degree distribution of the IIN, we can contrast the properties of

single interfaces from hub interfaces. More than a quarter of the

single partner interfaces come from interfaces between subunits of

a multi-subunit complex like ARP2/3 [41]. Dimerization inter-

faces also tend to be single partner interfaces. The most highly

connected interfaces, or hub interfaces, are a surface on the actin

protein with 16 partners, and several SH3 domains. The actin

surface is distinct from the SH3 domains in that its binding

partners do not all conform to the same binding type. The binding

interface ACT1.2 is a relatively large and flat region spanning

parts of subunits I, II and III of actin (Figure 1a), where not all

binding partners use the same set of residues to stabilize their

interactions, but the overlap is still significant. While it is certainly

possible that with additional residue information this interface

could be refined and split into more than one binding site, the

extensive sharing of the ACT1.2 interface is consistent with earlier

studies that found flat interfaces to provide a better platform for

binding a large variety of partners [42], as geometrical packing

need not be as optimized. Furthermore, we note that the

nucleotide binding state of actin strongly tunes the affinity for its

distinct partners.

The IIN overlaid on the PPI reinforces that many of these

endocytic proteins are able to bind multiple partners simulta-

neously because of the number of distinct interfaces. This directly

observable insight would be lost if one only categorized protein-

protein interactions (i.e., edges in the PPI) as either competing or

not, since many proteins have multiple shared interfaces. The

interface assignments also highlight redundancy in the network,

where the recruitment of a particular protein during the endocytic

pathway could happen via multiple mechanisms, as many of the

proteins are chimeras of the most frequently represented domains

[43] in this network. Of the endocytic proteins, 16% contain SH3

domains, whereas in the entire yeast proteome ,1% of proteins

contain SH3 domains.

The designation of distinct domains on each protein allows one

to contrast the specific structural elements present in these CME

proteins versus CME proteins in other organisms. Much of the

CME pathway between yeast and mammals is conserved.

However, a major distinction is that CME in yeast requires the

actin network to initiate the membrane invagination [44], whereas

in mammals the actin network is engaged only in some cases in the

later stages of vesicle budding [45]. It is interesting to note that of

the 9 CME proteins in yeast without functional homologs in

mammals [26], all but one (PAL1) engage in SH3 or PRD

interactions (LSB3, LSB4, LSB5, BBC1, AIM21, BSP1, AIM3,

APP1). This finding is statistically significant, having only a

,0.15% probability to occur by chance (as determined by the

probability of choosing at random 8 or more proteins out of 9 that

have SH3 or PRD interactions, with 22 candidates among the 56

proteins of the CME network). The SH3 domains in the CME

network recruit proteins throughout the progression of the vesicle

budding process after the initial clathrin coat assembly [35]. The

abundance of SH3 domains in yeast CME proteins likely reflects

the central role of their interactions in connecting the growing

clathrin coated pit to the actin cytoskeletal network of yeast.

Distinguishing interface domains in each protein also enables

direct visual identification of multi-interface proteins that act to

bring together multiple proteins with different functions, which

again is not possible if one only marks edges in the PPI as

competing. Both PAN1 and SLA1 have many interfaces that can

connect simultaneously to both the scaffolding proteins of the

clathrin pit formation (through PAN1’s EH domain [32] and

SLA1’s clathrin box [46]), and to the actin polymerization proteins

via PRDs, SH3 domains, and acidic domains. LAS17, on the other

hand, does not connect directly to the scaffold proteins of clathrin

pit formation but rather has distinct interfaces to bind both SH3

proteins and the ARP2/3 complex. While the role of LAS17 is not

fully understood [26] and appears to involve both activation and

inhibition of actin branching [47], the designated interface-

interface pairs provide a basis for grouping the many functions

of this protein along with distinct CME proteins according to

domain types (including PRDs, acidic domains, the C-helix and

WH2 domains). Lastly, some multi-interface proteins in the

network, such as Arc15 and Arc19, contain only subunit-subunit

interface domains, indicating that they function as structural

components of a multi-subunit complex.

Designing selective drug targets and preventing cross-
reactivity

Designing any ligand, and in particular a drug molecule, to bind

exclusively to its intended target without cross-reactivity requires

not only positive selection for the specific target but also negative

selection against related targets [37]. The clustering of interfaces in

modules in the IIN provides a tool for predicting which binding

partners of an interface are the most selective for its surface and do

not bind to related domains. For example, both RVS167.2 and the

SH3 domain of YSC84/LSB4 (YSC84.1) bind several of the same

PRDs. Obtaining target specificity for only one of those interface

sites benefits from knowing which PRDs are specific to only one of

these interfaces. The interfaces VRP1.0, BSP1.3, and ABP1.1 that

bind RVS167 but not YSC84, and ABP1.5, LAS17.6 and

AIM21.0 that bind YSC84 but not RVS167, could be used as

templates for targeting only one of the two SH3 domains.

Predicting response to mutations and pathway
inhibition/activation

Collectively, the information on interface connectivity and

protein connectivity combined in a network format provides

important guidance for the selective inhibition or activation of

specific pathways, for drug targeting, and for predicting response

to surface mutations. The PPI network is essential for identifying
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which proteins interact in a functional pathway, but the details of

the IIN allow one to isolate specific binding sites while conserving

the functionality of other sites. The IIN also allows one to predict

how drugs designed as roadblocks along a certain pathway could

be bypassed by alternate available interface interactions.

For example, one might expect that inhibiting or mutating ‘hub’

interfaces, much like knocking out ‘hub’ proteins, would induce a

more severe phenotype. RVS167.2 is found to interact with 12

PRD interfaces as part of the PRD-SH3 IIN sub-network in the

top right of Figure 3b. These interactions are not immediately

apparent in the PPI network, lacking interface resolution. While

early studies [34,48,49] already pointed to the prevalence of these

interactions, their functional importance and temporal recruit-

ment in endocytosis is emerging only now [35,50,51]. Mutations of

the SH3 domain of RVS167 that leave its membrane shaping

BAR domain intact still significantly alter the endocytic phenotype

[50]. A substantial phenotypic response to such a localized

mutation would be anticipated from the IIN because removing

that particular node removes multiple edges. However, the

fragmented and clustered structure of the IIN also provides a

more detailed perspective on the response to deleting this node.

Although targeting the SH3 domain of RVS167 would inhibit 12

RVS167 binding interactions, one can see in the IIN that most of

those interface partners can also bind to alternate SH3 domain

containing proteins and all of the interface partners are on proteins

with a PRD that can bind an alternate SH3 domain. These

alternate pathways may help explain why mutations of the SH3

domain of RVS167 do not eliminate endocytic function in yeast

[50].

Missing components from predicted mutational
responses

The inhibition of particular binding sites would have unexpect-

ed results if there were nodes or edges missing from the network.

For example, truncation of the clathrin N-terminal domain

(CHC1.1 in Figure 3b) was accurately predicted to cause a severe

endocytic phenotype by preventing recruitment of clathrin to the

membrane. However, when the known binding sites on the N-

terminal domain were mutated, the expected result was not

observed, and this led to the identification of duplicate binding

sites in the N-terminal domain [52]. We do note that the CME

IIN overlaid on the PPI proposes another mechanism for

recruitment of clathrin to the membrane via binding of the

clathrin light chain (CLC1) to SLA2, which can then bind the

membrane or other membrane bound proteins. This interaction

may be too weak to recruit clathrin on its own, or SLA2 may be

too small to bridge the large separation from the clathrin light

chain to the membrane.

Cooperative binding and opposing mutations
The IIN also indicates sets of opposing or reciprocal mutations,

or truncations that should result in the same phenotypic response.

The prediction of the identical responses assumes that the binding

partners of the targeted interface act independently of other

binding partners. The extent to which these assumptions are

violated could suggest allostery or cooperativity between the

affected partners. Identifying interfaces for reciprocal mutations

could then offer a tool for testing cooperativity or dependence

between binding interactions or for identifying missing interfaces.

In the clathrin CHC1.1 interface example given above, the IIN

would predict a reciprocal mutation to all five clathrin boxes to

give the same phenotype as the removal of the CHC1.1 interface.

If, instead, clathrin were still recruited to the membrane, then one

expects other clathrin N-terminal binding sites to be missing from

the network.

In another module, the EH domains are shown with their NPF

motif binding partners. Based on the specificity of these interfaces for

one another only in the IIN, one would expect that mutations to either

the NPF motifs (including all copies) or to the EH domains (including

all copies) would generate the same phenotype. The extent to which

they do not match would first indicate possible missing nodes from the

network. Alternatively, the result could indicate that one of these

domains acts cooperatively with another domain to affect the global

behavior of the protein, not just this specific interaction.

In terms of the anticipated biological response to mutation of

either the EH domain or the NPF motifs (assuming independence),

this interaction helps stabilize a scaffold of proteins at the membrane

that recruits the clathrin trimer. From the IIN combined with the

PPI, cutting these edges out of the network would not prevent any of

the proteins from connecting to the membrane or the early coat

module, as PAN1 could still connect via SLA2 and EDE1 via SYP1.

Clathrin and actin would still be recruited normally. What this

mutation should affect is crosslinking between these proteins and

therefore clustering of these proteins in one place on the membrane.

If crosslinking and clustering of proteins is necessary for efficient

coat formation then eliminating these interactions could decrease or

slow down clathrin-pit formation.

Challenges in IIN construction
As one of the main challenges in IIN construction, there is more

than one way to define whether a binding interface on a protein is

shared between multiple binding partners or is completely distinct.

The two main criteria we use to characterize shared and distinct

interfaces are (1) if the same residues are present in both interfaces, (2)

if the binding of one protein partner would interfere with the binding

of another partner due to structural overlap or allosteric effects. Both

criteria are important to the function of the proteins in the cell.

Concerning the first criterion, the sequence makeup of the interface is

central to achieving binding specificity, as even proteins with the same

domain structures do not necessarily share the same partners [35].

Furthermore, the residues involved in a binding interaction are not

only important for binding to their specific partner but also for

avoiding the formation of nonfunctional interactions with the other

proteins in the cell [37]. This negative selection on an interface can

contribute to optimizing the specificity and strength of functional

binding interactions [25]. Concerning the second criterion, deter-

mining whether two potential binding partners can both bind at the

same time to form a trimer is important for modeling the dynamics of

protein association, as competition for binding partners will affect

concentrations of available protein. The same is true if a protein has

repeated copies of the same domain and can therefore bind multiple

copies of the same binding partner. However, it may not always be

possible to assign distinct interfaces that meet both criteria of

sequence specificity without any steric obstruction and therefore in

this work we consistently emphasize residue detail where the

information is available. Otherwise we did use competition for

binding partners as grounds for defining shared versus distinct

interfaces. In future work it would be valuable to annotate both the

residues involved in each interface as well as whether each pair of

distinct interfaces on a protein can bind their partners simultaneously.

Lessons for high-throughput interface assignment
The procedure of manually assigning interfaces has also

highlighted some important issues for consideration in computer-

ized interface assignment. For one, residue overlap does not

necessarily mean that proteins compete for binding to the protein,

as demonstrated by multi-subunit complex formation (Table 3).
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None of the interface interactions within the complex would be

considered shared because they are all bound together at the same

time. The majority of interfaces do not overlap, but ,30% of the

bound partners share one or more residues in their interactions.

Most commonly the overlap was only one or two residues, and the

corresponding percentage of the interface varied substantially

depending on the size of the protein. Thus it seems reasonable to

allow 1–2 residues of overlap before defining interfaces as shared.

This policy is also consistent with the assignment of different

domains as distinct interfaces, even though the 3D structure of the

protein might produce some residue overlap between two distinct

domains. We note that here we did not use a strict cutoff in our

assignments because through manual curation we treated each

interaction on a case-by-case basis, merging residue level detail

with experimental data on simultaneous binding partners.

For attempts at homology modeling or docking, it would first be

useful to assess how reliable a purported interaction might be.

Particularly in the case of interactions involving subunits of multi-

protein complexes, many of the interactions are actually indirect.

Arp2, for instance, has relatively high homology to actin and

shares several binding partners; however, Arp2 acts as part of a

multi-subunit complex and binds to these shared partners (such as

LAS17) in distinct ways. Also, higher thresholds for sequence

similarity could be warranted in particular cases, such as SH3

domains, where small variations in sequence distinguish specific

from nonspecific partners [25].

One of the major distinctions between the procedure used here

and current automated methods is the inclusion of detailed

information on binding interfaces between proteins from bio-

chemical studies, not just from high-resolution protein structures.

This information preempts or complements the use of homology

or docking models of protein interactions. Unfortunately, the

domain or interface details from these studies is not collected in a

convenient database, whether it is the specific residues that

comprise the interface or more general information on inhibition

or competition between binding partners. There are also

ambiguities and inconsistencies in existing data that are difficult

to resolve without combining multiple literature resources in a

coherent analysis. Nevertheless, mining these data would provide a

valuable resource for generating more complete networks of

interface-interface interactions.

Methods

Defining the PPI
Our protein list is composed of 56 proteins that were selected

because they all participate in the yeast clathrin-mediated

endocytosis pathway and have been identified as central compo-

nents [26]. We downloaded the physical interaction partners of the

56 proteins of the endocytic functional module in yeast via the

Saccharomyces Genome Database (SGD) [29] interaction list

compiled from BioGRID [28] and directly from the IntAct,

MINT, DIP, and BIND protein interaction databases. We kept

only the interactions between the subset of 56 proteins to define

the initial set of experimentally determined protein-protein

interactions. We disregarded genetic interactions, as they do not

imply that the proteins directly interact with one another, but

rather that their expression or phenotype is correlated. The

overlap in databases was quite large for these proteins, with

BioGRID containing the largest number of interactions and

missing interactions coming not from missed references but from

missed interactions within the same references.

Data collection procedure
Given a PPI network, the first step in assigning the binding

interfaces was collecting information on the particular proteins

from the SGD [29]. The SGD combines information from various

databases on each yeast gene. The major data sources we used

were the list of referenced physical interactions loaded from the

various PPI databases and the available PDB structures. The

protein tab also provides a useful guide to the size, sequence,

domain structure, and function of each protein.

Data collection: Crystal structures
Crystal structures of complexes were available for a few of the

protein interactions, including the ARP2/3 complex and several

actin binding interactions (shown as black edges in Figure 3). We

ensured that we matched the numbered PDB residues (which

sometimes started at zero arbitrarily) to the correct sequence

region on the protein of interest. For protein homologs from

species other than yeast, the sequence alignment is also provided

for positioning the interface on the yeast protein of interest.

Compared across species, actin has high (87%) sequence

homology and structures from other species were simply used as

proxies for the expected interaction in yeast. To assign residues

involved in the protein interfaces from a PDB complex we used a

4-Å cutoff between non-hydrogen atoms and required that at least

3 residues contacted one another in each interface. Cofactors such

as metal ions and water molecules were not considered in assigning

whether two proteins interacted or which residues formed the

interfaces. Some of the protein structures had multiple missing

residues for crystallization purposes, such that the assigned

interface may be smaller than in the complete protein. By using

the PDB structures we eliminate all indirect interactions that are

often assigned to protein subunits of a large complex in high-

throughput AP/MS and PCA. We did not use any predicted

Table 3. Multi-protein complexes and interface residue overlap.

0 residues overlapping 1 residue overlapping .1 residue overlapping

Proteasome subunits (1RYP.pdb) 4A cutoff 62% 21% 17%

Proteasome subunits 3.5A cutoff 82% 12% 6%

Arp2/3 subunits (1K8K.pdb)4A cutoff 54% 17% 29%

Arp2/3 subunits 3.5A cutoff 68% 16% 16%

The subunits of multi-protein complexes bind together simultaneously and therefore these subunit proteins are not competing to bind to the same interface. For each
subunit S in the complex, we test all pairs of its binding partners for sharing binding residues on the surface of S. Each binding pair then has n = 0, 1, 2 etc. overlapping
residues. Whereas most binding pairs do not share interface residues, clearly there is some overlap. If one accounts for specific atoms in an interface rather than
residues, the overlap decreases but is still present. For the proteasome, there are still 22% and 7% of interface pairs that share atoms (at 4 Å and 3.5 Å cutoffs,
respectively).
doi:10.1371/journal.pcbi.1003065.t003
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models of protein complexes [23] because direct information was

generally available through literature studies and because protein

homologs (e.g., Arp2 and actin) do not always share the same set of

binding interactions.

Data collection: Biochemical data
In most cases, crystal structures were not available and instead the

literature references from the PPI databases were used to assign

interfaces. Binding to proteins outside the endocytic network, as listed

in the SGD, was ignored. Nearly all of the edges to which we assigned

interfaces were implicated as binding in more than one experiment.

We have collected all the justifications for each assignment into a

spreadsheet with references (see Table S1), categorized the support

for each interface assignment with edge colors in Figure 3, and below

we describe additional criteria we used to define the interfaces for the

specific cases of kinase binding and SH3 domains binding to PRDs.

Data collection: SH3-PRD interactions
Several of the endocytic proteins have SH3 domains (BZZ1,

ABP1, LSB3, LSB4, RVS167, BBC1, MYO3, MYO5, and SLA1)

and PRDs to which SH3 domains bind (VRP1, LAS17, MYO5,

APP1, AIM21, AIM3, SCD5, BBC1, ABP1, ARK1, PRK1,

INP52, SCP1, BSP1, SLA1, SYP1, GTS1). We took advantage of

several large-scale studies [34,35,48] focused on identifying which

PRDs bind to which SH3 domains by compiling all interactions

noted for our 56 proteins (including those interactions missing

from the PPI databases). Tonikian et al. [35] provide the most

recent and comprehensive study to identify PRDs by combining

data from three independent experiments. We assigned the PRD

and SH3 interfaces if the interactions were observed by Tonikian

et al. and at least one other experimental study. As one exception

to this criterion, if there is only one supporting experiment, yet that

experiment found a different PRD site, then the interface was left

unassigned. Lastly, if more than two references reported binding

and the PRDs were different, the two PRDs were combined into

one binding site. Binding multiple PRDs on the same protein has

been experimentally demonstrated [34], but Tonikian et al. only

report the most likely PRD, so this does not rule out additional

PRDs. We merged the two SH3 domains of BZZ1 to improve the

consensus of their binding partner interfaces but kept the two SH3

domains of SLA1 separate. We separated the multiple PRDs of

LAS17 into distinct binding sites as multiple lines of evidence

implicated specific binding partners for specific regions. These

details are collected in Table S1, under tabs 2 and 3.

Data collection: Phosphorylation
The endocytic protein subset contains three kinases (ARK1,

PRK1, AKL1) and similar to the SH3 domains, the specificity of

kinases for their phosphorylation targets has also been studied at

large scale [53,54]. We here again compiled the interactions from

Breitkreutz [53], Mok [55], and Ptacek [54] and their collabora-

tors (again including some interactions missing from the PPI

databases), and assigned the interactions if the binding was

reported in at least two references. Because most of the targets in

Mok et. al. [55] were predicted but not verified, we included these

sites as references only if they were also experimentally tested or

observed in previous mass spectrometry experiments. These details

are collected in Table S1, under tab 4.

Data collection: Unassigned and removed edges
In some cases the data implicating two proteins as interacting only

came from high-throughput studies and these interactions were

generally unassigned. Others came from a literature source that did

not isolate binding interfaces, with no additional evidence available

from homologs or functionally related proteins. Edges that were

identified between the ARP2/3 complex subunits and other proteins

were considered indirect if PDB structures or biochemical evidence

implicated a specific subunit in the direct interaction. For a few

interactions, evidence from the literature suggested that such proteins

did not bind directly to one another upon further investigation, and as

a result these edges were removed. We note these in the interaction

table. For example, we were unable to find any evidence for the protein

RVS161 forming direct physical interactions with any proteins other

than RVS167. Furthermore, there was some biochemical evidence

suggesting that proposed edge interactions were mediated via RVS167

rather than directly through RVS161 [56], as they operate as an

obligate dimer.

Data collection: Adding edges
We added 9 new edges to the network to account for literature

studies providing evidence for the binding interactions. These were

largely actin related interactions that lacked references in the PPI

databases but have been well established as functionally important

binding partners of actin. One was an SH3-PRD interactions defined

in two separate publications that were missing from the database.

Data collection: Membrane binding activity
Several of these proteins have domains known to bind at the

membrane that are important to their function in endocytosis.

Therefore we pointed these out on the protein-interface interac-

tion network in Figure 3a to facilitate the prediction of functional

responses to mutation.

Distinguishing unique interfaces: Residue level
description

As the first criterion to assign an interface, we used the residues

involved in the binding, if available. Specific residues were available

from PDB structures and for several peptide motifs like PRDs [34,35]

and clathrin boxes [32,46,57]. If two partners of a protein bind to an

interface using some overlapping residues we did not automatically

classify the interface as shared. There are two reasons for this

decision, the main one being that sharing one or a few residues does

not mean those two proteins cannot bind simultaneously. To

demonstrate this point we calculated the percent of distinct interface

pairs within a multi-subunit protein complex that had overlapping

residues. For each of the complexes we considered, there are some

pairs of interfaces that have one or more residues in common

(Table 3). Even if the interfaces are defined at the atomic rather than

residue level, there is still a fraction of atoms within the cutoff distance

of both binding partners. The second main reason is that even if the

binding partners cannot bind simultaneously, the specificity and

stability of their interactions may be mediated through chemically

distinct binding sequences. For example, we chose to treat a kinase’s

phosphorylation binding site as distinct from other protein binders

that may interact with the phosphorylated residue because of their

distinct binding modes. However, if the residue overlap is substantial,

as is the case for many proteins that bind to actin in similar but not

identical ways, then the interface is considered shared.

Distinguishing unique interfaces: Domain level
description

When the specific residues of the folded protein interfaces were

not available, the next description of the interface was the domain

structure represented by sequential sequence residues (e.g., the

SH3 domain contained in residues 1–51). These domains were

generally identified in biochemical studies and the sizes of the
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domains varied from a few residues (e.g., clathrin boxes) to

hundreds of residues (e.g., coiled-coil domains). In some cases the

assigned interfaces may not represent a known domain but they

are designated as unique interfaces because they do not overlap

with any of the protein’s other binding partners. Lastly, if residue

level detail is not available, then the fact that two binding partners

are competing with one another is used as justification for listing

the interface as shared.

Shared versus distinct interface summary
To summarize, we did not use a strict cutoff of overlapping

residue numbers for defining shared versus distinct interfaces. All

subunits of a multi-subunit complex were assigned distinct

interfaces for these inter-subunit contacts because they could

clearly bind simultaneously. This is despite the fact that pairs of

proteins could have as many as 10 overlapping residues if a long

disordered region of a protein sat at the seam of an interaction

between two other proteins. For most biochemical studies,

stretches of residues were identified and shared interfaces were

assigned when proteins bound to overlapping stretches of residues

and there was no evidence that they could bind simultaneously.

For the distinct surfaces in actin, there was in some cases overlap

between residues, but there was also evidence that the proteins

could bind simultaneously. For example, several actin binding

proteins bind to the actin filaments, and therefore they can bind

simultaneously with the actin-actin binding interactions, despite

overlapping with some residues.

Matrix representation of interface interactions
In representations simpler than the IIN, edges in the PPI

network have been marked as shared. To extend the representa-

tion to full interface assignments, one must keep track of possible

overlap in all pairs of binding interactions for each protein. Given

a protein that has k binding partners, there are k(k21)/2 possible

pairs of partners sharing an interface. To keep track of the

interface assignments, each protein had its own file with a k-by-k

matrix indicating the overlap between the k binding partners

(Table 4). The diagonal entries are null and the off-diagonal

entries of the symmetric matrix are 0 if the two partners use

separate interfaces and 1 if the two partners use the same interface.

Some protein-protein interactions are controlled by more than one

set of interfaces and would require an additional entry into the

matrix. The binding interfaces from each protein can then be

consolidated into a network representing a connected set of

interface interactions. We note that in a matrix representation it is

possible to define a case where one interface overlaps with two

others that do not overlap with each other, and this detail cannot

be captured in a simple interface network picture. This would be

the case, e.g., if two proteins A and B bind to two distinct parts of a

protein X and the third protein C binds across those two complete

interfaces on protein X. However, this issue can easily be fixed by

splitting protein C’s interface into two interfaces to bind the two

parts of protein X. For example, this splitting was done for

LAS17’s CA region that binds to ARP3 through both its C

interface and its separate A interface [47].

Network properties
We evaluated clustering coefficients of our networks using the

expression [58]

C~
1

N

XN

i~1

Nclosed (i) � 2

k(i)(k(i){1)

where Nclosed(i) counts how many distinct pairs of the k(i) partners

of interface i have an edge between them to form closed triangles

with node i. Self-loops were ignored in this calculation. We also

use a global clustering coefficient Cglobal as the number of distinct

closed triangles Ntriangle in the network divided by the total

number of distinct triplets,

Cglobal~
3Ntriangle

Nopenz3Ntriangle

,

with Nopen the number of open triplets.

We computed degree distributions, p(k), where k counts the

number of partners per node (either protein or interface), and p(k) is

the probability for finding a node in the network with that degree.

For the degree distribution, we note that we treated self-loops as a

single partner, rather than the standard method of treating a self-

loop as counting as degree of 2, so that the degree would reflect the

physical number of binding partners per protein (or interface).

Table 4. File storage of interface overlap for the subunit ARC40.

ARC19 ARC15 ACT1 LAS17 MYO5 MYO3 PAN1 CRN1

ARC19 _ 0 0 0 0 0 0 0

ARC15 0 _ 0 0 0 0 0 0

ACT1 0 0 _ 1 1 1 1 1

LAS17 0 0 1 _ 1 1 1 1

MYO5 0 0 1 1 _ 1 1 1

MYO3 0 0 1 1 1 _ 1 1

PAN1 0 0 1 1 1 1 - 1

CRN1 0 0 1 1 1 1 1 -

In this 868 matrix, each row/column represent an interface for binding of ARC40 to each of its 8 partners. Overlapping and non-overlapping interfaces are indicated by
1 and 0, respectively. Diagonal entries are ignored. In the case of self-binding the interaction could be mediated by the same surface on both protein copies (1 matrix
entry) or by two distinct surfaces (2 entries). The shared surface of ARC40 is the region that binds to the acidic domains of LAS17, MYO5, MYO3, PAN1, and CRN1. This
surface is not specifically known, but the homology of the partners suggests they all bind to the same place. Actin is included as binding to this shared surface because
its binding is impeded by binding of LAS17 to ARC40 and there is no additional information on the residues involved in the interactions to determine if the interference
is direct or allosteric.
doi:10.1371/journal.pcbi.1003065.t004
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Network motifs
We enumerated the 4-node motifs present in our networks by

identifying all distinct sets of 4-node subgraphs that are connected

by at least one path (each node in the subgraph can be reached by

the others). There are six distinct 4-node subgraph architectures

[59] and we note that they are all counted mutually exclusive to

one another, i.e., a set of 4 nodes uniquely classifies as one of the

six subgraphs. A single node may belong to more than one 4-node

subgraph. Hub and chain motifs have 4 nodes connected by 3

edges, flag and square motifs have 4 nodes connected by 4 edges,

and the other two 4-node subgraphs contain 5 and 6 edges.

Randomized networks
To generate networks that shared the same number of

interfaces, edges, and the same degree distribution as the IIN in

Figure 3b, we used the Monte Carlo method of Maslov and

Sneppen [60]. Specifically, in a trial move two interfaces were

selected randomly and a partner from each of these interfaces was

randomly selected. The partners were then swapped between

interfaces, unless one of these new edges already existed, in which

case the move was rejected.

Power law density fitting
We fit our degree distributions to power laws using the

maximum likelihood method, where the discrete data is fit to a

power law distribution x2c/f(c) normalized over the range x$xmin

[31]. We measure the goodness-of-fit using the Kolmogorov-

Smirnov metric and calculate the p-value for the data being drawn

from a power law density using the method of ref. [31]. For the p-

value calculation, our null hypothesis is that the data is drawn from

a power-law density. Therefore, a small p-value of ,0.05 would

reject this null hypothesis and demonstrate that our data is not

described by a power law. A large p-value, on the other-hand,

indicates that the data is consistent with the hypothesis that it was

drawn from a power law distribution.

Supporting Information

Table S1 Five sub-tables list (1) the justifications and literature

sources used for the interface assignments, including network

edges left unassigned, and details about the (2) SH3 domain, (3)

PRD (4) kinase interactions and (5) membrane binding domains.
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