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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is 1 of the highly fatal and most aggressive types of malignancies and accounts for the
vast majority of Pancreatic Cancer. Numerous studies have reported that the tumor microenvironment (TME) was significantly
correlated with the oncogenesis, progress, and prognosis of various malignancies. Therefore, mining of TME-related genes is
reasonably important to improve the overall survival of patients with PDAC.
The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data algorithm was applied to identify

differential expressed genes. Functional and pathway enrichment analyses, protein–protein interaction network construction and
module analysis, overall survival analysis and tumor immune estimation resource database analysis were then performed on
differential expressed genes.
Data analysis indicated that higher immune scores were correlated with better overall survival (P = 0.033). Differential expression

analysis obtained 90 intersection genes influencing both stromal and immune scores. Among these intersection genes, CA9, EBI3,
SPOCK2, WDFY4, CD1D, and CCL22 were significantly correlated with overall survival in PDAC patients. Moreover, multivariate Cox
analysis revealed that CA9, SPOCK2, and CD1D were the most significant prognostic genes, and were closely correlated with
immune infiltration in TCGA cohort. Further analysis indicated that CD1D were significantly related with immune cell biomarkers for
PDAC patients.
In summary, our findings provide a more comprehensive insight into TME and show a list of prognostic immune associated genes

in PDAC. However, further studies on these genes need to be performed to gain additional understanding of the association between
TME and prognosis in PDAC.

Abbreviations: CC = cell component, DEGs = differential expressed genes, ESTIMATE= estimation of stromal and immune cells
in malignant tumor tissues using expression data, OS = overall survival, PC = pancreatic Cancer, PDAC = pancreatic ductal
adenocarcinoma, PPI = protein–protein interaction, SCNAs = somatic copy number alterations, TIMER = tumor immune estimation
resource, TME = tumor microenvironment.
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1. Introduction
Pancreatic cancer (PC) is 1 of the highly fatal and most aggressive
types of human malignant tumors worldwide. In 2018, PC was
newly diagnosed in ∼458 million people and approximately 432
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million people died of PC in the whole world, ranking seventh
among all cancer-associated mortalities.[1] Pancreatic ductal
adenocarcinoma (PDAC) is an epithelial malignancy which
originates from the ductal epithelium of pancreas and accounts
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ollected from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/).
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for 90% of all cases of PC.[2] Due to a lack of distinct symptoms,
PDAC has often already extensively metastasized at the time of
diagnosis, and radical resection is almost impossible.[3,4] In spite
of extensive efforts over the past few years, the conventional
therapies for advanced PDAC, including chemotherapy, radio-
therapy and targeted therapies, continues to have the poorest
outcome among all the malignancies and the median overall
survival (OS) remains approximately six months.[5–7] Thus, it
becomes necessary to identify early diagnostic biomarkers and
therapeutic targets of PDAC.
The tumor microenvironment (TME) is a complex and

synergistic mixture, comprised of fluids, immune cells, stromal
cells, extracellular matrix molecules, inflammatory mediators
and chemokines. The various constituents of the TME play
significant roles in the tumor immune escape, tumor proliferation
and metastasis, and it have been shown to be related with
diagnosis and clinical outcomes.[8,9] Numerous clinical trials of
targeting TME showed encouraging results.[10,11] Thus, explor-
ing the molecular function and composition of TME is significant
to effectively intervene tumor progression and immune response.
Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data (ESTIMATE) was created to
evaluate tumor purity based on the molecular biomarker
expression of stromal and immune cells. The ESTIMATE
algorithm has been used to breast cancer,[12] prostate cancer,[13]

colorectal cancer,[14] and other studies about tumor microenvi-
ronment.[15] However, prognostic value of ESTIMATE algo-
rithm in PDAC is still unclear. In the present study, we applied the
ESTIMATE algorithm to identify prognostic biomarkers and
explore the immune infiltration of prognostic genes in PDAC.

2. Materials and methods

2.1. Data source

Immune scores and stromal scores of PDAC patients were
obtained from ESTIMATE (http://bioinformatics. mdanderson.
org/estimate/) designed by Yoshihara et al.[16] Gene expression
profile (level 3 data) and clinical information for PDAC patients
was collected from the TCGA data portal (https://tcga-data.nci.
nih.gov/tcga/). Only samples in accordance with the following
Inclusion criteria in the present study:
(1)
 available immune and stromal scores;

(2)
 available gene expression information;

(3)
 the OS days ≥30days.
2.2. Identification and functional enrichment analyses of
differential expressed genes (DEGs)

X-tile software was used to identify cutoff criteria for the
ESTIMATE scores, immune score and stromal score. According
to the cutoff point, we stratify PDAC patients into low-score and
high-score sub-groups. Data analysis was performed by use of
package limma[17] in R software (version 3.6.0). The threshold of
DEGs were: jlog2fold change (log2FC)j >1.5 and false discovery
rate <0.05. DAVID (http://david.ncifcrf.gov, Version 6.8) online
analysis tool was undertaken to assess the role of intersection
genes in PDAC. P-value <.05 was considered to be statistically
significant. The Gene Ontology (GO) analysis shows the DEG
function at the level of 3 main categories (molecular function,
biological process and cellular component), and the KEGG
analysis reveals the pathway enrichment of DEGs.
2

2.3. Construction of Protein-Protein Interaction (PPI)
Network

The PPI network of DEGs was constructed using retrieved
through the Search Tool for the Retrieval of Interacting Genes
(https://string-db.org/)[18] and Cytoscape software (version
3.5)[19] were used for the reconstruction of the PPI network.
The Molecular Complex Detection (version1.4.2) plugin of
Cytoscape was applied to identify the most significant module
based upon topology to locate densely connected regions. The
selection criteria were as follows: maximum depth = 100,
degree cut-off = 2, node score cut-off = 0.2, and k-core = 2.

2.4. Overall survival analysis

The relationship between the OS of PDAC patients and the
expression of DEGs was illustrated by Kaplan-Meier plots using
R. Kaplan-Meier plotter (http://kmplot. com/analysis/) online
analysis tool was applied to verify the prognostic value of survival
related DEGs. The relationship was determined by log-rank test.
P-value<0.05 was considered to be statistically significant.

2.5. tumor immune estimation resource (TIMER) database
analysis

We analyzed comprehensive correlation between prognostic
genes expression and tumor-infiltrating immune cells gene
markers via TIMER (https://cistrome. shinyapps.io/timer/).
Moreover, the association between somatic copy number
alterations (SCNAs) of prognostic genes and immune cell
enrichments in PDAC was also analyzed by TIMER.

3. Results

3.1. Relationship between immune/ stromal / ESTIMATE
scores and T stage, N stage or M stage

Among the 140 PDAC patients enrolled in the present study, 65
were female and 75 were male. Calculated by the ESTIMATE
algorithm, the immune scores ranged from�1559.87 to 2648.04
while the stromal scores from �1843.32 to 2138.93, and
ESTIMATE scores ranged from -3187.36 to 4161.76. The
distributions of immune, stromal, and ESTIMATE scores did not
associate with T stage (Fig. 1A–1C), N stage (Fig. 1D–1F), or M
stage (Fig. 1G–1I).

3.2. Elevated immune scores associated with a better
prognosis

According to immune, stromal, andESTIMATEscores, 140PDAC
patients were divided into low and high score groups to detect
potential relationship between immune/stromal/Estimate score
and prognosis. For immune scores, the low score group contained
57 patients, while the high score group contained 83 patients.
Kaplan-Meier survival curves showed that elevated immune scores
associated with better overall survival (P= .033) (Fig. 2A). By
contrast, stromal scores (P= .656) and ESTIMATE scores
(P= .496) were not correlated with overall survival (Fig. 2B, 2C).

3.3. Differential expressed genes with immune and
stromal score in PDAC

We examined transcriptional microarray data of 140 PDAC
cases to identify DEGs with immune and/or stromal scores.

http://bioinformatics.%20mdanderson.org/estimate/
http://bioinformatics.%20mdanderson.org/estimate/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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Figure 1. Immune, stromal, and ESTIMATE scores were not correlated with T stage, N stage, or M stage. Distribution of immune scores plotted against T stage (A),
N stage (D), andM stage (G). Distribution of stromal scores plotted against T stage (B), N stage (E), andM stage (H). Distribution of ESTIMATE scores plotted against
T stage (C), N stage (F), and M stage (I). ESTIMATE = estimation of stromal and immune cells in malignant tumor tissues using expression data.
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Figure 3A and 3B showVolcano plot of gene expression profile in
high vs low immune scores groups and stromal scores. Figure 3C
shows a heat map of 324 DEGs with high or low immune scores,
and Figure 3D shows a heat map of 318 DEGs with high or low
stromal scores. According to immune score comparison, 320
genes were up-regulated and 4 genes down-regulated in the high
Figure 2. Association of immune, stromal, and ESTIMATE scores with overall surv
scores were not associated with overall survival. (C) ESTIMATE scores were not a
cells in malignant tumor tissues using expression data.

3

score than the low score group. For high stromal score group
compared with low score group, 297 up-regulated genes and 21
down-regulated genes were detected. A total of 86 DEGs were
synchronously upregulated (Fig. 3E) in the high stromal score
and high immune score groups, and 4 genes were commonly
downregulated (Fig. 3F) using Venn algorithm.
ival. (A) Elevated immune scores correlated with a better prognosis. (B) Stromal
ssociated with overall survival. ESTIMATE = estimation of stromal and immune

http://www.md-journal.com


Figure 3. Comparison of gene expression profile with immune scores and stromal scores in PDAC. (A) Volcano maps show the distribution of DEGs based on
immune scores. (B) Volcano maps show the distribution of DEGs based on stromal scores. Red and green dots represent high and low expressed genes,
respectively. (C) Heatmaps of DEGs of immune scores. (D) Heatmaps of DEGs of stromal scores. (E) Venn diagrams showing the number of commonly upregulated
DEGs in stromal and immune. (F) Venn diagrams showing the number of commonly downregulated DEGs in stromal and immune. DEGs = differential expressed
genes.
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3.4. Functional and pathway enrichment analyses of DEGs

GO and KEGG enrichment analyses were performed to explore
the biological classification of DEGs via DAVID online tool. GO
analysis results indicated that biological processes of DEGs were
mainly enriched in lymphocyte proliferation, mononuclear cell
proliferation, regulation of lymphocyte proliferation (Table 1).
Changes in cell component (CC) of DEGs were significantly
enriched in immunological synapse, T cell receptor complex,
ficolin-1-rich granule membrane (Table 1). Changes in molecular
function of DEGs were mainly enriched in the CD4 receptor
binding, MHC protein complex binding and sialic acid binding
(Table 1). KEGG pathway analysis showed that the DEGs were
ignificantly enriched in PPAR signaling pathway, Hematopoietic
cell lineage and IL-17 signaling pathway (Table 1).
3.5. PPI network construction and module analysis

We used Cytoscape to construct the PPI network of intersection
DEGs (Fig. 4A) and obtain the most significant module (Fig. 4B-
C). This network composed of 4 modules, the top 2 significant
modules were selected for further analysis. These modules were
named as Modules B, and C, respectively. In Module B, 13 nodes
with 35 edges were formed in the network, including ITGAM,
GZMA, HCST, CCL17, CD19, CD74, CCL4, TCL1A, CD83,
TNFRSF1B, CD22, CD69, MS4A1 (Fig. 4B). Module C
contained 13 edges involving 7 nodes: SPN, ZAP70, IL2RB,
CD1C, KLRB1, ITGAX, BTK (Fig. 4C).

3.6. Survival analysis of significant DEGs in PDAC

To explore the relationship between commonly DEGs and overall
survival, we performed Kaplan-Meier survival curves by using
the TCGA database. The Kaplan-Meier results indicated that
decreased CA9, MUC5AC, P2RY8 mRNA expression signifi-
cantly associated with poor OS (P< .05), and elevated CD36,
EBI3, PLA2G2D, SPOCK2, WDFY4, CD1D, CCL22 mRNA
expression was significantly correlatedwith shorter OS for PDAC
patients (P<0.05) (Fig. 5). Then, we validate the prognostic
value of survival related DEGs using Kaplan-Meier plotter online
analysis tool. The results show CA9, EBI3, SPOCK2, WDFY4,
CD1D, CCL22 mRNA expression was significantly correlated
with OS (P< .05) (Fig. 6).
Table 1

GO and KEGG pathway enrichment analysis of DEGs with immune
and stromal score in PDAC.

Term Description P value
Count in
gene set

GO:0046651 lymphocyte proliferation 2.56616E-15 19
GO:0032943 mononuclear cell proliferation 2.97786E-15 19
GO:0050670 regulation of lymphocyte proliferation 9.59315E-15 17
GO:0001772 immunological synapse 4.35256E-06 5
GO:0042101 T cell receptor complex .000187906 3
GO:0101003 ficolin-1-rich granule membrane .000559228 4
GO:0042609 CD4 receptor binding 7.22954E-06 3
GO:0023023 MHC protein complex binding 7.18771E-06 4
GO:0033691 sialic acid binding 3.08218E-05 3
KEGG:03320 PPAR signaling pathway .00152816 4
KEGG:04640 Hematopoietic cell lineage 1.33E-08 9
KEGG:04657 IL-17 signaling pathway .000391126 5

GO = Gene Ontology, KEGG=Kyoto Encyclopedia of Genes and Genomes, PDAC=Pancreatic ductal
adenocarcinoma

5

3.7. Univariate and multivariate Cox logistic regression
analysis of overall survival

As shown in Table 2, EBI3, P2RY8, CA9, CD36, SPOCK2,
CCL22, CD1D expression (ref. low), T stage (ref. T1-T4) and N
stage (ref. N0-1) were demonstrated as independent prognostic
indicators for PDAC patients (P< .05).Multivariate Cox analysis
revealed that poor OS was significantly associated with CA9
expression (ref. low; HR=2.751, p=0.008), SPOCK2 expression
(ref. low; HR=3.310, p=0.016), CD1D expression (ref. low;
HR=0.212, P= .034) and N stage (ref. N0-1; HR=2.849,
P= .029).

3.8. Immune infiltration of CA9, SPOCK2, and CD1D

After validating prognostic value of CA9, SPOCK2, and CD1D,
we performed correlation analysis between CA9, SPOCK2 and
CD1D and immune infiltration level for PDAC in Figure 7.
Scatter plots were generated with partial Spearman’s correlation
and statistical significance. CD1D expression were significantly
associated purity (correlation=-0.283). In addition, SPOCK2 and
CD1D significantly associated with B cell, CD8+ T cell, CD4+ T
cell, macrophage, neutrophil, and dendritic cell infiltration, CA9
significantly associated with CD8+ T cell, macrophage, neutro-
phil, and dendritic cell infiltration (P< .05). To further explore
the association between genomic metrics of CA9, SPOCK2 and
CD1D and the immune cell enrichment, PDACwith SCNAs were
divided into four levels, including arm-level deletion, diploid/
normal, arm-level gain, and high amplification. We examined
infiltration of six immune cell types, including B cell, CD8+T cell,
CD4+T cell, macrophage cell, neutrophil cell, and dendritic cell.
The results showed that the extent of immune infiltration was
largely different in PDAC with different SCNAs of CA9,
SPOCK2, and CD1D (Fig. 8). Enrichment of B cell, CD4+T
cell displayed significant downregulation in PDAC with particu-
lar SCNA of CA9. In addition, decreasing of B cell, CD8+T cell,
CD4+T cell, macrophage cell and neutrophil cell enrichments
was also detected in PDAC with particular SCNA of SPOCK2
and CD1D. Therefore, the results revealed that genomic
alterations of CA9, SPOCK2 and CD1D were associated with
the extent of immune infiltration in PDAC.

4. Discussion

PDAC is 1 of the highly fatal and most aggressive types of
malignancies and approximately accounts for 90% of all cases of
PC.[2] Numerous studies have reported that the tumor microen-
vironment (TME) was significantly correlated with the oncogen-
esis, progress, and prognosis of various malignancies.[20–22] The
Interplay between tumor cells and the Immune System in TME
reflect the plasticity of immune system and the tumor.[23] Tumor
development is closely related to TME, and any changes of the
component of TME may affect the progression of malignan-
cies.[23] Exploring the alterations may help the advance of
therapeutic strategies. Immune cells and stromal cells are the
important compositions of TME, which play a key role in the
progress of cancers.[24] The ESTIMATE algorithm based on gene
expression profile has been applied for the exploration of breast
cancer, prostate cancer, colorectal cancer and shown good
clinical application value.[12–14] However, it has not been used for
the investigation of PDAC.
In the present work, we used ESTIMATE algorithm to

calculate immune scores, which indicate the intensity of immune

http://www.md-journal.com


Figure 4. PPI network and the most significant module of DEGs. (A) The PPI network of DEGs was constructed using Cytoscape. (B, C) The top two significant
module was obtained from PPI network using MCODE. Upregulated genes are marked in light red; downregulated genes are marked in light blue. DEGs =
differential expressed genes, MCODE = molecular complex detection, PPI = protein–protein interaction.
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cells infiltration in tumor.[16] Our result indicated that high
immune score was related with improved OS. Recent researches
have similar findings. Heeren et al[25] found that the number of
CD4(+) T-cell is significantly higher in lymph node-negative
samples than in lymph node- positive ones. Moreover, Punt
et al[26] reported that TCL1A expression of B cell associated with
better survival in Cervical cancer. These results may suggest that
immune cells infiltrating tumor tissue affect tumor progression. In
order to explore the potential TME related gene in PDAC, we
performed bioinformation analysis to identify intersection DEGs
6

in both stromal and immune cells. Finally, 86 upregulated
commonly genes and 4 downregulated commonly genes were
obtained between the stromal and immune score groups. These
90 intersection genes were correlated with biological processes in
the TME, including lymphocyte proliferation, mononuclear cell
proliferation, regulation of lymphocyte proliferation. These
processes may play a significant role in tumor development
and metastasis and significantly influence OS.[27] Among
molecular functions, intersection genes enriched in the CD4
receptor binding, MHC protein complex binding and sialic acid



Figure 5. Correlation of expression of individual DEGs with overall survival in TCGA. KM survival curves were plotted for selecting DEGs with prognostic value by
comparison of groups of high (red line) and low (blue line) gene expression. DEGs = differential expressed genes.

Lu et al. Medicine (2021) 100:12 www.md-journal.com
binding. CD4+ T cells constitute an important component of
tumor infiltrating lymphocytes and exert a key role in tumor
immune-surveillance.[28] Moreover, it has been demonstrated
that interactions with sialic acid-binding receptors can signifi-
cantly affect cancer progression.[29]

Next, we performed Kaplan-Meier survival curves to detect
prognostic immune associated genes in PDAC and validate by
Kaplan-Meier plotter online analysis tool. The results indicated
that CA9, EBI3, SPOCK2, WDFY4, CD1D and CCL22 were
significantly correlated with OS in patients with PDAC. Of the 6
genes identified, CA9,[30] EBI3[31] have been proved to be
involved in PDAC progression or significant in predicting OS,
suggesting that our bioinformation analysis based on TCGA has
prognostic values. The remaining 4 genes include SPOCK2,
Figure 6. Validation of correlation of DEGs extracted from the TCGA database with
were plotted for selecting DEGs with prognostic value by comparison of groups of h
genes.

7

WDFY4, CD1D, CCL22 have not or rarely been reported in
PDAC prognosis previously, and may become potential
biomarkers for PDAC.
Subsequently, the expression of CA9, EBI3, SPOCK2,

WDFY4, CD1D and CCL22 were enrolled in multivariate
analysis for OS in PDAC. Importantly, CA9 and SPOCK2 and
CD1D were demonstrated as independent prognostic indicators
for PDAC patients. CA9, Carbonic anhydrase 9, is a cancer-
related cell surface enzyme catalyzing the reversible conversion of
carbon dioxide to bicarbonate ion and proton.[32] Cells will
accelerate metabolism and produce excess acid in a hypoxic
microenvironment, which activates the catalytic activity of CA9
to regulate the intracellular and extracellular pH perturba-
tions.[33] Moreover, CA9 expressed in many tumor types also
overall survival by Kaplan-Meier plotter online analysis tool. KM survival curves
igh (red line) and low (black line) gene expression. DEGs = differential expressed

http://www.md-journal.com


Table 2

Univariate and multivariate Cox logistic regression analysis of overall survival in TCGA cohort.

Univariate analysis Multivariate analysis
(adjusted for age)

HR P >jzj 95% CI HR P >jzj 95% CI

EBI3 expression
High vs low

0.593 .014 0.391 0.901 0.852 .839 0.183 3.975

WDFY4 expression
High vs low

0.747 .180 0.488 1.143 1.509 .498 0.459 4.965

P2RY8 expression
High vs low

0.622 .025 0.410 0.943 1.895 .320 0.538 6.670

CA9 expression
High vs low

1.754 .010 1.145 2.687 2.751 .008 1.307 5.794

PLA2G2D expression
High vs low

0.692 .080 0.459 1.044 1.194 .746 0.408 3.489

CD36 expression
High vs low

0.561 .007 0.369 0.852 0.624 .432 0.193 2.022

SPOCK2 expression
High vs low

0.621 .025 0.410 0.941 3.310 .016 1.251 8.758

CD1D expression
High vs low

0.642 .045 0.416 0.991 0.212 .034 0.050 0.893

CCL22 expression
High vs low

0.629 .030 0.414 0.956 0.625 .267 0.272 1.434

T
1 vs 2 and 3 vs 4

1.636 .025 1.065 2.513 0.372 .069 0.128 1.080

N
0 vs 1

2.152 .004 1.281 3.616 2.849 .029 1.116 7.274

M
0 vs 1

0.756 .701 2.466 5.124 0.784 .769 0.155 3.960

CA9 = Carbonic anhydrase 9, CD1D = Cluster of Differentiation 1D, SPOCK2 = SPARC (osteonectin), cwcv and kazal-like domains proteoglycan 2.

Figure 7. Immune infiltration of CA9, SPOCK2, and CD1D. After identifying prognostic value of CA9, CD1D, and SPOCK2, we performed correlation analysis
between CA9, CD1D, and SPOCK2 and immune infiltration level for PDAC. Scatter plots were generated with partial Spearman’s correlation and statistical
significance. (A) CA9 expression has a significant positive correlation with infiltrating levels of CD8+ T cell, macrophage, neotrophil, and dendritic cells in PDAC. (B)
SPOCK2 expression has a significant positive correlation with infiltrating levels of B cell, CD8+ T cell, CD4+, T cell, macrophage, neotrophil, and dendritic cells in
PDAC. (C) CD1D expression has a significant positive correlation with infiltrating levels of purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neotrophil, and
dendritic cells in PDAC.

Lu et al. Medicine (2021) 100:12 Medicine
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Figure 8. The association of SCNAs of CA9, SPOCK2, and CD1D with immune infiltration in PDAC. In the genomic datasets, SCNAs of CA9, SPOCK2 and CD1D
were divided into into 4 levels, including arm-level deletion, diploid/normal, arm-level gain, and high amplification. The infiltration of 6 immune cell types, including B
cell, CD 8+T cell, CD4+T cell, macrophage cell, neutrophil cell and dendritic cell, was analyzed in PDAC. (A) Enrichment of B cell, CD4+T cell displayed significant
downregulation in PDAC with particular SCNA of CA9. (B) Enrichment of B cell, CD 8+T cell, CD4+T cell, macrophage cell and neutrophil cell displayed significant
downregulation in PDAC with particular SCNA of SPOCK2. (C) Enrichment of B cell, CD 8+T cell, CD4+T cell, macrophage cell and neutrophil cell displayed
significant downregulation in PDAC with particular SCNA of CD1D.

Lu et al. Medicine (2021) 100:12 www.md-journal.com
plays an important role in cell adhesion and spreading.[34]

Therefore, in hypoxia or acidosis environments, CA9 can raise
the survival advantage of tumor cells and enhance their ability of
migration, invasion and metastasis.[35] A recent research showed
that in response to hypoxia, PDAC cells expressing activated
KRAS increase expression of CA9, via stabilization ofHIF1A and
HIF2A, to regulate pH and glycolysis.[30] Combined with our
analysis, it highlights the possibility of CA9 as a targeted therapy
for PDAC. The full name of SPOCK2 is SPARC (osteonectin),
9

cwcv and kazal-like domains proteoglycan 2, which is a
glycoprotein composed of a protein domain, 2chondroitin side
chains, and heparan sulfate.[36] A recent study showed that
hypermethylation of the SPOCK2 in colon cancer is significantly
higher than in normal mucosal tissues adjacent to the cancer.[37]

In addition, Ren F et al revealed that hypermethylation of
SPOCK2 is associated with endometriosis-related ovarian
endometrioid adenocarcinoma[38] and that SPOCK2 regulates
biological behavior of endometrial cancer cells through regulat-

http://www.md-journal.com
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ing the protein expression of MT1-MMP and MMP2 and the
activation of MMP2.[39] These evidences indicated that the
abnormality of SPOCK2may contribute to tumorigenesis and the
progression of tumors. However, the role of the SPOCK2 has not
been researched in PDAC. Our analysis indicates that SPOCK2
may be an important gene in the development of PDAC, which
should be confirmed furtherly. CD1D, a member of the CD1
family, is a class of non-polypeptide transmembrane glycoprotein
molecules, which is widely expressed in thymocyte B cells,
epidermal Langham cells, dendritic cells, and intestinal epithelial
cells.[40] With function of antigen presentation similar to MHC I,
CD1D can specifically present antigens to NKT cells, make them
activate and secrete a variety of cytokines, and directly or
indirectly participate in the body’s immune response.[41]

Recently, a research about CD1d-binding glycolipid for iNKT-
cell-based therapy showed a potent and effective treatment
against human breast cancer.[42] Another clinical phase II study
showed that intravenous administration of a-GalCer-pulsed
antigen-presenting cells (APCs) prolonged overall survival for
patients with advanced or recurrent non-small cell lung
cancer.[43] (a-GalCer, an exogenous glycolipid antigen extracted
from sponges, specifically binding to CD1Dmolecule can activate
NKT cells to exert immune effects.[44]) The effect of CD1D-
restricted invariant natural killer T cells in PDAC immunothera-
py are unclear. However, our analysis suggests that CD1D may
have an important role in PDAC. Therefore, we considered
CD1D as a promising target for PDAC immunotherapy.
In summary, our findings provide a more comprehensive

insight into TME and show a list of prognostic immune
associated genes in PDAC. CA9, SPOCK2 and CD1D exhibited
significant prognostic potential, and CD1D were significantly
related with immune cell biomarkers for PDAC patients, thus
indicating the relevance of monitoring and regulating the TME
for PDAC prognosis and precision immunotherapies. However,
further studies on these genes need to be performed to gain
additional understanding of the association between TME and
prognosis in PDAC.
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