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Introduction
For many years, management of neurological injury second-
ary to trauma or stroke has focused on mediating the cellular 
changes that cause secondary damage (Greve et al., 2009). 
Advances in the understanding of the role of extracellular 
matrix (ECM) in influencing neurogenesis, however, have 
presented novel strategies for tissue regeneration (Hallberg-
son et al., 2003). In this review, we discuss the functions of 
the ECM and summarize the basic science advances and 
several novel treatments under investigation that highlight 
the potential for intrinsically altering the ECM and the use 
of artificial ECM scaffolds to achieve neural regeneration.

The repair of a damaged axon involves a complex series 
of cellular changes to coordinate the formation of a growth 
cone which can successfully follow a sea of inhibitory and 
permissive signals to reunite with its prior synapses and 
properly regenerate (Szpara et al., 2007). In the peripheral 
nervous system (PNS), these changes are called Wallerian 
degeneration. Here denervated Schwann cells differentiate 
and proliferate, producing neurotropic molecules, cell re-
ceptors, and basement membrane elements which allows 
the growth cone to reach its original target. In the central 
nervous system (CNS), in which oligodendrocytes myelinate 
multiple neurons, injury causes more widespread demye-
lination. Injury to the CNS causes a common pathway of 
destruction through secondary injuries like hemorrhage, 
edema, ischemia, and inflammation (Fitch et al., 1997). In 
spinal cord injuries, these secondary injuries lead to necrosis 

and apoptosis in 1–2 segments above the original site of in-
jury, with reactive astrocytes forming a glial scar (Faulkner 
et al., 2004). Wallerian degeneration like that seen in the 
PNS is furthermore impeded by the inhibiting properties of 
slowly cleared myelin degradation products (McKerracher et 
al., 1994) and the absence of an organized basal lamina. The 
glial scar, itself, contains inhibitory molecules (Fawcett et al., 
1997) which, at first, limit areas of damage by reestablishing 
the blood-brain barrier and containing inflammation and 
released neurotransmitters (Faulkner et al., 2004); however, 
overtime, the ECM deposited within the glial scar contains 
inhibitory molecules like chondroitin sulfate proteoglycans 
(CSPGs) which prevent further neurogenesis (McKeon et al., 
1991).

The ECM
In recent years, the role of the ECM in regulating the sur-
vival, differentiation, growth, and migration of cells in the 
nervous system and its impact on neurogenesis have been 
increasingly characterized. The ECM, which constitutes 10–
20% of the brain’s volume, is composed of a network of pro-
teins and glycans which are produced intracellularly and get 
secreted into the extracellular space (Bignami et al., 1993). In 
addition to its important structural, anchoring, and organiz-
ing functions, the ECM also contains signals which regulate 
growth, differentiation, synapse remodeling, and migration 
(Bandtlow et al., 2000; Dityatev et al., 2003). The network is 
organized roughly into three compartments (Figure 1): the 
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basement membrane (basal lamina) that surrounds cere-
bral vessels, the perineuronal nets (PNNs) surrounding cell 
bodies and dendrites, and a diffusely distributed interstitial 
matrix lying between CNS parenchyma (Lau et al., 2013). 
The basement membrane is composed of collagen, fibronec-
tin, perlecan, dystroglycan and laminin-nidogen (entactin) 
complexes. It surrounds the pial surface of the CNS and sep-
arates the endothelial cells from parenchyma, thus forming 
the blood-brain barrier. During cerebral ischemia, increased 
expression of matrix metalloproteinases 9 and 2 results in 
the breakdown of the basement membrane, which may fa-
cilitate hemorrhage, edema, and secondary injury (Wang 
et al., 2007). PNNs are primarily composed of a dense ma-
trix of hyaluronan (HA), chondroitin sulfate proteoglycans 
(CSPGs), tenascin R and link proteins, and serve as crucial 
regulators of synaptic plasticity (Kwok et al., 2011). The neg-
atively charged glycosaminoglycans (GAG) regulate the dif-
fusion of important cations, such as sodium, potassium, and 
calcium, which supports rapid neuronal firing (Hartig et al., 
1999).  

ECM modifications following injury
CNS injury causes the proliferation of astrocytes, fibroblasts, 
and oligodendrocyte precursors which form a glial scar 
(Hatten et al., 1991; Chen et al., 2002). Within this glial scar, 
upregulated proteoglycans like CSPGs and changes in sulfa-
tion patterns within the ECM itself result in the creation of a 
barrier to regeneration (Massey et al., 2008). Multiple studies 
using the bacterial enzyme ChaseABC to digest chondroitin 

sulfate chains in CSPGs have demonstrated reversal of these 
inhibitory functions (McKeon et al., 1995). Promising in vi-
tro work led to successful in vivo injection of ChaseABC into 
rats with spinal cord contusion injuries, leading to successful 
CSPG degradation (Lemons et al., 1999). Multiple other 
models have since demonstrated post-injury removal of 
chondroitin sulfates, promoting axon regeneration (Moon et 
al., 2001), and even functional recovery in rats with lesioned 
dorsal columns (Bradbury et al., 2002) and cats with spinal 
cord hemisection (Tester et al., 2008). Alternative strategies 
besides injection to deliver ChaseABC to modify the PNN 
in injured areas have included transgenic astrocytes with a 
GFAP promoter (Cafferty et al., 2008), neutralization with 
antibodies (Tan et al., 2006), and siRNA knocking down CS 
GAG elongation enzymes (Laabs et al., 2007).  

Artificial scaffolds
Besides manipulating the intrinsic extracellular matrix to 
engender an environment favoring neural regeneration, an al-
ternative strategy involves the use of artificially created, nano-
meter-sized scaffolds to overcome the body’s natural barriers 
to repair. The use of a tissue-engineered scaffold offers a way 
to the poor regenerative capacity of the CNS to reconstruct 
formed cavities and reconnect neuronal processes. Thus, the 
artificial scaffold functions to enhance the communication be-
tween cells, allowing for improvement in proliferation, migra-
tion, and differentiation (Figure 2). Studies have demonstrated 
efficacy of bare scaffolds within the CNS (Huang et al., 2012), 
but regeneration and functional recovery in lesioned rat 

Figure 1 Microscopic anatomy of the extracellular matrix within the central nervous system (CNS).
Adapted from: Lau et al. (2013). The three major compartments of the extracellular matrix in the CNS are the basement membrane, perineuronal 
net, and neuronal interstitial matrix. The basement membrane is found surrounding cerebral blood vessels, the perineuronal net is a dense matrix 
immediately surrounding neuronal cell bodies and dendrites, and the neuronal interstitial matrix occupies the space between neurons and glial 
cells.
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models have been enhanced with the addition of other sub-
strates such as vascular endothelial growth factor (Zhang et 
al., 2007) or hyaluronic acid with laminin (Hou et al., 2005).

Increasingly, stem cells have been incorporated into these 
engineered scaffolds to support three-dimensional cell or-
ganization. Neural stem cells (NSCs) are the multipotent, 
self-renewing progenitors of neurons, astrocytes, and oligo-
dendrocytes. Three distinct populations exist in the subven-
tricular zone, external germinal layer of the cerebellum, and 
subgranular layer of the dentate gyrus (Doetsch et al., 1999). 
Cells can be harvested directly from these regions in adult 
or embryonic tissues, or by inducing embryonic stem cell 
(ESCs) differentiation, which may have less fate restrictions 
but greater tumorigenic potential (Nishikawa et al., 2007). In 
addition, cells taken from other areas, such as marrow stro-
mal cells (MSCs), olfactory ensheathing cells, or Schwann 
cells, can give rise to cells for autotransplantation in a min-
imally-invasive and easily accessible process (Hayase et al., 
2009). Transplantation can aid neuroregeneration not only 
by differentiating to replace the damaged or degenerative cell 
types (Zhu et al., 2009), but also by secreting various neu-
rotropic factors like nerve growth facture and brain-derived 
neurotrophic factor (BDNF) (Lu et al., 2003), and by inhibit-
ing T cell activation, thus preventing further injury (Baciga-
luppi et al., 2009). Schwann cells promote CNS regeneration 
by naturally expressing numerous surface adhesion mole-
cules and growth factors, and by producing the ECM com-
ponents laminin and fibronectin (Volpato et al., 2013).  

The use of biomaterials and polymers has been shown to 
be an essential strategy to maximize cell transplantation effi-
cacy. Indeed, the success of cell transplantation and eventual 
neurogenesis is a complex process that relies upon: a) the de-
livery of the stem cells into a framework where cells can in-
teract, b) the appropriate signaling molecules within the mi-
croenvironment, and c) an adequate blood supply. The ideal 
cell scaffold is physiochemically similar to the surrounding 
tissues, non-toxic, poorly immunogenic, biodegradable, du-
rable, cheap, conformable to various structures, and highly 
porous to allow for a high density of cell seeding (Madigan 

et al., 2009). These scaffolds appear in various forms, includ-
ing hydrogels, sponges, membranes, and channel containing 
tubules, and can be from naturally occurring or synthetic 
components. 

Natural scaffolds made of proteins and carbohydrates are 
generally highly biocompatible and easily available. As one 
of the major components of ECM, collagen has been well 
studied. In combination with neurotropic factors like BDNF 
and neurotrophin-3 (NT-3), axonal regeneration and partial 
functional recovery after dorsal spinal cord transection have 
been noted (East et al., 2010; Han et al., 2010). Addition 
of NSCs also demonstrated improved remyelination and 
recovery in rat lesional models (Hatami et al., 2009), and 
combination delivery with ChaseABC also showed improved 
bladder function (Fouad et al., 2009). Fibrin, a natural com-
ponent of blood clots, can also be used as an injected or bio-
degradable scaffold to promote migration of neural support 
cells and promote implanted NSC survival (Johnson et al., 
2010). Other naturally occurring scaffolds include hyal-
uronic acid, which has lymphocyte and astrocyte inhibition 
properties and has been shown to lead to diminished glial 
scar formation (Wei et al., 2010), or alginate, agarose, and 
chitin sponges or gels, which have proved a versatile delivery 
vehicle for various cells and growth factors (Kataoka et al., 
2004; Stokols et al., 2006; Bozkurtet al., 2010; Barminko et 
al., 2011).

Artificial scaffolds, designed to mimic endogenous ECM, 
formed from type 1 collagen and glycosaminoglycans (CGs), 
have already been successfully used to facilitate regeneration 
of skin, bone, and peripheral nerves (Yannas et al., 2010). 
Synthetic scaffolds are an attractive alternative to animal-de-
rived biomaterials due to their minimal risk of pathogen 
transmission (Kyle et al., 2009), similar structure to naturally 
occurring ECM (Zhang et al., 2005), ease of liquid delivery 
to in vivo targets, and lack of immune response (Rudra et al., 
2010). 

Polymeric scaffolds designed for the CNS rely upon the 
self-assembling properties of engineered peptides, whereas 
a liquid monomer can be injected to spontaneously form 
highly ordered architectures (Bonzani et al., 2006). The list 
of synthetic compounds is rapidly expanding, and includes 
compounds like poly-E-caprolactone, poly-lactic acid, 
poly-lactic-co-glycolic acid, poly-B-hydroxybutirate, poly-
ethylene glycol, and poly (2-hydroxyethyl mathacrylate) 
(Kim et al., 2014). These can be utilized as sponges, sheets, 
channels, films, or hydrogels. Hydrogels, from either natu-
ral or synthetic compounds are easily implanted by simple 
injection and conform easily to surrounding tissue (Phillips 
et al., 2004). Guidance channels, derived from synthetic 
biomaterials, may prove superior at axonal regeneration, 
but must be surgically implanted, given their structural 
stiffness (Wong et al., 2008). In addition to NSCs, MSCs, 
Schwann cells, and epithelial stem cells are transplanted 
either alone or together for improved efficacy (Oh et al., 
2011). Likewise, growth factors most commonly used in 
combination include NT-3, FGF-2, GDNF, and BDNF (Zu-
rita et al., 2010).

Figure 2  Implantation of extracellular matrix scaffold into damaged 
brain tissue.
Adapted from: Orive G et al. (2009). Placing a scaffold into an area of 
brain damage provides structural support and enhancement of com-
munication between cells, in turn, allowing for improved proliferation, 
migration, and differentiation, especially in the setting of implantation 
of exogenous neurons or neural stem cells.
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Conclusion
Given the heterogenous nature of injury to the CNS through 
ischemia, trauma, or degeneration to diverse anatomic loca-
tions and cell populations, it is not surprising that therapeu-
tic strategies have also become increasingly complex. Ma-
nipulating the extracellular matrix allows for the delivery of 
targeted scaffolds containing tailored combinations of cells 
and neurotrophic factors, many of which have demonstrated 
marked efficacy in animal models. Although the application 
of these findings has yet to significantly alter the way clini-
cians view or treat these conditions, there is promise for sig-
nificant therapeutic advances in our lifetime.
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