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The draft genome sequence of Clostridium sp. Ne2 was reconstructed from a metagenome of a hydrogenogenic microbial con-
sortium. The organism is most closely related to Clostridium magnum and is a strict anaerobe that is predicted to ferment a
range of simple sugars.
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Biohydrogen is a promising energy source, being renewable,
greenhouse neutral, and sourced from inexpensive feedstock

(1). Hemicellulose is an attractive feedstock, being the second
most abundant polysaccharide (2). Bacterial degradation of hemi-
cellulose, and subsequent hydrogenogenesis via dark fermenta-
tion, requires an array of catabolic enzymes to degrade the hemi-
celluloses (3) along with hydrogenases (4, 5). A mixed-microbial
culture, called 1 TC, from a worker Nasutitermes exitiosus (col-
lected, 33°45=34�S; 150°59=25�E) demonstrated commercially sig-
nificant hydrogen production at 30°C. The 1 TC consortia was
almost exclusively composed of three clostridial taxa: one Clos-
tridium beijerinckii strain (Ne1) (6), one Ruminoclostridium spe-
cies (Ne3) (7), and, finally, the subject of this paper, Ne2, a taxon
most closely related to, but likely distinct from, Clostridium mag-
num, Clostridium carboxidivorans, and Clostridium ljungdahlii.

Clostridium sp. Ne2 accounted for 25.2% of the metagenome.
It was separated from the metagenome using short k-mer meth-
ods (8) and manual inspection. The draft genome for Ne2 in-
cluded 283 large (�200 bp) contigs, totalling ~5.2 Mbp, with size
distributions of 18,507 bp, 13,411 bp, and 23,721 bp for the mean,
median, and N50 contig lengths. Annotation was performed using
IMG-ER (Integrated Microbial Genomes Expert Review) (9),
which predicted a total of 4,791 protein-coding genes and 38
structural RNAs. The annotated genome is available for download
at IMG-ER (https://img.jgi.doe.gov/), and the sequences and
metadata are available at the European Nucleotide Archive under
accession no. PRJEB8629 (http://www.ebi.ac.uk/ena/data/view
/PRJEB8629).

Clostridium sp. Ne2 is part of a clade that includes C. magnum,
C. ljungdahlii, C. carboxidivorans, and Tepidanaerobacter ac-
etatoxydans (JQ979073), although Ne2 is most closely related to
C. magnum. The physiology of cultured organisms in this group
includes homoacetogens and syntrophic acetate-oxidizing bacte-
ria (10–14). It is likely that Ne2 is similar in its physiology, and if
this is correct, it presumably can both ferment simple sugars to
hydrogen and subsequently consume hydrogen in the absence of

sugars. Pfam classification of genes (http://pfam.xfam.org/) (15)
from the Ne2 genome suggests the presence of a number of iron
(FeFe) and nickel iron (NiFe) hydrogenases (PF02906.9;
PF02256.12; PF00374.14; PF14720.1). Clostridium magnum ap-
pears to require very small amounts of yeast extract (0.025%) for
hydrogen metabolism (11), presumably as vitamins or other co-
factors. It is worth noting, however, that no yeast extract was in-
cluded in the medium used to grow the 1 TC consortia.

Growth on xylan as a sole source of carbon is facilitated by
endo-acting xylanases, other xyloglucanase and xylosidases,
though numerous accessory enzymes are required for complete
digestion. Analysis using dbCAN (http://csbl.bmb.uga.edu/db
CAN/index.php) (16) suggests that Clostridium sp. Ne2 possesses
xylanases (GH28, GH30), one probable xyloglucanase (GH74),
and various enzymes which target hemicellulose-derived oligo-
saccharides and side branches (GH1, -3, -4, -39, -42, -43, and
-127).

It is thus unclear what roles Ne2 performs within the 1 TC
consortia. It may be that in the presence of xylan, Ne2 acts as a
heterotroph, assisting with the degradation of xylan and, as this
resource becomes depleted, switches to an autotrophic mode of
physiology, consuming hydrogen as a homoacetogen. Further
work is required to elucidate the role of this organism within the
consortia.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank under
the accession numbers CEME01000001 through CEME01000283.
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