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Gene‑based association tests 
using GWAS summary statistics 
and incorporating eQTL
Xuewei Cao1, Xuexia Wang2, Shuanglin Zhang1 & Qiuying Sha1*

Although genome-wide association studies (GWAS) have been successfully applied to a variety 
of complex diseases and identified many genetic variants underlying complex diseases via single 
marker tests, there is still a considerable heritability of complex diseases that could not be 
explained by GWAS. One alternative approach to overcome the missing heritability caused by 
genetic heterogeneity is gene-based analysis, which considers the aggregate effects of multiple 
genetic variants in a single test. Another alternative approach is transcriptome-wide association 
study (TWAS). TWAS aggregates genomic information into functionally relevant units that map to 
genes and their expression. TWAS is not only powerful, but can also increase the interpretability 
in biological mechanisms of identified trait associated genes. In this study, we propose a powerful 
and computationally efficient gene-based association test, called Overall. Using extended Simes 
procedure, Overall aggregates information from three types of traditional gene-based association 
tests and also incorporates expression quantitative trait locus (eQTL) information into a gene-based 
association test using GWAS summary statistics. We show that after a small number of replications 
to estimate the correlation among the integrated gene-based tests, the p values of Overall can 
be calculated analytically. Simulation studies show that Overall can control type I error rates very 
well and has higher power than the tests that we compared with. We also apply Overall to two 
schizophrenia GWAS summary datasets and two lipids GWAS summary datasets. The results show 
that this newly developed method can identify more significant genes than other methods we 
compared with.

Although genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide 
polymorphisms (SNPs) associated with a wide range of complex human traits1,2, there is a common limitation in 
which GWAS focus on only a single genetic variant with a trait at a time. This limitation may limit the power to 
identify clinically or biologically significant genetic associations3. Furthermore, many genome-wide significant 
genetic variants are in linkage disequilibrium (LD). Different LD patterns can cause non-replicated results of the 
same variant in different populations4,5. Therefore, several powerful gene-based statistical association tests, in 
which the genetic information of all genetic variants in a gene is combined to obtain more informative results, 
have been developed, such as the Burden Test (BT)6, the Sequence Kernel Association Test (SKAT)7, and the 
Optimized SKAT (SKATO)8.

When individual-level genotype and phenotype data are not available, the traditional gene-based association 
tests, BT, SKAT, and SKATO, can be extended by using GWAS summary statistics9. Currently, there are many 
GWAS summary statistics available in public resources10. In GWAS summary statistics, the Z-scores of genetic 
variants in a gene are assumed to asymptotically follow a multivariate normal distribution with a correlation 
matrix among all genetic variants in a gene under the null hypothesis11, where the correlation matrix can be 
estimated by LD among the genetic variants in the gene12,13. When individual-level data are not available, LD is 
usually estimated using external reference panels14,15 (i.e., 1000 Genomes Project16). Due to the small sample size 
of reference panels used to estimate LD, statistical noise (i.e., inflated type I error rates or large numbers of false 
positives) often exists which needs to be accounted for17,18. One way to reduce the statistical noise is to correct 
the estimated LD by a regularization procedure19. In the regularization procedure, a statistical white Gaussian 
noise is added to the LD matrix which is estimated by a reference panel. After correcting the estimated LD by 
the regularization procedure, we can assume that, under the null hypothesis, the Z-scores from GWAS summary 
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statistics asymptotically follow a multivariate normal distribution with the correlation matrix being the corrected 
LD matrix among the genetic variants in a gene.

To increase statistical power in identifying genes that are associated with complex diseases, PrediXcan20 and 
transcriptome-wide association study12,21 (TWAS) were developed by incorporating expression quantitative 
trait locus (eQTL) data into GWAS. As pointed out by Zhang et al.15, PrediXcan and TWAS can be viewed as a 
simple weighted linear combination of genetic variants with an eQTL—derived weight. In fact, the genetic archi-
tecture of complex traits is rarely known in advance and is likely to vary from one region to another across the 
genome and from one trait to another15. Therefore, only considering one single eQTL—derived weight, such as 
in PrediXcan and TWAS, may lose statistical power in identifying significant genes. Zhang et al.15 developed an 
omnibus test (OT) using Cauchy combination method to integrate association evidence obtained by BT, SKAT, 
and SKATO based on GWAS summary data with multiple eQTL‐derived weights. They showed that OT using 
multiple eQTL—derived weights had some potential advantages.

Inspired by the advantage of OT, in this paper, we propose a more powerful and computationally efficient 
method, called Overall, to aggregate the information from three types of traditional gene-based association tests 
(BT, SKAT, SKATO) with multiple eQTL—derived weights using GWAS summary statistics. To combine informa-
tion from the three gene-based association tests, the Overall method utilizes the extended Simes procedure5,22. 
To apply the Overall method, we first need to estimate the correlation matrix among the three gene-based asso-
ciation tests with eQTL—derived weights under the null hypothesis. We provide an estimation method using a 
replication procedure23,24. The replication procedure only needs to be performed once to obtain the correlation 
matrix for each gene. Then, the p-values of Overall can be analytically computed without using permutations. 
To calculate the p-values of the three types of gene-based association tests (BT, SKAT, SKATO) using GWAS 
summary statistics with eQTL—derived weights, we use the “sumFREGAT” package in R (https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​sumFR​EGAT/​index.​html)9. Once we obtain the p-values of these three tests, the p-value 
of our proposed method can be easily calculated using its theoretical distribution. Extensive simulation studies 
show that Overall can control type I error rates well and has higher power than the comparison methods across 
most of the simulation settings. Similar to Zhang et al.15, we apply our method to two schizophrenia (SCZ) and 
two lipids trait (HDL) GWAS summary data sets. Compared with OT and other tests, the proposed method can 
identify more significant genes. More interestingly, some significant genes reported by GWAS catalog are only 
identified by our proposed method.

Statistical models and methods
Statistical models.  Consider a set of M genetic variants in a gene. Let Z = (Z1, . . . ,ZM)T be an M × 1 vec-
tor of Z-scores of the M genetic variants. Note that the Z-scores is either directly provided by publicly available 
GWAS summary statistics or calculated from a GWAS individual-level genotype and phenotype data set. We 
are interested in testing the null hypothesis H0 that none of the genetic variants in the gene is associated with a 
trait, whereas the alternative hypothesis is that at least one genetic variant in the gene is associated with a trait. 
Following Svishcheva et al.9, Gusev et al.12, and Yang et al.25, we assume Z = (Z1, . . . ,ZM)T ∼ MVN(0,R) under 
the null hypothesis, where R is the correlation matrix among Z , which can be estimated by LD among the genetic 
variants in the gene12,13. If individual-level data are not available, LD can be estimated using external reference 
panels (i.e., 1000 Genomes Project16). However, if the sample size of a reference panel is small, LD may not be 
estimated correctly so that it will induce statistical noise (i.e., inflated type I error rates or large numbers of false 
positives)17,18. One way to correct the estimated LD is to use a regularization procedure by adding a statistical 
white Gaussian noise9,19. Let IM be an M ×M identity matrix, and the corrected correlation matrix U can be 
defined as

where a is a scalar tuning parameter which represents the coefficient of proportionality between the corrected 
correlation matrix U and the original R estimated using an external reference panel. The optimal tuning param-
eter a can be estimated by maximizing the log-likelihood function of the distribution of Z ∼ MVN(0,U) , that is,

Then the corrected correlation matrix Û = âR +
(

1− â
)

IM . Therefore, under the null hypothesis, we consider 
Z = (Z1, . . . ,ZM)T ∼ MVN

(

0, Û
)

.
Suppose that there are a total of K different eQTL—derived weights from gene expression data (i.e., Genotype-

Tissue Expression (GTEx) project (https://​gtexp​ortal.​org/​home/)), denoted as Ŵk = diag
(

Ŵk
1 , . . . , Ŵ

k
M

)

 for 
k = 0, 1, . . . ,K , where Ŵ0 = diag(1, . . . , 1) represents a status without using any weights. In order to avoid the 
influence of the scale among genetic variants within each weight, we first standardize the eQTL—derived weights 
Wk as Wk

m = Ŵk
m

/

∑M
m=1

∣

∣

∣
Ŵk

m

∣

∣

∣
 for m = 1, . . . ,M . Based on the k th standardized weight Wk , the weighted 

Z-score WkZ follows a multivariate normal distribution. That is,

We extend the three types of gene-based association tests, BT6, SKAT7, and SKATO8, to incorporate the 
eQTL—derived weights based on GWAS summary statistics9,26. For the kth eQTL—derived weight, the three 
gene-based test statistics can be written as

U = aR + (1− a)IM , 0 ≤ a ≤ 1,

â = argmax
a∈[0,1]

{

log (L(Z : 0,U))
}

.

WkZ ∼ MVN
(

0, �̂k

)

and �̂k = WkÛWk .

https://cran.r-project.org/web/packages/sumFREGAT/index.html
https://cran.r-project.org/web/packages/sumFREGAT/index.html
https://gtexportal.org/home/
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where 1M is an M × 1 vector with elements of all 1s. Under the null hypothesis, Qk
BT follows a χ2 distribution with 

1 degree of freedom; Qk
SKAT follows a weighted sum of χ2 distributions with 1 degree of freedom; and Qk

SKATO 
follows a mixture of χ2 distribution8. The p-values of these three test statistics can be easily calculated using the 
“sumFREGAT” package in R (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​sumFR​EGAT/​index.​html)9.

Overall method.  To aggregate information from these three gene-based association tests with mul-
tiple eQTL—derived weights, we develop a novel method, called Overall, which utilizes the extended Simes 
procedure5,22. Let pkBT , p

k
SKAT , p

k
SKATO be the p-values of BT, SKAT, SKATO with kth eQTL—derived weight, 

k = 0, 1, . . . ,K , respectively, where k = 0 denotes a status without using any weights. Thus, there are a 
total of L = 3(K + 1) p-values from these three gene-based association tests with different weights. Let 
(

p(1), . . . , p(L)
)

 be a sequence of the ascending p-values, where p(1) = mink=0,...,K

{

pkBT , p
k
SKAT , p

k
SKATO

}

 
and p(L) = maxk=0,...,K

{

pkBT , p
k
SKAT , p

k
SKATO

}

 . Overall combines these L p-values using the extended Simes 
procedure5,22, and the p-value of Overall is defined as

where me is the effective number of p-values among the L gene-based association tests with multiple weights, 
p(l) is the l  th element of the ascending p-values, and me(l) is the effective number of p-values among the top l  
association tests. We use a more robust measure to obtain the effective numbers me and me(l) , which was proposed 
by Li et al.5. The values of me(l) and me can be estimated as

where �i denotes the ith eigenvalue of the correlation matrix � of p-values from L association tests with multiple 
weights (the estimation of � will be discussed in the next section), I(·) is an indicator function. If the L associa-
tion tests are independent, all eigenvalues �i equal 1, and me(l) = l for l = 1, . . . , L ; if the L association tests are 
perfectly dependent, then �1 = l which is the number of tests used to calculate me(l) and the other eigenvalues 
equal 0. In this case, me(l) = l − (l − 1) = 1 for l = 1, . . . , L.

The R codes and a sample data set for the implementation of Overall are available at github https://​github.​
com/​xuewe​ic/​Overa​ll.

Estimation of � under the null hypothesis.  To apply our proposed method, we need to estimate the 
correlation matrix of p-values � under the null hypothesis. Since the exact correlations among all L gene-based 
association tests are unknown, we perform the estimation procedure with B replications. For each replicate b , 
b = 1, . . . ,B , we implement the following two steps:

Step 1: We first generate a new Z-score vector Znull under the null hypothesis. That is, Znull follows a multivari-
ate normal distribution with mean 0 and variance–covariance matrix R , where R can be estimated by LD among 
the genetic variants in a gene using external reference panels (i.e., 1000 Genomes Project).

Step 2: We use the regularization procedure to obtain the corrected correlation matrix of Z-scores Û . Then, 

we calculate Qk(b)
BT ,Q

k(b)
SKAT ,Q

k(b)
SKATO and the corresponding p-values pk(b)BT , p

k(b)
SKAT , p

k(b)
SKATO using the simulated Znull 

for k = 0, 1, . . . ,K . The distributions of Qk(b)
BT ,Q

k(b)
SKAT ,Q

k(b)
SKATO depend on the corrected correlation matrix Û , and 

the standardized eQTL—derived weights Wk for k = 0, 1, . . . ,K.
To estimate the correlation matrix of p-values � used in the Overall method, we use the sample correlation 

matrix of the p-values obtained from the replications. We denote the sample correlation matrix of p-values as 
�̂ . For example, �̂12 is the (1,2)-element of �̂ which is the estimated correlation between BT and SKAT without 
using any weights. If we let p0BT =

(

p
0(1)
BT , . . . , p

0(B)
BT

)T
 be a B× 1 vector of the p-values of BT without using any 

weights and p0SKAT =

(

p
0(1)
SKAT , . . . , p

0(B)
SKAT

)T
 be a B× 1 vector of the p-values of SKAT without using any weights 

obtained from the replications, then the sample correlation of p-values between these two tests is defined as 
�̂12 = cor

(

p
0
BT , p

0
SKAT

)

 , where cor(·) is the sample correlation.
The estimation procedure to estimate � is independent of our proposed method, therefore we only need to 

perform this procedure once for each gene. After we estimate � , the p-value of Overall can be computed analyti-
cally without using permutations.

Qk
BT =

(

Z
T
Wk1M

)2
,

Qk
SKAT = (WkZ)

T
WkZ,

Qk
SKATO = min

ρ∈[0,1]

{

(1− ρ)Qk
SKAT + ρQk

BT

}

,

poverall = Min
l=1,...,L

{

mep(l)

me(l)

}

,

me(l) = l −

l
∑

i=1

[(�i − 1)I(�i > 1)] andme = me(L),

https://cran.r-project.org/web/packages/sumFREGAT/index.html
https://github.com/xueweic/Overall
https://github.com/xueweic/Overall
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Simulation studies
Materials and comparison methods.  In our studies, we use four data sets to obtain the eQTL—derived 
weights downloaded from the functional summary-based imputation website (http://​gusev​lab.​org/​proje​cts/​
fusio​n/#​refer​ence-​funct​ional​data). The resources to obtain the four eQTL—derived weights are listed in Table 1. 
For each eQTL data set, we use the weights estimated by the Best Linear Unbiased Prediction (BLUP)27.

We compare our proposed method with three existing methods, OT15, S-PrediXcan29, and S-TWAS12. These 
three methods are all based on GWAS summary statistics and incorporate eQTL‐derived weights. Here, we 
briefly introduce these three methods.

OT: For a total of K  different eQTL—derived weights and the three gene-based asso-
ciation tests (BT, SKAT, SKATO), OT aggregates information from different weights and 
tests by using the Cauchy combination method30. The test statistic of OT is defined as 
QOT =

1
3(K+1)

∑K
k=0

[

tan
{(

0.5− pkBT
)

π
}

+ tan
{(

0.5− pkSKAT
)

π
}

+ tan
{(

0.5− pkSKATO
)

π
}]

 and the cor-

responding p-value of the test statistic can be approximated by pOT =
1
2 −

arctan (QOT )
π

.
S-PrediXcan: For a given eQTL‐derived weight, provided by a matrix Wk = diag

(

Wk
1 , . . . ,W

k
M

)

 , the test 
statistic of S-PrediXcan is defined as Zk

S−PrediXcan =
∑

m Wk
mσ̂mZm

/

σ̂ , where σ̂m is the estimated standard devia-
tion of the mth SNP in a gene and σ̂ is the estimated standard deviation of the predicted expression of a gene. 
The p-value of S-PrediXcan can be computed as pkS−PrediXcan = 2�

(

−

∣

∣Zk
S−PrediXcan

∣

∣

)

 , where �(·) is the standard 
normal CDF function.

S-TWAS: For a given eQTL‐derived weight, provided by a vector wk =
(

Wk
1 , . . . ,W

k
M

)T , the test statistic of 
S-TWAS is defined as Zk

S−TWAS =
w
T
k ·Z

√

w
T
k ·R·wk

 , where R is the estimated LD structure among the genetic variants 

in a gene and the corresponding p-value can be calculated by pkS−TWAS = 2�
(

−

∣

∣Zk
S−TWAS

∣

∣

)

.

The number of replications needed in estimation of �.  To apply our proposed method, we first 
need to estimate the correlation matrix of p-values, � , under the null hypothesis for each gene. Following the 
estimation procedure introduced in the method section, we generate Z-scores instead of generating individual-
level genotype and phenotype data. To determine the number of replications needed in the estimation of � , 
we consider 18 genes that contain different numbers of SNPs and have different LD structures. Supplementary 
Table S1 gives a summary of these 18 genes. We can see from Supplementary Table S1, the number of SNPs in a 
gene is ranging from 23 to 359 and the average per-SNP LD score in a gene is ranging from 12.72 to 170.85. We 
simulate a Z-score vector from a multivariate normal distribution with mean 0 and variance–covariance matrix 
R , Z ∼ MVN(0,R) , where R is the LD matrix of each gene which can be estimated using the 1000 Genomes 
Project (unrelated Europeans in 1000 Genomes in Phase 3; ftp://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/). First, we 
use B = 104 replications to estimate � under the null hypothesis, where the estimated matrix is denoted by �̂ . 
Then, we denote �̂0 as the correlation matrix of p-values by using B0 replications. We vary the value of B0 from 16 
to 5000, and test the null hypothesis that the two correlation matrices, �̂0 and �̂ , are the same by using “lavaan” 
package (https://​CRAN.R-​proje​ct.​org/​packa​ge=​lavaan)31. Supplementary Figure S1 shows that the p-values for 
the hypothesis testing in each gene are greater than 0.05 after B0 = 1000 replications for all of the 18 genes. 
Therefore, we recommend using 1000 replications to obtain �̂ for each gene under the null hypothesis. Con-
sequently, 1000 replications are used in the following sessions to evaluate the type I error rates and powers of 
Overall.

Type I error rates.  To evaluate if our proposed method can control type I error rates, we perform simula-
tions based on the aforementioned 18 genes. For each of the 18 genes, we generate Z-score vectors under the 
null hypothesis, Z ∼ MVN(0,R) , where R is the LD matrix of the gene estimated using the 1000 Genomes 
project. Then, we use the regularization procedure to obtain the corrected correlation matrix of Z-scores Û , 
and calculate the three types of gene-based association tests, BT, SKAT, and SKATO, with or without the four 
eQTL—derived weights (NTR, YFS, METSIM, CMC) based on the corrected correlation matrix Û . Finally, we 
apply our proposed method to combine the p-values using the estimated correlation matrix of p-values, �̂ , with 
1000 replications.

We generate simulated data to mimic real lipids data which we will use in “Real data analysis” section. Gene 
AGTRAP is associated with lipids trait HDL15, There are a total of 23 genetic variants in gene AGTRAP. The LD 
block structure of these 23 genetic variants is shown in Supplementary Fig. S2. Supplementary Figure S3 shows 
the estimated correlation matrix �̂ for this gene. We use 107 replications to evaluate type I error rates of Overall 

Table 1.   Resources of the four eQTL—derived weights used in the simulation studies.

Study Tissue # of samples References

NTR Peripheral blood 1247 Wright et al.28

YFS Whole blood 1264 Gusev et al.12

METSIM Adipose 563 Gusev et al.12

CMC Brain 452 Gusev et al.12

http://gusevlab.org/projects/fusion/#reference-functionaldata
http://gusevlab.org/projects/fusion/#reference-functionaldata
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
https://CRAN.R-project.org/package=lavaan
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for gene AGTRAP at 5× 10−2 , 1× 10−2 , 1× 10−3 , 1× 10−4,1× 10−5 , and 1.75× 10−6 significance levels. With 
107 replications, a Bonferroni corrected significance level of 1.75× 10−6 can be reached to obtain the empirical 
type I error rates (i.e., for 28,625 genes in the real data analysis section, the Bonferroni corrected significance 
level is 0.05/28625 = 1.75× 10−6 at 5% significance level). We further evaluate type I rates based on the other 
17 genes. To save computational time, we use 2× 105 replications to evaluate type I error rates of Overall for the 
17 genes at significance levels of 1× 10−2 , 1× 10−3 , and 1× 10−4 . Table 2 and Supplementary Table S2 show 
the estimated type I error rates of Overall under various nominal significance levels for gene AGTRAP and the 
other 17 genes, respectively. From these tables, we can see that our proposed method can control type I error 
rates very well at different significant levels.

Power comparison.  To evaluate the performance of the Overall method, we use several simulations to 
compare the power of Overall with the power of OT, S-PrediXcan, S-TWAS, and three types of gene-based asso-
ciation tests with and without eQTL—derived weights. We use BEST to represent the test with the maximum 
power among the three traditional gene-based association tests with and without an eQTL—derived weight, 
S-TWAS.B and S-PrediXcan.B to represent the maximum power of S-TWAS and S-PrediXcan with each of the 
eQTL—derived weights, respectively. Following the simulation settings in Nagpal et al.32 and Zhang et al.15, we 
generate individual-level genotypes, phenotypes, and different gene expression levels using the following steps:

(1)	 The genotype data are generated using the haplotypes of a gene obtained from the 1000 Genomes Project 
reference panel. To generate the genotype of an individual, Xg , we select two haplotypes according to the 
haplotype frequencies from the haplotype pool and then remove genetic variants with MAF < 0.05.

(2)	 We consider K different weights derived from gene expression data which can be estimated using BLUP. 
To generate a vector of weights, wk , for the kth gene expression level, we randomly select causal variants 
according to the proportion of causal variants, pcausal . Then, the effect sizes for the kth gene expression 
levels and Mcausal causal variants can be generated from a standard normal distribution, wmk ∼ N(0, 1) 
for m = 1, . . . ,Mcausal , where Mcausal = M × pcausal ; otherwise, wmk = 0 . After we rescaled the weights to 
ensure the targeted expression heritability h2e , we generate the kth gene expression level by Ek = Xgwk + εe 
with each element of random error εe follows N

(

0, 1− h2e
)

.
(3)	 Let E = (E1, . . . ,EK ) be the matrix of gene expression levels. Phenotypes are generated by using a formula 

Y = Eβ + εp with each element of random error εp follows N
(

0, 1− h2p

)

 , where β = (β1, . . . ,βK )
T is a 

vector of genetic effect sizes which can be assigned based on the phenotypic heritability h2p.
(4)	 The Z-score vector is estimated from individual-level genotype and phenotype data using beta coefficient 

and its standard deviation estimated based on the ordinary least squares method in linear regression.

In our simulation studies for power comparison, we consider two genes, AGTRAP and C3orf22, from the 18 
genes used in the type I error evaluation and K = 4 and K = 20 eQTL—derived weights. AGTRAP contains 458 
haplotypes for 23 genetic variants (11 common variants and 12 rare variants; MAF ranging from 0 to 0.39775); 
C3orf22 contains 295 haplotypes for 42 variants (18 common variants and 24 rare variants; MAF ranging from 0 
to 0.43558). Supplementary Figure S2 shows the LD block structure of the 23 genetic variants at AGTRAP and the 

Table 2.   Estimated type I error rates at different significance levels with 107 replications. The subscript denotes 
BT, SKAT, and SKATO using eQTL—derived weights; CMC, METSIM, NTR, and YFS indicate the resources 
to obtain the eQTL—derived weights. 0 indicates the methods without using eQTL—derived weights.

α-level 5× 10
−2

1× 10
−2

1× 10
−3

1× 10
−4

1× 10
−5

1.75× 10
−6

BT0 5.03× 10−2 1.06× 10−2 1.00× 10−3 1.01× 10−4 9.76× 10−6 1.84× 10−6

SKAT0 5.24× 10−2 1.07× 10−2 1.01× 10−3 1.00× 10−4 1.04× 10−5 1.80× 10−6

SKATO0 4.58× 10−2 9.57× 10−3 1.02× 10−3 1.04× 10−4 9.72× 10−6 1.46× 10−6

BTCMC 5.17× 10−2 1.04× 10−2 1.01× 10−3 9.82× 10−5 9.58× 10−6 1.72× 10−6

SKATCMC 5.08× 10−2 9.89× 10−3 9.71× 10−4 9.75× 10−5 9.48× 10−6 1.66× 10−6

SKATOCMC 5.16× 10−2 1.09× 10−2 1.17× 10−3 1.21× 10−4 1.22× 10−5 2.14× 10−6

BTMETSIM 5.02× 10−2 1.03× 10−2 1.02× 10−3 1.01× 10−4 9.86× 10−6 1.66× 10−6

SKATMETSIM 5.30× 10−2 1.08× 10−2 1.02× 10−3 9.91× 10−5 1.00× 10−5 2.12× 10−6

SKATOMETSIM 4.84× 10−2 1.05× 10−2 1.11× 10−3 1.09× 10−4 1.06× 10−5 1.84× 10−6

BTNTR 5.02× 10−2 1.06× 10−2 1.00× 10−3 9.93× 10−5 1.01× 10−5 1.76× 10−6

SKATNTR 5.09× 10−2 1.03× 10−2 9.98× 10−4 1.00× 10−4 1.01× 10−5 2.00× 10−6

SKATONTR 5.08× 10−2 1.18× 10−2 1.34× 10−3 1.45× 10−4 1.52× 10−5 2.92× 10−6

BTYFS 5.10× 10−2 1.02× 10−2 9.95× 10−4 9.95× 10−5 1.05× 10−5 2.10× 10−6

SKATYFS 4.98× 10−2 1.03× 10−2 9.97× 10−4 1.01× 10−4 1.02× 10−5 2.06× 10−6

SKATOYFS 5.58× 10−2 1.32× 10−2 1.43× 10−3 1.55× 10−4 1.69× 10−5 3.50× 10−6

Overall 4.67× 10−2 1.01× 10−2 1.12× 10−3 1.14× 10−4 1.24× 10−5 2.44× 10−6
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42 genetic variants at C3orf22. We vary the proportion of causal variants with values pcausal = (0.2, 0.3, 0.4, 0.5) for 
AGTRAP and pcausal = (0.1, 0.2, 0.3, 0.4) for C3orf22. We also consider two different directions of genetic effects: 
β1 = · · · = βK (Scenario 1: Uni-directional effects) and β1 = · · · = βK/2 = −βK/2+1 = · · · = −βK (Scenario 
2: Bi-directional effects). For each simulation scenario, we vary the proportion of gene expression heritability 

Figure 1.   Power comparisons of gene-based association tests at 1.75× 10−6 significance level under Uni-
directional effects ( β1 = β2 = β3 = β4 ) with pcausal = (0.2, 0.3, 0.4, 0.5) based on gene AGTRAP. (a) Estimated 
power against phenotypic heritability h2p with fixed expression heritability h2e = 0.2 ; (b) Estimated power against 
expression heritability h2e with fixed phenotypic heritability h2p = 0.2.

Figure 2.   Power comparisons of gene-based association tests at 1.75× 10−6 significance level under 
Bi-directional effects ( β1 = β2 = −β3 = −β4 ) with pcausal = (0.2, 0.3, 0.4, 0.5) based on gene AGTRAP. (a) 
Estimated power against phenotypic heritability h2p with expression heritability h2e = 0.2 ; (b) Estimated power 
against expression heritability h2e with phenotypic heritability h2p = 0.2.
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and the phenotypic heritability with different values of h2e and h2p . We consider the sample size to be 2000 (unless 
it is specified) and the power is calculated as the proportion of 1000 replications with p-value < 1.75× 10−6.

Figure 1 (Supplementary Fig. S4) show the power comparisons based on gene AGTRAP (and C3orf22) with 
K = 4 under the Uni-directional effects ( β1 = β2 = β3 = β4 ) with different pcausal . We consider two settings 
here. First, we vary phenotypic heritability h2p with a fixed expression heritability h2e = 0.2 (Fig. 1a and Supple-
mentary Fig. S4a). Second, we vary the expression heritability h2e with a fixed phenotypic heritability h2p = 0.2 
(Fig. 1b and Supplementary Fig. S4b). Figure 2 (Supplementary Fig. S5) shows power comparisons based on gene 
AGTRAP (and C3orf22) under the Bi-directional effects ( β1 = β2 = −β3 = −β4 ) with different pcausal for K = 4 . 
We also consider two simulation settings, power against the phenotypic heritability h2p with a fixed expression 
heritability h2e = 0.2 and power against the expression heritability h2e with a fixed phenotypic heritability h2p = 0.2 . 
The pattern of the power in Fig. 2 (Supplementary Fig. S5) is similar to what we observe in Fig. 1 (Supplemen-
tary Fig. S4). These figures show that (1) Overall and OT perform uniformly better than BEST, S-TWAS.B, and 
S-PrediXcan.B. We can see that Overall and OT boost power significantly due to integrating association evidence 
by different traditional tests and multiple eQTL—derived weights. Overall is slightly more powerful than OT in 
all of the scenarios. (2) Among BEST, S-TWAS.B, and S-PrediXcan.B, BEST is more powerful than S-TWAS.B 
and S-PrediXcan.B in all of the scenarios for gene C3orf22; For gene AGTRAP, S-TWAS.B and S-PrediXcan.B 
perform better than BEST when the proportion of causal variants in a gene is small ( pcausal = (0.2, 0.3) ); other-
wise, BEST performs better than S-TWAS.B and S-PrediXcan.B.

To evaluate if Overall and OT that integrate different types of association tests and multiple eQTL—derived 
weights are robust for more eQTL studies, we also consider 20 ( K = 20 ) eQTL—derived weights under Uni-
directional effect and Bi-directional effect models on gene C3orf22 with settings similar to the settings in Sup-
plementary Figs. S4 and S5. After integrating L = 3(K + 1) = 63 traditional gene-based association tests, we 
observe that the patterns of the power for K = 20 are similar to that in Supplementary Figs. S4 and S5 with 
K = 4 , and the power gain of Overall and OT is higher than that of the tests only consider one eQTL—derived 
weight, such as BEST, S-PrediXcan.B, and S-TWAS.B (Supplementary Fig. S6).

Furthermore, we consider simulation settings with noise to the eQTL. We consider simulation settings by 
adding less noise to the eQTL from the most relevant tissues and more noise to those from the less relevant tis-
sues. For the Uni-direction scenario, we consider the first study being the most relevant tissue, where 

β1 = β0 + N
(

0, 0.1h2p

)

 and β2 = β3 = β4 = β0 + N
(

0, 0.5h2p

)

 ; β0 =
√

h2p

/

K  depends on the phenotypic herit-

ability h2p . For the Bi-direction scenario, we consider the first and third studies being the most relevant tissues 
that have opposite effect directions, where β1 = −β0 + N

(

0, 0.1h2p

)

, β3 = β0 + N
(

0, 0.1h2p

)

, and 
β2 = −β0 + N

(

0, 0.5h2p

)

, β4 = β0 + N
(

0, 0.5h2p

)

 . Other parameter settings are the same as these in Supple-
mentary Figs. S4 and S5. The power comparison results are shown in Supplementary Figs. S7 and S8. From these 
figures, we find that the patterns of the power in Supplementary Figs. S7 and S8 are very similar to those in 
Supplementary Figs. S4 and S5.

In all of the previous power comparisons, we use a sample size of 2000. We also consider simulation settings as 
those in Supplementary Figs. S7 and S8, but with a large sample size of 100,000. Supplementary Figure S9 shows 
the results of power comparisons. We can see from this figure, all powers are increased with this larger sample 
size, but the patterns of the power are very similar to those in Supplementary Figs. S7 and S8.

To remove noise in LD matrix computed from a reference sample, we shrink the observed LD matrix toward 
an identity matrix with the shrinkage parameter estimated by maximum likelihood. To evaluate how well this 
regulation process performs, we compare the powers of three traditional gene-based association tests with and 
without eQTL—derived weights, OT, and Overall based on corrected and uncorrected LD structure. We use the 
same simulation settings as those in Supplementary Figs. S7 and S8. Supplementary Figure S10 shows the power 
comparison results based on gene C3orf22 under Uni-directional effects and Bi-directional effects with noise 
to eQTL. We can see that the powers of these tests based on corrected LD structure perform better than those 
based on uncorrected LD structure in most of the settings.

Real data analysis
To evaluate the performance of our proposed method, we apply Overall, OT, the three traditional tests with and 
without eQTL—derived weights, S-PrediXcan, and S-TWAS to the GWAS summary statistics data sets used in 
Zhang et al.15: two SCZ GWAS summary data sets and two lipid GWAS summary data sets. We estimate the LD 
between genetic variants using the 1000 Genomes Project reference panel16, and obtain the corrected matrix of 
Z-score after the regularization procedure. We consider four eQTL—derived weights estimated by the BLUP 
method using the resources listed in Table 1 (NTR, YFS, METSIM, CMC).

Application to the SCZ GWAS summary data.  We consider two SCZ GWAS summary data sets, SCZ1 
and SCZ2, which can be downloaded from the Psychiatric Genomics Consortium website (https://​www.​med.​
unc.​edu/​pgc/​resul​ts‐and‐downl​oads/)33. SCZ1 is a meta-analysis of SCZ GWAS data set with 13,833 cases and 
18,310 controls. SCZ2 is a more recent and larger SCZ GWAS summary data set with 36,989 cases and 113,075 
controls for partial validation34. In our real data analysis, we define a gene to include all of the SNPs from 20 kb 
upstream to 20 kb downstream of the gene and test the association between each gene and the trait. We con-
sider all genes according to the GENCODE version 35 (GRCh37) human comprehensive gene annotation list 
which can be downloaded from the GENCODE website (https://​www.​genco​degen​es.​org/​human/​relea​se_​35lif​
t37.​html).

https://www.med.unc.edu/pgc/results‐and‐downloads/
https://www.med.unc.edu/pgc/results‐and‐downloads/
https://www.gencodegenes.org/human/release_35lift37.html
https://www.gencodegenes.org/human/release_35lift37.html
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To make fair comparisons among all these weighted tests, the genetic variants are removed if there is at least 
one weight missing in the four eQTL—derived weights. After pruning, there are 26,575 genes in SCZ1 and 17,823 
genes in SCZ2 left in our final analyses. Therefore, the Bonferroni corrected significance level for gene-based 
association analysis is defined as 0.05 divided by the number of genes. First, we apply BT, SKAT, and SKATO 
with and without an eQTL—derived weight, OT, Overall, S-PrediXcan, and S-TWAS to the SCZ1 and SCZ2 
data sets. Table 3 (SCZ1 and SCZ2) shows the number of genes identified by each method for the SCZ data sets, 
respectively. As we can see in Table 3, Overall identifies more genes than all of the other methods for two SCZ 

Table 3.   The numbers of genes identified by each method for the two SCZ data sets. The subscript denotes 
BT, SKAT, and SKATO using eQTL—derived weights; CMC, METSIM, NTR, and YFS indicate the resources 
to obtain the eQTL—derived weights. 0 indicates the methods without using any weights. SCZ1 indicates the 
number of genes identified by each method for SCZ1 data; SCZ2 indicates the number of genes identified by 
each method for SCZ2 data; SCZoverall indicates the number of overlapping genes identified by both SCZ1 and 
SCZ2 data sets; GWASSCZ1 and GWASSCZ2 indicate the numbers of genome-wide significant genes that are 
reported in the GWAS catalog and are also identified by each method for SCZ1 and SCZ2, respectively.

SCZ1 SCZ2 SCZoverlap GWASSCZ1 GWASSCZ2

BT0 97 166 7 1 38

SKAT0 47 305 20 15 153

SKATO0 136 394 27 15 153

BTCMC 44 137 2 1 56

SKATCMC 12 225 6 1 134

SKATOCMC 30 263 2 1 130

BTMETSIM 44 136 5 1 48

SKATMETSIM 23 223 9 4 132

SKATOMETSIM 31 205 3 0 100

BTNTR 48 119 7 6 48

SKATNTR 27 230 9 8 141

SKATONTR 40 280 8 6 143

BTYFS 89 166 14 1 53

SKATYFS 20 223 6 7 137

SKATOYFS 47 321 7 0 140

S-PrediXcanCMC 42 43 7 0 38

S-PrediXcanMETSIM 41 44 8 1 30

S-PrediXcanNTR 48 70 14 6 59

S-PrediXcanYFS 83 128 29 2 72

S-TWASCMC 33 45 6 0 43

S-TWASMETSIM 36 29 5 1 20

S-TWASNTR 37 54 13 6 46

S-TWASYFS 64 105 29 2 58

OT 133 522 17 6 166

Overall 271 559 45 16 167

Figure 3.   Venn diagram of the number of genes identified by Overall, OT, and SKATO0, S-PrediXcanYFS, and 
S-TWASYFS for SCZ1 data (left) and SCZ2 data (right). The number below each method indicates the total 
number of significant genes identified by the corresponding method.
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GWAS summary data sets. Among the three types of gene-based association tests, BT, SKAT, and SKATO, with 
or without different eQTL—derived weights, SKATO0 identifies the largest number of genes. S-TWASYFS and 
S-PrediXcanYFS identify the largest number of genes compared with S-TWAS and PrediXcan based on the other 
three eQTL—derived weights, respectively. Therefore, in Fig. 3, we only show the number of genes identified 
by Overall, OT, SKATO0, S-PrediXcanYFS, and S-TWASYFS. The number below each method indicates the total 
number of genes identified by the corresponding method. From Fig. 3, we can see that Overall identifies all of 
the genes identified by OT for SCZ1; for SCZ2, there are two genes identified by OT but failed to be identified 
by Overall; there are 66 and 24 genes identified only by Overall for SCZ1 data and SCZ2, respectively.

We further investigate the 90 genes identified only by Overall for the SCZ data sets by searching the GWAS 
catalog (https://​www.​ebi.​ac.​uk/​gwas/). Among the 66 genes for the SCZ1 data set, there are six genes reported 
in the GWAS catalog; among the 24 genes for the SCZ2 data set, there are six genes reported in the GWAS 
catalog (Table 4). We also use these two SCZ GWAS data sets for partial validation. Table 3 shows that there 
are 45 overlapping genes identified by Overall using SCZ1 and SCZ2 data sets and only 17 overlapping genes 
identified by OT using both SCZ1 and SCZ2 data sets. Furthermore, we search for genome-wide significant 
SNPs ( p < 5× 10−8 ) from the two SCZ GWAS summary data sets and consider the genes covering at least one 
genome-wide significant SNP from 20 kb upstream to 20 kb downstream of the gene. There are 63 genome-
wide significant genes for SCZ1, and 2422 genome-wide significant genes in SCZ2. Table 3 (GWASSCZ1 and 
GWASSCZ2) summarizes the numbers of genome-wide significant genes that are identified by each method for 
the two SCZ data sets. Among the 63 genome-wide significant genes for the SCZ1 data set, Overall identifies the 
largest number of genes, followed by SKAT0 and SKATO0; OT, S-PrediXcanNTR and S-TWASNTR only identify 
6 genes. Meanwhile, among 2422 genome-wide significant genes for SCZ2, Overall identifies 167 genes; OT 
identifies 166 genes; SKATO and SKATO0 identify 153 genes; S-TWASYFS and S-PrediXcanYFS only identify 58 
and 72 genes respectively.

Application to the lipids GWAS summary data.  We consider two lipids GWAS summary data sets, 
HDL1 and HDL2, which can be downloaded at the Center for Statistical Genetics (CSG) at the University of 
Michigan. HDL1 is a meta-analysis of HDL GWAS data set with about 100,000 samples downloaded at the 
website (http://​csg.​sph.​umich.​edu/​willer/​public/​lipid​s2010/)44. HDL2 is the follow-up data with about 189,000 
samples for partial validation downloaded at the Global Lipids Genetics Consortium (http://​csg.​sph.​umich.​edu/​
willer/​public/​lipid​s2013/)45. We perform the same analysis as we did in the previous section for the two SCZ 
GWAS summary data sets. After pruning and removing the genetic variants with missing weights, there are 
17,389 genes in HDL1 and 16,917 genes in HDL2. Table  5 (HDL1 and HDL2) shows the number of genes 
identified by each method for the two lipids data sets, respectively. As we can see from Table 5, among the three 
traditional gene-based association tests with and without eQTL—derived weights, SKATO0 and BT0 identify the 
largest number of genes in HDL1 and HDL2, respectively; Among the four S-PrediXcan tests, S-PrediXcanYFS 
and S-PrediXcanCMC identify the largest number of genes in HDL1 and HDL2, respectively; for the four S-TWAS 
tests, S-TWASYFS and S-TWASCMC identify the largest number of genes in HDL1 and HDL2, respectively. For the 
HDL1 data set, Overall identifies the largest number of genes (249), followed by OT that identifies 233 genes; 
for the HDL2 data set, BT0 identifies the largest number of genes (836), followed by Overall and OT, where 
Overall identifies 765 genes and OT identifies 688 genes. In Fig. 4, we compare genes identified by SKATO0, 
S-PrediXcanYFS, and S-TWASYFS, along with Overall and OT for the HDL1 data set and genes identified by BT0, 
S-PrediXcanCMC, S-TWASCMC, Overall, and OT for the HDL2 data set. Again, we observe that Overall identifies 
the largest number of genes for the HDL1 data set and the second most for the HDL2 data set; all genes identi-
fied by OT are also identified by Overall; 82 and 24 genes are identified only by Overall and OT for the HDL1 
and HDL2 data sets, respectively; there are 13 and 6 genes only identified by Overall for the HDL1 and HDL2 
data sets, respectively. We search the GWAS catalog (https://​www.​ebi.​ac.​uk/​gwas/). Table 6 shows that five out 

Table 4.   Genes identified only by Overall based on the two SCZ data sets that are reported in the GWAS 
catalog.

Gene Data Overall References

RAI1 SCZ1 2.63E−31 Pardiñas et al.35

SLC7A6 SCZ1 2.17E−15 Ikeda et al.36; Li et al.37

AP001931.2 SCZ1 1.27E−13
Schizophrenia Working Group of the Psychiatric Genomics Consortium34; Goes et al.38; Ikeda et al.36; 
Li et al.37; Lam et al.39; Periyasamy et al.40; Lee et al.41; The Autism Spectrum Disorders Working Group 
of the Psychiatric Genomics Consortium42; Pardiñas et al.35

MARK2 SCZ1 2.64E−07 Goes et al.38

GULOP SCZ1 1.24E−07 Pardiñas et al.35; Ikeda et al.36; Li et al.37; Goes et al.38; Lam et al.43

ZBED4 SCZ1 9.02E−07 Goes et al.38

RAB11FIP5 SCZ2 1.05E−06 Goes et al.38; Lam et al.43

AL669918.1 SCZ2 2.03E−06 Goes et al.38

YPEL1 SCZ2 2.80E−06 Goes et al.38

LINC00606 SCZ2 2.57E−06 Goes et al.38

ERLIN1 SCZ2 2.34E−06 Goes et al.38

AC024597.1 SCZ2 2.56E−06 Lam et al.39

https://www.ebi.ac.uk/gwas/
http://csg.sph.umich.edu/willer/public/lipids2010/
http://csg.sph.umich.edu/willer/public/lipids2013/
http://csg.sph.umich.edu/willer/public/lipids2013/
https://www.ebi.ac.uk/gwas/
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of 13 genes identified only by Overall based on HDL1 data have been reported, and one out of 6 genes has been 
reported on HDL2 data in the GWAS catalog. We also use these two HDL GWAS data sets for partial validation 
by looking for the number of overlapping genes identified by both of the data sets (Table 5, HDLoverlap). There are 
177 overlapping genes identified by Overall for both SCZ1 and SCZ2 data sets and 167 overlapping genes identi-
fied by OT for both SCZ1 and SCZ2 data sets.

Table 5.   The number of genes identified by each method for the two lipids data sets. The subscript denotes 
BT, SKAT, and SKATO using eQTL—derived weights; CMC, METSIM, NTR, and YFS indicate the resources 
to obtain the eQTL—derived weights. 0 indicates the methods without using any weights. HDL1 indicates the 
number of genes identified by each method for HDL1 data; HDL2 indicates the number of genes identified by 
each method for HDL2 data; HDLoverall indicates the number of overlapping genes identified by both HDL1 
and HDL2 data sets; GWASHDL1 and GWASHDL2 indicate the numbers of genome-wide significant genes that 
are reported in the GWAS catalog and are also identified by each method for HDL1 and HDL2, respectively.

HDL1 HDL2 HDLoverlap GWASHDL1 GWASHDL2

BT0 95 836 78 50 185

SKAT0 116 174 114 99 157

SKATO0 157 762 138 104 190

BTCMC 79 130 41 46 107

SKATCMC 105 159 99 95 146

SKATOCMC 130 177 103 96 150

BTMETSIM 83 160 59 58 111

SKATMETSIM 120 259 118 102 149

SKATOMETSIM 131 199 118 98 152

BTNTR 78 136 50 49 111

SKATNTR 105 156 100 90 148

SKATONTR 131 183 111 95 154

BTYFS 88 154 50 53 113

SKATYFS 106 148 102 94 137

SKATOYFS 142 185 112 99 144

S-PrediXcanCMC 43 213 18 29 114

S-PrediXcanMETSIM 45 201 23 30 118

S-PrediXcanNTR 33 187 14 19 108

S-PrediXcanYFS 69 195 25 31 117

S-TWASCMC 40 207 17 23 109

S-TWASMETSIM 37 202 16 15 112

S-TWASNTR 25 176 10 11 97

S-TWASYFS 59 183 24 29 115

OT 233 688 167 120 190

Overall 249 765 177 122 192

Figure 4.   Venn diagram of the number of genes identified by Overall, OT, SKATO0, S-PrediXcanYFS, and 
S-TWASYFS for HDL1 data (left) and Overall, OT, BT0, S-PrediXcanCMC, and S-TWASCMC for HDL2 data (right). 
The number below each method indicates the total number of significant genes identified by the corresponding 
method.
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Same as the analyses for the SCZ GWAS summary data sets, we search for genome-wide significant SNPs 
( p < 5× 10−8 ) from the two lipids GWAS summary statistics. There are 1911 genome-wide significant genes 
for HDL1 and 2682 genome-wide significant genes for HDL2. Table 5 (GWASHDL1 and GWASHDL2) summarizes 
the numbers of genome-wide significant genes that are identified by each method for the two lipids data sets. 
Among the 1911 genome-wide significant genes for the HDL1 data set, Overall identifies the largest number of 
genes (122), followed by OT (120), then SKAT0 (104); S-TWASYFS only identifies 29 genes and S-PrediXcanYFS 
identifies 31 genes. Meanwhile, among 2682 genome-wide significant genes for HDL2, Overall identifies the larg-
est number of genes (192); OT and SKATO0 identify 190 genes; S-TWASMETSIM and S-PrediXcanMETSIM identify 
112 and 118 genes. respectively.

Discussions
In this paper, we develop a powerful and computationally efficient method, Overall, for gene-based association 
studies using GWAS summary data. Overall aggregates information from three traditional types of gene-based 
association tests (BT, SKAT, SKATO) and also incorporates eQTL data. Both our simulation studies and real data 
analysis confirm that our proposed method can control type I error rates correctly and has very good perfor-
mance compared with other comparison methods. In “Real data analysis”, Overall identify more significant genes 
than other methods, and there are some genes reported by GWAS catalog which are only identified by Overall.

There are some advantages of our proposed method. First, Overall adaptively aggregates information from 
multiple gene-based association tests. Most combination tests (i.e., Fisher’s combination test61) assume that the 
p-values should be calculated from independent tests. To combine information from highly correlated gene-based 
association tests, Overall utilizes the extended Simes procedure5,22. It is shown that this procedure to combine 
multiple tests is stable and effective regardless of whether the tests are highly correlated24,62. Second, Overall 
is more powerful than the traditional gene-based association tests, some popular transcriptome association 
tests (i.e., S-PrediXcan29 and S-TWAS12), and other eQTL weighted combination tests (i.e., ominous test15). By 
aggregating information from different tests and incorporating multiple eQTL—derived weights, Overall can 
achieve a higher statistical power under a variety of situation settings. Meanwhile, our simulation studies and real 
data analyses show that the extended Simes procedure is more powerful than the Cauchy combination method, 
especially if the proportion of causal variants in a gene is small. Third, the p-values of Overall can be analytically 
computed without using permutations, therefore, Overall is computationally efficient. Finally, using the regu-
larization procedure to correct the estimated LD can reduce the potential statistical noise in the LD estimation 
if LD is estimated using a reference panel with small sample size. In addition, Overall can be easily applied to 
genetic association studies with either individual-level data or GWAS summary statistics.

In this paper, we combine three types of traditional gene-based association tests (BT, SKAT, SKATO). How-
ever, the combination procedure used in the paper is very general. Other more powerful gene-based association 
tests can also be combined using the same approach, such as some state-of-the-art methods (i.e., S-TWAS12, 
E-MAGMA63, and SMR64).

In this current study, we utilize the weights derived from four single tissue gene expression studies (CMC, 
METSIM, NTR, YFS). Although the extended Simes procedure in Overall allows us to employ more eQTL—
derived weights from a number of studies (i.e., GTEx gene expression version 865 et al.), there is a possibility 
that the noise can be increased with the increment in the number of unrelated studies. Therefore, the power of 
the combination tests (i.e., Overall and OT) might be attenuated. Thus, to obtain the most robust identification 
of phenotypic associated genes in a real data analysis with the Overall method, we suggest incorporating eQTL 
datasets from the most relevant tissues to the phenotype. The last but the most important thing is that population 
stratification can be confounded association results66,67. Systematic minor allele frequency difference between 
transcriptomic studies of different cohorts and no matching between the estimated LD structure of Genomes 
Project with that in the study may increase the chances of false positive findings. Therefore, we need to eliminate 
false positive findings possibly caused by population stratification68,69. When applying the Overall method, the 
population of GWAS summary dataset, external reference panel (i.e., 1000 Genomes Project) used to estimate 
LD structure, and eQTL—derived weights should be consistent.

In this study, the computational time of the proposed method is acceptable even if the estimated correla-
tion matrix of multiple tests is obtained by the replication procedure. Meanwhile, the estimation procedure is 
independent of gene-based association tests, therefore we only need to perform this procedure once for each 
GWAS summary dataset. For example, there are a total of 29,008 gene in the 1000 Genomes Project and we 

Table 6.   Genes identified only by Overall based on the two lipids data sets that are reported in the GWAS 
catalog.

Gene Data Overall References

AP002954.1 HDL1 2.27E−11 Emilsson et al.46

EDC4 HDL1 1.65E−11 Lettre et al.47, Kilpeläinen et al.48, Wojcik et al.49

PACSIN1 HDL1 2.24E−06 Liu et al.50

AFF1 HDL1 2.10E−06 Spracklen et al.51, De Vries et al.52, Hoffmann et al.53, Ripatti et al.54, Richardson et al.55

AC106779.1 HDL1 2.85E−06 Noordam et al.56

NHLRC2 HDL2 1.98E−06 Hoffmann et al.53, Richardson et al.55, Klarin et al.57, Qi et al.58, Klimentidis et al.59, Liu et al.60
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use 1000 replicates to estimate the correlation matrix of multiple tests for each gene. We perform this using the 
high-performance computing (HPC) cluster (Intel Xeon E5—2670 2.6 GHz, 16 GB RAM). The computational 
time for all genes is about 36 h CPU time with 500 nodes. Then, the p-value of the proposed method can be 
computed analytically which is independently performed in each GWAS summary dataset. The computational 
time for each GWAS dataset is about 1 h CPU time with 10 nodes.

Data availability
The data that support the findings of this study are publically available and the links to the data are provided in 
the article.
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