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4e purpose of this studywas to explore the effects of CTslice thickness, reconstruction algorithm, and radiation dose on quantification
of CT features to characterize lung nodules using a chest phantom. Spherical lung nodule phantoms of known densities (−630
and+100 HU) were inserted into an anthropomorphic thorax phantom. CT scan was performed ten times with relocations. CTdata
were reconstructed using 12 different imaging settings; three different slice thicknesses of 1.25, 2.5, and 5.0mm, two reconstruction
kernels of sharp and standard, and two radiation dose of 30mAs and 12mAs. Lesions were segmented using a semiautomatedmethod.
Twenty representative CTquantitative features representing CTdensity and texture were compared using multiple regression analysis.
In 100 HU nodule phantoms, 18 and 19 among 20 computer features showed significant difference between different mAs and
reconstruction algorithms, respectively (p≤ 0.05). 20, 19, and 19 computer features showed difference between slice thickness of 5.0 vs
1.25, 5.0 vs 2.5, and 2.5 vs 1.25mm, respectively (p≤ 0.05). In −630 HU nodule phantoms, 18 and 19 showed significant difference
between different mAs and reconstruction algorithms, respectively (p≤ 0.05). 18, 11, and 17 computer features showed difference
between slice thickness of 5.0 vs 1.25, 5.0 vs 2.5, and 2.5 vs 1.25mm, respectively (p≤ 0.05). When comparing the absolute value of
regression coefficient, the effect of slice thickness in 100 HU nodule and reconstruction algorithm in −630HU nodule was greater than
the effect of remaining scan parameters. 4e slice thickness, mAs, and reconstruction algorithm had a significant impact on the
quantitative image features. In clinical studies involving deep learning or radiomics, it should be noted that differences in values can
occur when using computer features obtained from different CT scan parameters in combination. 4erefore, when interpreting the
statistical analysis results, it is necessary to reflect the difference in the computer features depending on the scan parameters.

1. Introduction

Biomedical images may contain information that reflects
underlying pathophysiology of many diseases. Nowadays,
based on high-throughput computing, extracting many
quantitative features from tomographic images is possible.
4erefore, many studies have focused on how to convert
information on images to quantitative computer features.
4e conversion of digital medical images into high-
dimensional computer data is known as radiomics. Radio-
mics is also a decision support tool, and it can involve
combining radiomic data with other patient characteristics
such as survival and disease phenotype [1, 2].

Computer features based on computed tomography (CT)
histogram and texture are most frequently used for the dif-
ferential diagnosis of various cancers including lung cancer
[3–6]. Histogram features represent the density of lung
nodules and are indicators of distribution of attenuation. On
the other hand, digital images are formed from pixels that are
too small to be recognized by the human eye. However, the
human visual system can detect the patterns such as roughness
and smoothness. Such spatial variation of pixel intensities can
be represented as the texture. Computerized analysis of a
pattern of brightness and darkness is called texture analysis,
and texture features show surface information by examining
the relationship between voxels on images [7, 8].
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Recently, the number of researches on radiomics or deep
learning is increasing [9–14]. Scan parameters can affect the
image quality or noise, and some of the computer features
extracted from these images are at risk of varying values.
Nevertheless, imaging data from clinical studies are usually
obtained using different scan parameters. For accurate
analysis, images acquired with different parameters should be
normalized to the same conditions. For normalization, it is
necessary to quantitatively analyze the magnitude of the ef-
fects of the change of the scan parameter on the feature values.
Several studies have been reported on the quantification of
characteristic values according to scan parameters. Zhao et al.
[15] reported differences in radiomic features due to changes
in slice thickness and reconstruction algorithms.4e repeated
CT data were collected from 32 lung cancer patients, and
experiments were performed on the reproducibility of
radiomic features in 6 different combinations of slice thick-
ness and reconstruction algorithms. Also, differences in
radiomic features due to changes in reconstruction algorithms
at the same slice thickness were analyzed. As a result, the
radiomic features were reproducible when the CT was ob-
tained repeatedly under the same conditions. However, Zhao
et al. reported that the radiomic features differed in the change
of the reconstruction algorithm. Mackin et al. [16] reported
the effect of tube current on radiomic features using the
phantom in CT.4e differences between 48 features extracted
from 25mAs to 300mAs conditions were analyzed in the
CCR phantom, which was made with 10 textures. As a result,
the changes in the tube current influenced more on the
features extracted from homogeneous materials (acrylic,
sycamore wood) than materials with more tissue-like textures
(cork, rubber particles). Mackin et al. reported that tube
currents do not have a significant effect on the radiomic
features extracted from the tissue texture such as tumors. Kim
et al. [17] also reported the tube current effect on radiomic
features in CT. A total of 15 features were extracted from 42
CTdata based on two reconstruction algorithms, filtered back
projection, and iterative reconstruction algorithm, re-
spectively. 4e difference between the features extracted from
the two reconstruction algorithms was analyzed. As a result,
Kim et al. reported that 9 of 15 features showed significant
differences. Several studies have been reported on the dif-
ferences in radiomic features for changes in scan parameters.
However, most of the studies were analyzed using one scan
parameter. We need to analyze the relationship betweenmore
various scan parameters and radiomic features.

4erefore, the purpose of this study was to analyze the
effect of various scan parameters on the quantitative CT
features of lung nodule phantoms. We evaluated the effect of
different CT slice thicknesses, mAs, and reconstruction al-
gorithms on 3-dimensional computer features including CT
histogram, gray-level co-occurrence matrix (GLCM), and
gray-level run length matrix (GLRLM).

2. Materials and Methods

2.1. Lung Nodules. In this study, we used an anthropo-
morphic thorax phantom (KYOTO KAGAKU co., Kyoto,
Japan) and nodule phantoms of two different attenuation

values (100 Hounsfield Unit (HU) and −630HU) (Figure 1).
4e pulmonary nodule can be divided into a solid com-
ponent and a ground glass component depending on the
component. It is generally known that the solid component
has an attenuation value of 100HU, and the ground glass
component has an attenuation value of 630HU. 4erefore,
we used two types of nodal phantoms with attenuation
values of 100HU and −630HU on CT. 4e 100HU nodules
were made with polyurethane and hydroxyapatite, and the
−630HU nodules were made with urethane foam.4e size of
nodule phantoms was 10mm and 12mm in each attenuation
value [18]. So, total four kinds of nodule phantoms were
used. We inserted nodule phantoms into the two lungs (2
lesions per lung).

2.2. ImageAcquisition. CTscan was performed by using a 64
channel multi-detector row CT scanner (GE Discovery CT
750 HD; GEHealthcare, USA).4e CTscan parameters were
120 kVp, 64× 0.625 collimator configuration, and pitch of
0.984 :1. 4e raw data were then reconstructed using 12
different combinations of scan parameters; slice thicknesses
(1.25, 2.5, 5.0), mAs (30, 120), and reconstruction algorithms
(lung, standard). In each combination of scan parameter, CT
scan was repeated 10 times with relocation of nodule
phantoms (Figures 2 and 3).

In general, it is known that definition and noise de-
creases as slice thickness increases, noise decreases as mAs
increases, and the standard algorithm has less definition and
noise than the lung algorithm. Figure 4 shows a graph of the
relationship between each scan parameter and noise,
sharpness.

2.3. Nodules Segmentation. In this study, we used an in-
house software for the computerized analysis of CT images.
4is software was developed by using Microsoft Visual
Studio (Ver. 2010, Microsoft, Redmond, WA, USA), ITK
(Insight Segmentation and Registration Toolkit, Kitware
Inc., NY, USA), and VTK (Visualization Toolkit, Kitware
Inc., NY, USA). For the first step of the volumemeasurement
of the nodules, the entire tumor mass was separated from
surrounding anatomic structures by using a semiautomated
segmentation algorithm developed in the Laboratory for
Computational Image Analysis in the Department of Bio-
medical Engineering of Gachon University College of
Medicine. 4is algorithm combined the image analysis
techniques of seed region-growing algorithm [19].
Computer-generated tumor boundaries were then visually
inspected by a radiologist (HJL, with 19 years of experience
performing chest image interpretations) for correctness and
consistency. If any segmentation results were considered
suboptimal, tumor contours were edited by the same ra-
diologist (HJL).

2.4. Features Selection and Extraction. In this study, we used
the features mainly used in lung nodule analysis. Among the
various features, 20 radiomic features were selected based on
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several related papers that performed lung nodule analysis
[20–34].

In this study, we quantized the pixel values of 4,096 gray
colors into 256 gray colors, and texture features are extracted
based on the discretized pixel values [35]. A total of 20
computer features including 7 histogram features and 13
texture features were extracted from each nodule phantom
(Table 1). Histogram features were mean of CT attenuation,
standard deviation (stddev), variance, skewness, kurtosis,
energy, and entropy. GCLM texture features were contrast,
dissimilarity, homogeneity, angular second moment (ASM),
energy, probability max, entropy, and correlation. GLRLM
texture features were long runs emphasis (LRE), gray-level

nonuniformity (GLN), run length nonuniformity (RLN),
low-gray-level run emphasis (LGRE), and high-gray-level
run emphasis (HGRE) [7, 8, 36–39].

GLCM is a matrix that represents the frequency of
occurrence in the relationship of gray level between
neighboring voxels with a specific direction. GLRLM is a
matrix characterized by the frequency of occurrence in the
consecutive voxels with the same attenuation value along a
specific direction [8].

4e GLCM is represented by the maximum size of the
gray level, both in rows and columns. 4e relationship
between gray values of all the pixels and the gray values of
neighboring pixels according to a given direction and

(a) (b)

(c)

(d)

(e)

Figure 1: Anthropomorphic thorax phantom and nodule phantoms: (a) chest phantom, (b) nodule phantoms of 100HU, (c) nodule
phantoms of −630HU, (d) an example of a 100HU nodule phantom attached to the pulmonary vasculature, and (e) an example of a
−630HU nodule phantom attached to the pulmonary vasculature.

1.25mm

Lung Lung Standard Standard

30 mAs 120 mAs 30 mAs 120 mAs

2.5mm

5.0mm

Figure 2: CT images of a 12mm sized 100HU nodule phantom in 12 different scan parameters.
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distance is expressed in the number of occurrences in the
matrix. In Figure 5(a), the number of occurrences is 2 when
the gray value of the target pixel in the left image is 1 and the
gray value of the neighboring pixel under the given con-
dition is 1. 4erefore, (1, 1) in the right GLCM becomes the
total number of occurrences, 2.

In the GLRLM, the rows are represented by gray values
and the columns are expressed by the same number of
adjacent pixels. 4e number of occurrences for the case
where the gray value of each of the pixels is the same as the
gray value of the neighboring pixels according to a given
direction, and distance is represented by a matrix. In
Figure 5(b), the number of occurrences is 1 when the gray
value of the target pixel in the left image is 2 and the length of
the same gray value of the neighboring pixel under the given
condition is 2.4erefore, (2, 2) in the right GLRLM becomes
the total number of occurrences, 1.

On a three-dimensional space, GLCM and GLRLM can
generally conduct a matrix calculation in 13 directions
(Figure 6).4e calculation of GLCM and GLRLM values was
conducted in each of 13 directions, and we used the mean
value of each calculation for statistical analysis [40, 41]. 4e
distance between voxels was set as 1. 4e computer features
were calculated from the equations in Table 1 in the GLCM
and the GLRLM.

2.5. Statistical Analysis. Multiple regression analysis was
performed to evaluate the effect of different scan parameters
on the computer features of nodule phantoms (SPSS version

18.0, SPSS Inc., USA) [42, 43]. 4e dependent variables were
20 computer features, and independent variables were slice
thickness (three variables), mAs (two variables), and re-
construction algorithm (two variables). For the statistical
analysis, categorical variables were converted into dummy
variables. We assumed that independent variables have a
linear relationship with dependent variables. We performed
an absolute effect size analysis to evaluate the difference in
the change of the computer features according to the scan
parameter. We calculated Cohen’s d effect size by dividing
the mean difference by their pooled standard deviation.

3. Results

4e results of multiple regression analysis in 100 HU nodule
phantoms are presented in Tables 2 and 3. In 95 sets of
parameter comparison among 100 sets of comparison,
computer features showed significant difference. Between
different slice thicknesses, 19 computer features showed
significant difference (p≤ 0.05). 4e only feature, dissimi-
larity, showed no difference between slice thicknesses of
5.0mm and 2.5mm (p � 0.437) and also showed no dif-
ference between slice thicknesses of 2.5mm and 1.25mm
(p � 0.572). Between 30mAs and 120mAs, 18 computer
features showed significant difference (p≤ 0.05). Two fea-
tures including kurtosis (p � 0.217) and LGRE (p � 0.19)
showed no difference. Between different reconstruction al-
gorithms, 19 computer features showed significant differ-
ence (p≤ 0.05), and correlation showed no difference
(p � 0.11). In the absolute effect size analysis, the numbers of

1.25mm

30 mAs 120 mAs 30 mAs 120 mAs

2.5mm

5.0mm

Lung Lung Standard Standard

Figure 3: CT images of a 12mm sized −630HU nodule phantom in 12 different scan parameters.
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large effects, medium effects, and small effects were 19, 1,
and 0 between 5.0mm and 1.25mm slice thickness, and 18,
1, and 1 between 5.0mm and 2.5mm slice thickness, and 15,
4, and 1 between 2.5mm and 1.25mm slice thickness, re-
spectively. 4e numbers of large effects, medium effects, and
small effects were 0, 13, and 7 between 30mAs and 120mAs,
and 2, 16, and 2 between lung and standard reconstruction
algorithms, respectively.

4e results of multiple regression analysis in −630 HU
nodule phantoms are presented in Tables 4 and 5. In 83 sets
of parameter comparison among 100 sets of comparison,
computer features showed significant difference. Eighteen
computer features between slice thicknesses of 5.0mm and
1.25mm, 11 features between of 5.0mm and 2.5mm, and 17
features between 2.5mm and 1.25mm showed significant
difference (p≤ 0.05). Between 30mAs and 120mAs, 18
computer features showed significant difference (p≤ 0.05).
Two features including mean attenuation (p � 0.163) and
LGRE (p � 0.054) showed no difference. Between different
reconstruction algorithms, 19 computer features showed

significant difference (p≤ 0.05), and LGRE showed no dif-
ference (p � 0.238). In the absolute effect size analysis, the
number of large effects, medium effects, and small effects
was 7, 11, and 2 between 5.0mm and 1.25mm slice
thickness, and 6, 6, and 8 between 5.0mm and 2.5mm slice
thickness, and 0, 18, and 2 between 2.5mm and 1.25mm
slice thickness, respectively. 4e number of large effects,
medium effects, and small effects were 6, 12, and 2 between
30mAs and 120mAs, and 19, 0, and 1 between lung and
standard reconstruction algorithms, respectively.

In the regression analysis, the absolute value of re-
gression coefficient (|RC|) can represent the scale of dif-
ference. |RC|s in all features in comparison between 5.0mm
and 1.25mm were larger than |RC|s between 5.0mm and
2.5mm (Tables 2 and 4).

In 100HU nodule phantoms, the maximum (Max),
median (Med), and minimum (Min) values of |RC| were
0.541, 0.388, and 0.011 between 5.0mm and 2.5mm slice
thickness, and 0.672, 0.574, and 0.135 between 5.0mm and
1.25mm slice thickness, respectively. Max, Med, and Min

Noise

Slice
thickness

Definition

Slice
thickness

Noise

(a) (b)

(c) (d)

mAs

Image definition

Noise

Lung

Standard

Sharp

Smooth

Low High

Figure 4: Relationship between scan parameters and image quality: (a) relationship between slice thickness variation and noise,
(b) relationship between slice thickness variation and definition, (c) relationship between mAs variation and noise, and (d) relationship
between reconstruction algorithms and noise definition.
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values of |RC| were 0.186, 0.079, and 0.011 between 30mAs
and 120mAs and 0.271, 0.127, and 0.015 between lung and
standard reconstruction algorithms, respectively (Table 2).

In −630HU nodule phantoms, Max, Med, and Min values
of |RC| were 0.247, 0.039, and 0.004 between 5.0mm and
2.5mm slice thickness, and 0.277, 0.122, and 0.018 between
5.0mm and 1.5mm slice thickness, respectively. Max, Med,
and Min values of |RC| were 0.196, 0130, and 0.011 between
30mAs and 120mAs and 0.436, 0.224, and 0.011 between lung
and standard reconstruction algorithms, respectively (Table 4).

4e values of computer features in different slice
thicknesses, mAs, and reconstruction algorithms are pre-
sented in Supplementary Materials 1 and 2. 4e computer
features in 12 different sets of scan parameters are presented
in Supplementary Materials 3 and 4.

4. Discussion

Our study showed that (a) in both of 100HU and −630HU
nodule phantoms, differences in the scan parameters had a
significant effect on almost all computer features with few
exceptions, (b) in the 100HU nodule phantoms, considering
the Max and Med values of |RC|s between different slice
thicknesses were larger than the Max andMed values of |RC|s
between different mAs or algorithms, we speculate slice
thickness had a greater effect than mAs or algorithm, and (c)
in the −630HU nodule phantoms, considering the Max and
Med values of |RC|s between different algorithms were larger
than the Max and Med values of |RC|s between different slice
thicknesses or mAs, we speculate algorithm had a greater
effect than slice thickness or mAs.

Table 1: Definition of the 20 computer features.

Features Definition Description

Histogram

Mean (1/N)
N−1
i�0 

N−1
j�0 Pi,j

4e mean value of
the histogram distribution

Stddev
����������������������
(1/N)

N−1
i�0 

N−1
j�0 (Pi,j −P)2

 4e square root
of the variance

Variance (1/N)
N−1
i�0 

N−1
j�0 (Pi,j −P)2

4e amount of variation of
the histogram distribution

Skewness
(((1/N)

N−1
i�0 

N−1
j�0 (Pi,j −P)3)/

(((1/N)
N−1
i�0 

N−1
j�0 (Pi,j −P)2)3/2))

4e asymmetry of
the histogram distribution

Kurtosis
(((1/N)

N−1
i�0 

N−1
j�0 (Pi,j −P)4)/

(((1/N)
N−1
i�0 

N−1
j�0 (Pi,j −P)2)2))− 3

4e flatness of the
histogram distribution

Energy 
N−1
i�0 

N−1
j�0 [Pi,j]

2 4e uniformity of the
histogram distribution

Entropy 
N−1
i�0 

N−1
j�0 Pi,j log2[Pi,j]

2 4e randomness of the
histogram distribution

LCM

Contrast 
N−1
i�0 

N−1
j�0 Pi,j(i− j)2

4e local variation
of voxel pairs

Dissimilarity 
N−1
i�0 

N−1
j�0 Pi,j|i− j| 4e variation of voxel pairs

Homogeneity 
N−1
i�0 

N−1
j�0 ((Pi,j)/(1 + (i− j)2)) 4e homogeneity of voxel pairs

Angular second moment (ASM) 
N−1
i�0 

N−1
j�0 P2

i,j 4e uniformity of voxel pairs

Energy
������������


N−1
i�0 

N−1
j�0 P2

i,j


Square root of the ASM

Probability max max(Pi,j) High max value of voxel pairs

Entropy −N−1
i�0 

N−1
j�0 Pi,j(log2 Pi,j) 4e randomness of voxel pairs

Correlation 
N−1
i�0 

N−1
j�0 Pi,j[(((i− μi)(j− μj))/(σiσj))]

4e linear dependency of
gray levels

GLRLM

Long runs emphasis (LRE) 
G−1
i�0 

R−1
j�0 j2Pi,j

4e distribution of
the long run length

Gray-level nonuniformity (GLN) 
G−1
i�0 (

R−1
j�0 Pi,j)

2 4e nonuniformity of
the gray level

Run length nonuniformity (RLN) 
R−1
i�0 (

G−1
j�0 Pi,j)

2 4e nonuniformity of
the run length

Low-gray-level run emphasis (LGRE) 
G−1
i�0 

R−1
j�0 Pi,j/i2

4e distribution of the
low gray level groups

High-gray-level run emphasis (HGRE) 
G−1
i�0 

R−1
j�0 i2Pi,j

4e distribution of the
high gray level groups
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In this study, differences in the scan parameters had a
significant effect on almost all computer features. 4ese
results indicate that noise or artifacts affected the attenuation

and texture in the nodule, which indicates that the scan
parameters are related to noise and artifact. Also, our results
are consistent with several previous studies [38, 44, 45].

0 x
yz

D1 = (0°, 0°, 0°)

D2 = (45°, 0°, 0°)

D3 = (90°, 0°, 0°)

D4 = (135°, 0°, 0°)

D5 = (0°, 90°, 90°)

D6 = (0°, 90°, 45°)

D7 = (45°, 45°, 45°)

D1

D2
D3D4

D6

D7
D8D9

D10

D11D12D13

D5
D8 = (90°, 45°, 90°)

D9 = (135°, 45°, 135°)

D10 = (0°, 90°, 135°)

D11 = (45°, 135°, 135°)

D12 = (90°, 135°, 90°)

D13 = (135°, 135°, 45°) 

Figure 6: 13 Directions for matrix calculation on a three-dimensional space. On a three-dimensional space, GLCM and GLRLM can
generally conduct a matrix calculation in 13 directions.
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Gray level
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1

2

3

4

5

4 2 3 1 1

3 2 1 2 4
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2 3 0 0 0

4 1 0 0 0

4 0 0 0 0
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Length

Gray level
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0

1
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4

Figure 5: 4e calculation process of (a) GLCM and (b) GLRLM (distance: 1, direction: 0°).

Table 2: Regression coefficients in the comparison between different slice thickness, mAs, and reconstruction algorithm in 100HU nodule
phantoms.

Image features Constant
Slice thickness mAs Reconstruction

algorithm
5.00 (ref.) 2.50 1.25 30 (ref.) 120 Lung (ref.) Standard

Histogram

Mean 0.323 0 0.418† 0.613† 0 0.020† 0 −0.271†
Stddev 0.442 0 −0.085† −0.237† 0 −0.055† 0 −0.075†
Variance 0.260 0 −0.058† −0.152† 0 −0.036† 0 −0.047†
Skewness 0.008 0 0.179† 0.463† 0 0.051† 0 0.108†

Kurtosis 0.772 0 −0.135† −0.177† 0 −0.032 0 −0.234†
Energy 0.112 0 0.388† 0.642† 0 0.103† 0 −0.209†
Entropy 0.814 0 −0.430† −0.664† 0 −0.079† 0 0.188†

GLCM

Contrast 0.078 0 0.171† 0.383† 0 −0.022† 0 −0.026†
Dissimilarity 0.231 0 0.011 0.135† 0 −0.058† 0 0.036†

Homogeneity 0.147 0 0.472† 0.600† 0 0.131† 0 −0.127†
ASM 0.025 0 0.387† 0.552† 0 0.186† 0 −0.159†
Energy 0.130 0 0.476† 0.614† 0 0.142† 0 −0.145†

Probability max 0.150 0 0.466† 0.583† 0 0.141† 0 −0.137†
Entropy 0.856 0 −0.454† −0.646† 0 −0.116† 0 0.153†

Correlation 0.927 0 −0.129† −0.299† 0 0.026† 0 0.015

GLRLM

LRE 0.036 0 0.452† 0.574† 0 0.178† 0 −0.097†
GLN 0.105 0 0.418† 0.621† 0 0.117† 0 −0.181†
RLN 0.745 0 −0.541† −0.636† 0 −0.105† 0 0.116†

LGRE 0.212 0 −0.130† −0.180† 0 −0.011 0 0.037†

HGRE 0.288 0 0.509† 0.672† 0 0.039† 0 −0.161†
†p≤ 0.05.
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In the regression analysis, the |RC| can represent the
scale of difference in feature values in different scan pa-
rameters. We found in this study that |RC|s in all features in
comparison between 5.0mm and 1.25mm were larger than

|RC|s between 5.0mm and 2.5mm. As the slice thickness
becomes thinner, the noise increases. As the slice thickness
becomes thicker, the noise decreases and greater effect of the
partial volume effect [46]. 4us, a large difference in slice

Table 5: Effect of scan parameters on computer features in −630HU phantom nodules.

Image features

Slice thickness mAs Reconstruction
algorithm

5.00 vs 1.25 5.00 vs 2.50 2.50 vs 1.25 30 vs 120 Lung vs
standard

Effect d Effect d Effect d Effect d Effect d

Histogram

Mean < 2.85 < 2.71 < 0.28 0 0.07 > 1.11
Stddev < 0.71 0 0.25 < 0.50 > 0.72 > 1.65
Variance < 0.74 0 0.35 < 0.55 > 0.68 > 1.20
Skewness < 1.15 < 1.25 0 0.19 < 0.61 < 1.04
Kurtosis > 0.40 > 0.63 < 0.16 > 0.58 > 2.77
Energy 0 0.10 < 0.29 > 0.31 < 0.89 < 2.46
Entropy < 0.52 0 0.07 < 0.38 > 0.85 > 2.56

GLCM

Contrast < 1.32 < 0.97 < 0.65 > 0.58 > 1.27
Dissimilarity < 1.21 < 0.74 < 0.56 > 0.65 > 1.67
Homogeneity > 0.69 > 0.16 > 0.40 < 0.79 < 2.81

ASM > 0.48 0 0.03 > 0.42 < 0.87 < 1.53
Energy > 0.55 0 0.08 > 0.41 < 0.87 < 1.80

Probability max > 0.34 0 0.06 0 0.26 < 0.76 < 1.21
Entropy < 0.63 0 0.20 < 0.41 > 0.75 > 1.72

Correlation > 1.20 > 0.80 > 0.65 < 0.58 < 1.21

GLRLM

LRE > 0.40 0 0.08 > 0.34 < 0.79 < 2.12
GLN 0 0.13 < 0.23 > 0.31 < 0.91 < 2.23
RLN < 0.46 0 0.02 < 0.34 > 0.83 > 2.27
LGRE > 0.98 > 1.49 0 0.35 0 0.21 0 0.13
HGRE < 2.89 < 2.64 < 0.44 > 0.20 > 1.09

< indicatesp≤ 0.05 and A is statistically smaller than B (A vs B); > indicatesp≤ 0.05 and A is statistically larger than B (A vs B); 0 indicates A and B are not
statistically significant (A vs B). Cohen’s d: small ≥ 0.20; medium ≥ 0.50; large ≥ 0.80.

Table 4: Regression coefficients in the comparison between different slice thickness, mAs, and reconstruction algorithm in −630HU nodule
phantoms.

Image features Constant
Slice thickness mAs Reconstruction

algorithm
5.00 (ref.) 2.50 1.25 30 (ref.) 120 Lung (ref.) Standard

Histogram

Mean 0.617 0 0.247† 0.277† 0 −0.011 0 −0.154†
Stddev 0.369 0 0.036 0.158† 0 −0.149† 0 −0.279†
Variance 0.230 0 0.034 0.154† 0 −0.125† 0 −0.200†
Skewness −0.023 0 0.209† 0.256† 0 0.143† 0 0.224†

Kurtosis 0.985 0 −0.146† −0.098† 0 −0.149† 0 −0.436†
Energy 0.061 0 0.063† −0.021 0 0.189† 0 0.361†

Entropy 0.664 0 0.014 0.122† 0 −0.196† 0 −0.394†

GLCM

Contrast 0.237 0 0.111† 0.238† 0 −0.108† 0 −0.206†
Dissimilarity 0.349 0 0.121† 0.251† 0 −0.141† 0 −0.292†
Homogeneity 0.193 0 −0.039† −0.154† 0 0.191† 0 0.422†

ASM 0.027 0 −0.004 −0.060† 0 0.109† 0 0.166†

Energy 0.080 0 −0.015 −0.086† 0 0.139† 0 0.233†

Probability max 0.052 0 −0.008 −0.036† 0 0.084† 0 0.122†

Entropy 0.788 0 0.042 0.130† 0 −0.153† 0 −0.284†
Correlation 0.752 0 −0.100† −0.228† 0 0.109† 0 0.204†

GLRLM

LRE 0.068 0 0.014 −0.054† 0 0.130† 0 0.258†

GLN 0.033 0 0.033† −0.018 0 0.125† 0 0.223†

RLN 0.891 0 −0.004 0.078† 0 −0.163† 0 −0.318†
LGRE 0.167 0 −0.106† −0.086† 0 −0.018 0 0.011
HGRE 0.639 0 0.227† 0.269† 0 −0.030† 0 −0.144†

†p≤ 0.05.
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thickness will increase the impact of noise and partial
volume effect. So it is considered that RC is shown larger in
the comparison between 5.0mm and 1.25mm.

In the 100HU nodule phantoms, we found slice
thickness had a greater effect thanmAs or algorithm.4e CT
image of 100HU nodule phantoms has smaller noise than
CT of −630HU nodule phantom due to higher average
attenuation and a smaller variation in the distribution of
attenuation. 4erefore, the 100HU nodule phantom is more
affected by the partial volume effect than the −630HU
nodule phantom. As the result, the slice thickness that is
closely related to partial volume effect was the most in-
fluential parameter in the 100HU nodule phantom.

We also found in this study that, in the 100HU nodule
phantoms, GLCM-dissimilarity showed no difference be-
tween slice thickness of 5.0 and 2.5mm and between 2.5mm
and 1.25mm. 4e weight of the dissimilarity increases
linearly unlike other texture features which increases ex-
ponentially [47]. In the features in which the weights in-
crease exponentially, a large difference may occur even if the
difference of the image values is small. Since the weight of
the dissimilarity increases linearly, the difference is relatively
small when compared with other feature values. 4erefore,
the dissimilarity showed not statistically significant when
difference of slice thickness was small such as 5.0mm and
2.5mm, and 2.5mm and 1.25mm, respectively.

In the −630HU nodule phantoms, the reconstruction
algorithm had a greater effect than slice thickness or mAs.
4e amount of noise in the −630HU nodule phantom is
greater than the amount in the 100HUnodule phantom.4e
lung reconstruction algorithm usually makes higher noise
level that the standard algorithm. 4e change of re-
construction algorithm from standard to lung algorithm
made bigger increase of noise in the nodule with inherently
higher level of noise, that is, −630HU nodule.

In this study, in the −630HU nodule phantoms, the
effect of slice thickness was smaller than the effect of the
reconstruction algorithm. We can notice that smaller dif-
ference of slice thickness might make smaller difference of
noise, thus the statistical difference was not significant. On
the other hand, due to higher average attenuation and a
smaller variation in the distribution of attenuation, the CT
image of 100HU nodule phantoms was more affected by the
difference of slice thickness that cause difference of partial
volume effect.

CT images of the lung reconstruction algorithm contain
higher noise level that the image of standard algorithm.
4erefore, the change of the reconstruction algorithm can
affect the features associated with CT histogram or CT
texture. In this study, we found that change of the algorithms
had significant effect on 19 computer features in the 100 and
−630HU nodule phantoms. Only a feature, that is, corre-
lation, in 100HU phantoms and LGRE in −630HU nodule
phantom showed no difference between lung and standard
algorithms.

In this study, we found that most computer features
showed significant difference between 30mAs and 120mAs.
We speculate that this significant difference was originated
by the change of noise level. We also found that LGRE

showed no difference between 30mAs and 120mAs in both
of 100HU and −630HU nodule phantoms. LGRE, that is,
low gray level run emphasis, can be defined by distribution
of run length in the low gray values. 4e value of LGRE is
high when there is the large number of pixels with low gray
level [37]. Considering the result that LGRE showed no
difference between 30mAs and 120mAs, the number of
pixels with low gray level has not significantly changed by
the change of mAs.

4is study demonstrated that the change of CT scan
parameters can affect the quantitative CTfeatures. In clinical
studies involving deep learning or radiomics, it should be
noted that differences in values can occur when using
computer features obtained from different CT scan pa-
rameters in combination. 4erefore, when interpreting the
statistical analysis results, it is necessary to reflect the dif-
ference in the computer features depending on the scan
parameters. In further studies, we need to develop methods
for the standardization of computer features obtained from
different scan parameters.
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