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Abstract: As one of the most abundant natural polymers in nature, polysaccharides have the
potential to replace petroleum-based polymers that are difficult to degrade in paper coatings.
Polysaccharide molecules have a large number of hydroxyl groups that can bind strongly with paper
fibers through hydrogen bonds. Chemical modification can also effectively improve the mechanical,
barrier, and hydrophobic properties of polysaccharide-based coating layers and thus can further
improve the related properties of coated paper. Polysaccharides can also give paper additional
functional properties by dispersing and adhering functional fillers, e.g., conductive particles, catalytic
particles or antimicrobial chemicals, onto paper surface. Based on these, this paper reviews the
application of natural polysaccharides, such as cellulose, hemicellulose, starch, chitosan, and sodium
alginate, and their derivatives in paper coatings. This paper analyzes the improvements and influences
of chemical structures and properties of polysaccharides on the mechanical, barrier, and hydrophobic
properties of coated paper. This paper also summarizes the researches where polysaccharides are used
as the adhesives to adhere inorganic or functional fillers onto paper surface to endow paper with great
surface properties or special functions such as conductivity, catalytic, antibiotic, and fluorescence.
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1. Introduction

Polysaccharides, as one of the most abundant natural polymers, widely exist in animals, plants,
and microorganisms. Different from oligosaccharides, polysaccharides are usually composed of
10 or more monosaccharides connected by glycosidic bonds. The most common polysaccharides
include cellulose, hemicellulose, pectin, starch, chitosan, sodium alginate, etc. Based on their different
categories and sources, polysaccharides have different monosaccharide compositions and glycosidic
linkages, which also give them unique biological activities and functional characteristics. For instance,
the amino groups are responsible for the antibacterial properties of chitosan [1], and the sulfate groups
are the major reason for the antioxidant property of sodium alginate [2,3].

Coating is a key step in paper production, which is used to improve the performance or function
of paper. For packaging paper, paper coating is mainly a barrier coating, in which polymers are often
applied to the paper surface to improve its mechanical property, hydrophobicity, or permeability (such as
oxygen or water vapor permeability [4]). For printing paper, paper coating is mainly pigment coating, in
which inorganic fillers such as calcium carbonate are filled into the pores between fibers on paper surface
to improve its weight, whiteness, glossiness, and flatness for better printing and optical properties [5–7].
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However, inorganic fillers cannot adhere to the paper surface stably, so using adhesives is necessary,
which enable the inorganic filler to be fixed on the paper surface. In addition, paper coatings also include
functional coatings, in which inorganic fillers are replaced by some functional fillers, and adhesives
are also needed to make the fillers firmly attached to the paper surface. By using special fillers, i.e.,
metal nanoparticles and carbon nanotubes (CNTs), paper with antibacterial, conductive, catalytic,
fluorescent, and other special functions can be prepared. The polymers or adhesives used in barrier,
pigment, and functional coatings are mainly petroleum-based synthetic polymers, including polyvinyl
alcohol (PVA) [8], styrene butadiene latex [4], polyethylene terephthalate [4], acrylic acid [9], vinyl
acetate [10,11], and so on. Petroleum-based polymers have good mechanical, hydrophobic, and barrier
properties, and are well applied in paper coatings. However, these petroleum-based polymers are
difficult to be naturally degraded [12] causing serious environmental pollution. With energy shortage
and environmental problem increasing prominently, searching for a renewable and biocompatible
polymer to replace the petroleum-based polymers used in paper coating is a pressing task [12].

Among the various types of natural polymers, polysaccharide has the potential to replace
petroleum-based polymers in the paper coating industry. Polysaccharides have strong water binding
ability because of their abundant hydroxyl groups, and can easily be dispersed or dissolved in water.
They also have good film-forming properties [13]. The raw material of paper is mainly plant fibers,
which contain mostly polysaccharides, i.e., cellulose. The hydroxyls of polysaccharide can link with
the hydroxyls of paper fibers through hydrogen bonding, resulting in high affinity of polysaccharides
to paper surface [14]; the long chain structure enables their molecules to easily tangle with each other,
forming mechanically reinforced network [15]. In addition, some polysaccharides have amphiphilic
chemical structures which contribute to good dispersing ability to inorganic fillers, and thus the
fillers can be dispersed and adhered to the paper surface more uniformly, improving the coating
performance. However, polysaccharides do not behave well as a good moisture barrier because of their
natural hydrophilicity [16]. The poor mechanical property of pure polysaccharide coating layers also
limits their application in pigment and functional coatings. The properties of polysaccharides can be
improved via physical or chemical methods to meet the requirements of applications in paper coatings.
The abundant active hydroxyl groups of polysaccharides make prompt chemical modifications on
polysaccharides possible.

This paper reviews the research progress of paper coatings based on natural polysaccharides
and analyzes the influencing factors of polysaccharides in coatings, such as hydrogen bonds, charges,
network structures, plasticizers, modifications, and so on (Figure 1). These factors may endow coated
paper with mechanical reinforcement, barrier property enhancement, antibacterial, and other functional
effects. The advantages of the unique structures and functional groups of polysaccharides and their
derivatives in coatings were discussed.
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2. Mechanical Reinforcement Coating

Cellulose is the most abundant natural polysaccharide in nature. It is a linear polymer
(molecular weight ranging from tens of thousands to hundreds of thousands [17]) formed by
d-glucopyranose via β-1,4-glucosidic bonds (Figure 2). Although cellulose has long molecular chain
and high hydroxyl content, the solubility of cellulose in general solvent is limited [18]. The solubility
of cellulose can be improved by chemical modification resulting in better applications in paper coating.
Cellulose based mechanical reinforcement paper coatings mainly include cellulose etherification or
esterification products, such as carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC).
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The CMC molecule has negative charges resulting in stable electrostatic repulsion between CMC
molecules. The whiteness and printing performance of paper will be improved with the increase of
CMC content in the coating [19]. It is worth mentioning that the filler retention by the addition of CMC
has been improved because of the electrostatic binding effect between CMC and the filler with charges,
i.e., precipitated calcium carbonate [20].

Nanocellulose is obtained from cellulose fibers by nano-fibrillation. There are three types of
nanocellulose. Cellulose nanofibrils (CNF) with a diameter of 10–100 nm and a high aspect ratio can
be obtained by separating the microfibrils of cellulose fiber through extensive mechanical treatment.
By hydrolyzing the amorphous area of cellulose fiber bundle, the short rod-shaped crystalline
nanoparticles can be obtained and are known as cellulose nanocrystals (CNC). Because of its large
specific surface area, good chemical reactivity, and good rheological properties, nanocellulose has unique
performance in paper coatings [21]. The large aspect ratio of CNFs makes them more tightly entangled,
which can better enhance the mechanical properties of the coating layer. Moreover, the density of the
CNF fiber network can be further improved through esterification crosslinking (acrylates), thus greatly
increasing the mechanical properties of the coating layer [22,23]. In paper coating, the hydroxyl group
of CNF can be closely bonded with the paper surface fiber through hydrogen bond [24], and CNF
can also intertwine with the paper fibers to further improve the mechanical properties of the coated
paper [15]. CNCs are short rod-shaped particles and also have a large number of hydroxyl groups
which can form a dense coating layer on paper surface [25,26]. CNC is usually used as an additive
in paper coating, which can better enhance the rigidity and toughness of the coated paper [27].
However, unlike that the high aspect ratio CNF can intertwine with paper fiber, there is little help to
enhance the mechanical properties by deposition of particle like CNC on the paper surface, because
a stacked structure forms. CNC may even decrease the mechanical properties of coated paper after
water treatment [28]. Bacterial cellulose (BC) is a kind of natural nanocellulose secreted by specific
bacteria and has unique physical, mechanical properties and high purity [29]. The most studies of
BC focus on biomedicine and reinforcement in nanocomposites. There are very few studies applying
BC in paper coatings [30], but with a few studies using BC to reinforce or prepare functional paper
composites, e.g., catalytic paper [31], paper electrode [32], and fluorescent paper [33]. However, BC has
been proved that it can be used as adhesive [34] which has the potential to be a paper coating adhesive.

Hemicellulose is a natural abundant polysaccharide with branched structures (Figure 3). It is
formed by condensation of some monosaccharide and uronic acid elements such as d-xylose,
d-glucose, l-arabinose, d-galactose, d-mannose, d-glucuronic acid, and d-galacturonic acid [35,36].
Both the main and branched chains have many hydrophilic groups (such as hydroxyl, carboxyl, etc.,).
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Compared with cellulose, hemicellulose has smaller molecular weight, stronger water dispersibility
and hydrocolloidal property, so it has the potential to prepare paper mechanical reinforcement coatings.
The abundant hydroxyls of hemicellulose confer a strong affinity between cellulose and hemicellulose.
Besides, the straight molecular structure of hemicellulose are easier to form hydrogen bonds with
cellulose, compared with the helices chain of starch [37]. However, when unmodified hemicellulose
is used in paper coating, the improvement in paper mechanical property is limited [38,39], so it
needs to be properly modified physically or chemically. The xylan esterified by (2-dodecen-1-yl)
succinic anhydride can significantly improve the mechanical properties of coated paper because of the
plasticizing effect of the long aliphatic chains of DSA and tight interaction between cellulose and xylan
via hydrogen bonding. The burst resistance was 70% and the tear strength was 60–80% higher than the
base paper [40].
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In addition to hydroxyl functionalization, cross-linking reaction can enhance the interaction
between polysaccharide molecules, making the network between polysaccharide molecules stronger
and further improving the mechanical properties of coating layers [41]. In addition, if polysaccharides
can form covalent bond with the paper fiber, it would further improve the mechanical properties of the
paper. Xiang [6] and Hu [42] extracted arabinoxylan from distiller’s grains and sugarcane bagasse
respectively, crosslinked it with glutaraldehyde to obtain glutaraldehyde crosslinked arabinoxylan
(GAX), and applied it to paper coating. The SEM picture of coated paper is shown in Figure 4.
The coatings can almost cover the entire paper fibers (Figure 4a,c,e). From the paper cross-sectional
pictures (Figure 4b,d,f), it showed that the GAX coating had higher affinity to paper surface than
unmodified AX coating [6]. This suggested that the aldehyde groups of GAX formed covalent bonds
with the paper surface fibers in the form of acetal or hemiacetal, which improves the dry strength by
25% and the wet strength by 90% of the paper. The paper performance after using the GAX coatings
was comparable to that coated with PVA.

In addition, there have been few studies on the effects of polysaccharide viscosity on paper coating.
Polysaccharides with high viscosity have strong intermolecular interaction, large molecular volume,
and slow movement, so they are more difficult to penetrate into the paper fiber matrix [43] which
affects the uniformity and effect of coating, so it is necessary to increase the coating time and the
amount of coating for high viscous polysaccharides. In addition, viscous polysaccharide coating can
hardly be adapted to high-speed machine coating. Xiang reduced the intermolecular interaction of
xylan by succinylation, thus reducing the viscosity of xylan suspensions [44]. However, the mechanical
properties of paper coated by the succinylated xylan coating are comparable to those coated by PVA
coating, having a good mechanical enhancement effect [45]. The mechanical properties of different
polysaccharide-coated paper are summarized in Table 1.
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Figure 4. SEM images of paper surface (a,c,e) with magnitude ×500 and cross-sections (b,d,f) with
magnitude ×1000 for uncoated paper and paper coated with AX and GAX with coating weight
of 12 g/m2. (a,b) uncoated paper; (c,d) unmodified AX coated paper; (e,f) GAX coated paper [6]
(Reprinted by permission from: Springer, Cellulose, Glutaraldehyde crosslinking of arabinoxylan
produced from corn ethanol residuals, Xiang, Z.; Anthony, R.; Lan, W.; Runge, T., 2016).

Table 1. Mechanical properties of polysaccharide-coated paper.

Samples Coat Weight (g/m2) Tensile Index (Nm/g) References

Base paper - 31.9 [28]
CNF 8 40 [46]
CNC 2.56 32.9 [28]
GAX 6 85 [42]

Chitosan—Starch 0.96 79 [47]

3. Barrier Coating

Polysaccharides can be applied to prepare dense coating layers on the surface of paper by
intertwining or chemical binding between polysaccharide molecular chains and paper fibers. The dense
coating layer and functional groups on polysaccharides can impede the penetration of oxygen, water,
or oil. The barrier performance is mainly divided into gas barrier, water barrier, and oil barrier.
Gas barrier includes water vapor and oxygen barrier performance. Generally, gas barrier performance
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is improved because of the decrease of porosity. Water barrier is the hydrophobic effect of the
paper-coating surface to liquid water, which prevents the water from penetrating into the interior of the
paper and causing the structure of the paper to be destroyed. Through modification and other methods,
the hydrophobicity of the coating surface can be effectively improved. For example, the entangled
structure among CNF fibers and their high crystallinity enable the formation of a dense layer on the
paper surface, providing good oxygen barrier properties [14]. The hydroxyl groups of polysaccharide
structure provide oil resistance but weaken water resistance [48].

3.1. Gas Barrier

The coating with better gas barrier properties can be obtained by compositing cellulose with other
matrix materials. For example, Mousavi [49] applied CMC/CNF composite coating onto paper surface
and found that the electrostatic repulsion due to CMC surface charges reduced the CNF flocculation,
improving its dispersibility; comparing Figure 5a–e, it shows that a uniform and compact coating layer
on paper surface was thus formed and able to block the pores between paper fibers, giving the paper
higher water vapor resistance and effectively reduced surface roughness.
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respectively [49] (Reprinted by permission from: Springer, Cellulose, Cellulose nanofiber/carboxymethyl
cellulose blends as an efficient coating to improve the structure and barrier properties of paperboard,
Mousavi, S.M.M.; Afra, E.; Tajvidi, M.; Bousfield, D.W.; Dehghanifirouzabadi, M., 2017).
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Through corona discharge, Mirmehdi improved the adhesion of coating on paper surface [50].
Through spray coating method, the pores of CNF fiber network were filled with nano clay, producing
uniform and dense coating layers, which decrease the water vapor transmission rate by 86% and
decrease the oxygen transmission rate by 90%. CNC with short-rod shapes can form a dense network
on the paper surface and a tortuous path. Since the air and water are difficult to pass through the
coating layer, the water and air permeability of the coated paper can be reduced [28]. With extensive
homogenization of CNC particles in coatings, the barrier properties of coatings can be further improved;
for example, the oxygen barrier performance can be improved by 98% [51].

Physical modification, such as addition of plasticizer (glycerol, sorbitol, xylitol, etc.,), can effectively
improve oxygen barrier performance and water vapor permeability of hemicelluloses [52,53].
Galactoglucomannans (GGM) can be plasticized with sorbitol, and the gas barrier performance of coated
paper is substantially improved. However, a large amount of plasticizers are usually needed, and the
migration of plasticizers limits its application in food packaging paper [54]. Chemical modification can
also effectively improve the barrier performance of the coating. A suitable degree of substitution (DS)
of hydrophobic functional groups can provide good hydrophobicity [6]. Polysaccharide derivatives
with long-chain alkyl can form a dense accumulated structure in the interior of coatings, and prevent
the passage of water molecules and gas molecules. Kisonen [55] applied O-acetyl GGM esterified
with benzoic anhydrides to coat paper for food packaging. The hydrophobic property of the phenyl
group effectively decreased the water vapor permeability of the packaging paper by 81% and the
anti-grease property was also slightly improved because of the natural hydrophilic property of
mannans, thus extending the shelf life of packaged food. Ramos [40] applied carboxymethyl xylan
and dodecenyl succinic anhydride (DSA) modified xylan to the coating of cardboard and packaging
paper. It was found that the mechanical properties of coated paper have been significantly improved
because of the plasticizing effect of anhydride. The long aliphatic carbon chains of DSA replacing the
hydroxyl groups of polysaccharides decrease the polarity and hydrophilicity making the water vapor
permeability reduced by 30-fold when compared to the base paper. Its gas barrier performance is also
comparable to the traditional PVA-coated packing paper. Arabinoxylan coating has good gas barrier
property, but its hydrophilicity resulted in low water vapor barrier property and low oxygen barrier
property under high humidity condition. Grondahl [56] enhanced hydrophobicity of hemicellulose
and reduced its hydrophilicity in wet air by trifluoroacetic anhydride modification. The contact angle
of surface increased from 30◦ to 70◦.

Starch is also a promising polysaccharide applied as barrier coatings. The main chain structure of
starch consists of d-glucopyranose and is connected by α-1,4-glucoside bond [18], which determines
its natural spiral structure. According to whether starch has branched chains, starch can be divided
into amylose (Figure 6a) and amylopectin (Figure 6b). Amylose does not have, while amylopectin
has abundant branched chains. The majority of natural starches are amylopectin, which has the
film-forming ability, but its film mechanical properties still need to be improved [57]. Being used
as paper coatings, pure starch still has some other drawbacks. For instance, starch is sensitive to
water vapor and usually forms a brittle coating layer [58]; pure starch will also form faults in coating
layers because of residual air, resulting in large surface pores. Consequently, it is usually modified by
gelatinization and etherification. The hydroxypropyl starch coating can effectively improve the barrier
property of coated paper, but because of the sensitivity of starch to water vapor, the moisture uptake
of starch coating below 50% relative humidity was higher than CMC. Latex and other emulsions
are usually added to squeeze out the air and fill in the faults to improve the barrier performance
of the starch coating. The latex addition to the hydroxypropyl starch can reduce the porosity of
coating which can be used in food packaging paper to block the penetration of mineral oil and
improve the safety performance of packaging paper. With the content of latex increase, the water
barrier property is improved while the oxygen and mineral oil transmission rates are high due to
the low polarity of latex [59]. Garcia proposed to prepare barrier coatings with different proportions
of ester (sunflower oil), starch, and plasticizer (sorbitol, glycerin) [60]. Sunflower oil was added to
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starch suspensions after adding sorbitol and glycerin as plasticizers. Plasticizers and esters play an
important part in improving the anti-moisture permeability of the coating, enhancing the mechanical
properties. Crystalline structures are responsible for extremely tightly packed structure and tend to be
impermeable. However, plasticizers such as glycerol and sorbitol will hinder the polymer chains from
aggregating which decreases the crystallinity of coating layers and weakens the water resistance.
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Starch nanocrystals (SNCs) and starch nanoparticles (SNPs) are both starch products with
nano-size. SNC is produced by hydrolyzing the amorphous part and leaving the crystalline part of
starch, while SNP is the starch nanoparticles with both crystalline and amorphous parts [61]. SNPs has
been commercialized as an adhesive (Eco-sphere TM) and can be used in paper coating to substitute
PVA. Cassava starch-based films with 2.5% wt SNPs addition can have water vapor permeability
reduced by 40% [62]. The platelet-like low permeable structure of SNCs can also reduce oxygen
diffusion and permeability of starch-based films [61].

Chitin is composed of N-acetylglucosamine connected by β-1,4-glucoside bond. Chitosan is a
product of deacetylation of chitin, and its water solubility is affected by the degree of deacetylation
(Figure 7). The higher the degree of deacetylation, the better is the water solubility of chitosan.
Chitosan has free amine group, high reactivity, and can be protonated under acidic conditions.
Because of the high crystallinity and the hydrogen bonds between the molecular chains, chitosan
exhibits good oxygen-barrier properties. The hydrophilicity of chitosan also provide good grease
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barrier [63]. In paper coating, chitosan is usually blended with other biopolymers or nanomaterials to
improve mechanical and barrier properties of coated paper [64]. Moreover, the positively charged
chitosan results in a good affinity and a good retention or adhesion on paper fiber surface [63].
Amino groups of chitosan can be used to form an ionic bond network structure and form complexation
with salt ion [65], which further enhances the density of the coating and improves the water barrier
property by ten times. The chitosan coating layers have a stable structure and high mechanical strength,
but the hydrophilicity of chitosan is detrimental to the water vapor permeability of the coating layer.
Therefore, Zhang [66] coated paper with chitosan and beeswax composite coating to study the effect
of beeswax and chitosan on coated paper. The experimental results show that composite coating
improves the water vapor barrier property of paper by chitosan forming a dense network with paper
fiber, while beeswax fills the network gaps. The hydrophobic characteristic of beeswax improves the
anti-moisture permeability of the coating layers, and with the increase of drying temperature, beeswax
melts well and forms mountain folds on the paper surface, further improving the water vapor barrier
property. However, when the content of beeswax is too high, it will penetrate into the paper structure,
leading to a poor water vapor barrier performance.
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Alginate is a kind of natural polysaccharide that exists in brown algae. It is made up of
β-d-mannuronic acid (M) and α-l-guronic acid (G) (Figure 8). In the presence of metal ions, it can form
gels [67]. Besides, it has excellent thickening, suspending, and emulsifying properties, and has been
widely used in food, medicine [68], pulp and papermaking industry. When sodium alginate is applied
as paper coatings, similar to other natural polysaccharides, it can form a dense network structure to
improve the barrier property of paper [69]. After being coated by alginate, the paper is densified and
the fiber is partially or completely covered by alginate, which results in the decrease of interaction
between cellulose fiber and water vapor and the diffusion of water vapor, leading the water vapor
transmission rate to reduce by 35–44% [70].
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The water vapor transmission rates of different polysaccharide-coated paper are summarized in
Table 2. Polysaccharide-based coating can provide paper with good barrier property by densifying
fiber network structure, but the hydrophilicity of polysaccharides makes it difficult to decrease water
vapor permeability of coatings. As a result, the hydrophobic modification of polysaccharides is needed
to improve its performance in barrier coating, and the coating with hydrophobicity can be prepared by
modifying polysaccharides with chemicals containing hydrophobic groups.

Table 2. Water vapor transmission rate (WVTR) of polysaccharide-coated paper.

Sample Coat Weight (g/m2) WVTR (g/m2
·day) References

Base paper 490 [49]
CNF 1.6 450 [49]

CNF/CMC 3.3 420 [49]
GGM 1.2 194 [55]

Chitosan 6 276 [69]
Starch 8 347 [59]

Alginate 6.1 386 [69]

3.2. Water Barrier

Natural polysaccharides have abundant hydrophilic groups (hydroxyl, carboxyl, etc.,) resulting
in decreased coating performance under humid environment, so they need to be hydrophobically
modified. The presence of hydrophobic functional groups can greatly reduce the wettability of paper
surface when hydrophobic polysaccharides form a dense coating layer [71]. Bordenave [72] modified
chitosan with dichloromethane and palmitoyl chloride. The results showed that palmitoyl chloride
modification made the chitosan coated paper more hydrophobic. The hydrophobic palmitic acid
allowed decreasing water vapor transmission rate by 90% and leading to a contact angle above 110◦.
Hartman [73] found that although GGM with acetyl groups had some hydrophobicity, the introduction
of benzyl groups into GGM can significantly improve its hydrophobicity. The water droplet was not
adsorbed by the benzylated samples for as long as 10 min even though the samples did not exhibit the
highest contact angles.

Different coating methods will change the surface morphology of the coatings, which can also
improve the hydrophobic performance of coating layers. Zhang [74] coated the paper with α-cellulose
10-undecylenoyl ester by spray coating method to form irregular nanostructures on the surface of
the paper. The hydrophobic properties were maintained under strong acid or alkali condition and
it displayed a good durability even after storage for 85 day. The penetration of the hydrophobic
cellulose derivative coating solution may swell the paper fiber, reducing the mechanical properties
of the paper [71]. However, the reduced mechanical properties are still in the acceptable range,
so hydrophobic cellulose derivatives have an application prospect in paper coatings.

Polysaccharides can also act as surfactant and binder to disperse the hydrophobic fillers and
fix them onto the paper surface for improved hydrophobicity [75]. Farhat [76] prepared composite
paper coating by cross-linking hemicellulose with ammonium zirconium carbonate (AZC) which is
a kind of hydrophobic material. With the increase of AZC content in the hemicellulose coating,
the water resistance of the coated paper was greatly improved by 44%. However, too many
modifications via hydrophobic fillers will reduce the bio-degradability of the coating and may
lead to environmental issues.

3.3. Oil Barrier

In addition to gas and water barrier, oil barrier is also an important barrier property.
Recently, Chi [77] prepared starch-based polyelectrolyte complexes (SPEC) by grafting starch with
quaternary ammonium or carboxylate groups. In paper coating, SPEC stabilizes the network structure
by ionic complexation, hydrogen bonding, and macromolecular entanglement and improves oil
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resistance of the coated paper by 93% which was comparable to a typical polyethylene-coated
paper board. Besides, the strong ionic crosslinked and entangled starch polymer chains can form a
homogenous film structure that resists water penetration. Besides, paper coated with starch matrix
with stearic acid showed improved hydrophobicity and grease resistance; both properties are related
to the content of fatty acids in the coating [78]. When the content of fatty acid is high, the hydrophobic
property is enhanced, but the anti-grease property is reduced.

4. Pigment Coating

In pigment coating, inorganic fillers such as calcium carbonate, titanium dioxide, kaolin are filled
into the pores between fibers on paper surface to improve its weight, whiteness, glossiness, and flatness
for better printing and optical properties [79,80]. The printing performance is often related to the
glossiness and porosity of the paper. The size and number of pores can determine the degree of light
scattering, thus affecting the glossiness of the paper surface. The coating structure has important
impact on the optical properties [81], so the network structure of polysaccharides can improve the
optical properties of the paper surface. In paper coating, polysaccharides can change the rheological
properties of pigment coating, increase its viscosity, and improve the uniformity and pore structure
of the coating layers [23,82]. An appropriate viscosity can make the settling time of inorganic fillers
longer, reduce the agglomeration, and increase the dispersion of the fillers [83]. In addition, a charged
polysaccharide may be adsorbed on the surface of the filler particles; because of the dual effects of
electrostatic repulsion and steric hindrance between filler particles, their flocculation effect is reduced,
and their dispersion can be effectively improved [83].

Forming polysaccharide network can help to strengthen the coating layer and the fixing of fillers
or pigments onto paper surface. After dissolving, the exposure of the polar groups on oxidized starch
increases and the molecules will be entangled with each other. Pigment filler particles are fixed in this
tangled network. With the increase of oxidized starch content, the network structure enhanced and
the viscosity increased [84]. Some polysaccharides, i.e., CMC and hydroxyethyl cellulose (HEC), can
form a network structure and adsorb filler particles, i.e., kaolin, into the structure, which improves
the mechanical properties of the coating layers, but it easily causes flocculation when the network is
broken, reducing the smoothness and gloss of the coated surface. Kugge [81] studied the effects of
CMC and hydroxyethyl cellulose (HEC) on the properties of coatings using calcium carbonate (GCC)
as the fillers in pigment coating. CMC does not adsorb the pre-dispersed GCC particles, thus reducing
the flocculation of GCC. On the contrary, HEC also adsorbs GCC particles, but its adsorption capacity
is very low and would not cause flocculation. When CNF is used as the coating additive instead of
CMC, it will not flocculate with the fillers or pigments [82] because of their mutual charged repulsion
and the high inter-particle mobility of swollen nanocellulose. Moreover, the performance of CNF
coating will not be affected by the type of fillers, because CNF is highly anionic and surrounded by
bound water, which is not easy to adsorb the filler particles [23].

5. Antibacterial Coating

Different from other natural polysaccharides, chitosan is well-known for its antibacterial activity
because of its free amino groups, which can inhibit the propagation of up to 32 types of fungi.
The positive charged chitosan can interact with the negative charged cell wall components to change
the permeability of cells, or combine with proteins and nucleic acids to interfere with the normal
physiological function of bacterial or fungal cells [85]. At present, chitosan has been regarded as a
promising coating to produce antibacterial paper [86,87], but the antibacterial effect of chitosan is not
stable, which is only active under certain pH conditions. The antibacterial effect of chitosan can be
effectively improved by the addition of silver nanoparticles [88], metal oxide, and other antibacterial
substances. Li [89] used carboxymethyl chitosan and zinc oxide nanoparticles to make antibacterial
coating. The antibacterial effect can be achieved by the interaction between carboxymethyl chitosan and
the protein of bacterial cell wall. The cation of carboxymethyl chitosan can flocculate with teichoic-acid
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and protein in Gram-positive bacterium which destroy the bacterial cell wall and inactivate the bacteria.
Besides, the zinc ion released by zinc oxide can combine with the protease of bacteria and kill the
bacteria [90]. Zinc oxide has certain antibacterial effects that act synergistically with chitosan, while the
antibacterial effect changes with the amount of added zinc oxide.

Except for chitosan, most natural polysaccharides do not have antibacterial properties. But grafting
the organic or natural antibacterial agents onto the polysaccharides can also make them obtain
antibacterial properties [91,92]. Some organic antibacterial agents (carvacrol, etc.) have strong
toxicity and are not suitable for large-scale use. Inorganic antibacterial agents may be a good
alternative. The coating can also obtain antibacterial properties by blending inorganic antibacterial
agents. For example, Prasad [93] added nano-ZnO into starch coating to prepare coated paper and
the releasing of zinc ion can inactivate bacteria. Besides, the nano-ZnO coated paper can absorb
ultraviolet light and protect the paper. Antibacterial agent can also be wrapped into hydrophobic
polysaccharides to prevent migration and achieve slow release. Furthermore, the antibacterial effect of
inclusion is better than surface application. The packing of the antibacterial agents can control their
migration and be released by adding active ingredients (soy protein isolates) and maintain their high
concentration where and when they needed [94]. In addition, polysaccharide coatings with excellent
barrier performance can also control the migration of water, reduce the penetration of oxygen to slow
down the growth and development of microorganisms [95].

6. Functional Filler-Based Coatings

Based on the chemical properties and structures of polysaccharides and their derivatives, paper
coating based on polysaccharides can enhance the mechanical property, barrier property, hydrophobic
property, and antibacterial property of coated paper, but it is difficult to give paper conductive, catalytic,
fluorescent, and other functional properties. Because of the good affinity between polysaccharides
and paper fibers, polysaccharides can be used as adhesives to firmly attach organic or inorganic
nano fillers with conductive, catalytic, fluorescent, and other special functions to the paper surface to
produce functional paper. Therefore, polysaccharides can be blended with functional fillers to prepare
composite functional coatings which could endow paper with special functions.

6.1. Conductive Coating

Carbon-based conductive materials such as carbon nanotubes (CNT) and graphene oxide
have a large number of polar groups on their surfaces, which are difficult to disperse and easy
to flocculate [96], while polysaccharides can effectively disperse these conductive fillers and fix them
onto the paper surface [97]. For example, Jabbour [98] dispersed graphite particles and carbon fibers
with CMC to prepare conductive paper. CMC could effectively dispersed carbon fiber and avoid
agglomeration to improve the homogeneity of coated paper surface. Besides, the polar groups of
the conductive fillers are easy to form hydrogen bond with the hydroxyl and carboxyl groups of
polysaccharides [99], so the conductive fillers can be anchored tightly on the paper surface through
coating process, making the paper a stable conductor. The interaction between polysaccharides and
conductive fillers can also be enhanced by the charges distributed on the surface of these polysaccharides.
For example, some natural polysaccharides and their derivatives (chitosan [100], CMC [101]) can
adsorb conductive fillers by electrostatic interaction, further improving the conductivity of the coating
layer. CNT can also intertwine with cellulose fibers to form network structure, and enhance the
durability of conductive paper, which have the potential to replace the traditional zinc manganese
graphite sheet [102].

Although polysaccharide can well disperse and anchor conductive fillers on paper surface,
polysaccharide itself does not conduct electricity, which limits the application of natural polysaccharide
in conductive functional coatings. It needs further research to solve this problem, especially by
chemical modification.
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6.2. Catalytic Coating

Natural polysaccharide can have catalytic properties after chemical modification, for example,
the hydroxyl groups and halide anions in quaternized chitosan can catalyze the cyclo-addition reaction
synergistically [103]. Xylan can also be used as a catalyst to reduce silver ion to silver nanoparticles [104].
However, the catalytic efficiency of polysaccharides is limited. In order to obtain greater catalytic effect
for catalytic paper, polysaccharide coatings are used to disperse and anchor catalytic filler such as
metal ions (which can be reduced to metal nanoparticles in situ) to paper surface. When the catalytic
fillers are embedded in polysaccharide-paper fiber network, coated paper usually has superior catalytic
activity and reusability [105].

Since hydroxyl groups and amino groups in chitosan have good coordination and chelation
with metal ions, the leach of metal ions could be effectively prevented and the coated paper has a
stable catalytic effect [106]. The metal ions can also be reduced by oxidized chitosan with aldehyde
groups [107]. It is a promising method to prepare catalytic paper sheets. For example, Ahmad [108]
coated chitosan on filter paper, and then loaded it with Ag ions; the catalytic paper for the transformation
of nitrophenols to aminophenols was produced after in situ reduction of Ag ions to Ag particles.
Because the amine groups of chitosan have the ability to stably form complex with metal ions, the
coated paper has good catalytic effect and recyclability, and the transformation rate of the nitrophenols
maintained above 90% after its repeated uses. Kamal [109] loaded Cu ion in chitosan coating and
coated it on filter paper to catalyze the degradation of methyl orange and Congo red. As can be seen
in Figure 9a–b, the surface of cellulose fiber was smooth which indicated the chitosan was coated
uniformly. The plenty of bright spots in Figure 9c were due to the Cu nanoparticles adsorbed on the
chitosan coating layer. The results showed that the catalytic paper also had good catalytic effect and
recyclability. During catalytic reaction, the degradation time of methyl orange and Congo red was
shortened by 75%. However, the cost of loading noble metal ions on chitosan is still relatively high,
which is not economical to be used in the industry. Another disadvantage is that chitosan is insoluble
in water which also limits its large-scale application. It is necessary to reduce the cost of catalyst
production and explore a suitable solvent which can dissolve chitosan and load catalyst simultaneously.
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6.3. Fluorescent Coating

Cellulose can effectively adsorb fluorescent substances because of the strong interaction between
cellulose and fluorescein [110], and the CNF with high specific surface area can increase the positive
charges on the surface after quaternization modification, which has better adsorption effect on anionic
dyes [111]. Moreover, the cellulose network also has a better retention effect on dye molecules,
making the fluorescence effect more durable.

Purington [112] first used CNF to adsorb fluorescein isothiocyanate (FITC) and then coated
the paper with modified CNF. It is found that fluorescent dyes can be easily adsorbed, and are not
easy to dissociate in water, so they exist stably in the CNF network. However, the performance
of fluorescent substances is greatly affected by pH, and they cannot exist stably in acidic or base
environment. Under acidic condition, CNF may be hydrolyzed, leading to the separation of fluorescein.
Furthermore, in the alkaline environment, the deprotonation of FITC may increase its water solubility
and cause strong desorption effect. In sum, it is feasible to prepare fluorescent coating by adsorbing
fluorescent dyes by cellulose derivative-based coating polymers, but its fluorescence performance is
greatly affected by pH, so further improvement is needed.

Patel [113] used 1-pyrenebutyric acid (PyBA) to modify SNPs and prepared pyrene-labeled
starch nanoparticles (Py-SNPs). Pyrene was chosen as the fluorescent dye to label SNPs because
of its hydrophobicity. Paper coated with Py-SNPs (Py-CFPs) can be used to detect nitroaromatic
compounds (NACs) because the NACs are well-known quenchers of fluorescence. When exposed to
vapor of NACs, the fluorescence of Py-CFPs quenched to 25% of original value within a short time.
Therefore, Py-CFPs is expected to be a candidate material for NACs fluorescence sensor because of its
excellent performance and low cost.

7. Conclusions and Perspectives

The application of natural polysaccharide in paper coating has many advantages, but there are
still some limitations. First of all, the coating properties of polysaccharides are still inferior to that of
petroleum-based synthetic polymers, which hinders the industrial application of polysaccharides in
paper coating; excessive chemical modification of polysaccharides may cause additional pollution or
weaken the bio-degradability of polysaccharides. Second, the polysaccharide-based functional
paper coatings rely strongly on the functions of special fillers to endow paper with functions
such as conductivity, catalytic, fluorescence, and so on, resulting in less satisfied performance;
if polysaccharide-based coating can be endowed with those properties through chemical modification,
which may greatly contribute to the production of high performance polysaccharide-based functional
coatings. In addition, external environmental factors such as high humidity will greatly affect the
performance of polysaccharides coatings. Hydrolysis of polysaccharides will occur under the strong
acid and alkali condition, which limits its application in extreme conditions.

Therefore, there are two trains of thought which can solve these problems. First, a mild
modification method can be taken to further improve the mechanical properties and reduce the
viscosity of polysaccharide-based coatings, making them suitable for modern high-speed paper coating
process. Second, it is necessary to explore proper chemical modifications of polysaccharides for
special functions. Through the modifications, polysaccharides can be endowed with stable conductive,
fluorescent, catalytic, and other properties. More importantly, the polysaccharide coatings should be
given the strong resistance to the acid and alkali environment by modification, which will broaden the
application range of natural polysaccharides in paper coatings.
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