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FT-IR, ESI-MS), and biological properties of quaternary and dimeric quaternary alkylammonium
conjugates of steroids are presented. The results were contrasted with theoretical calculations (PM5
methods) and potential pharmacological properties (PASS). Alkylammonium sterols exhibit a broad
spectrum of antimicrobial activity comparable to squalamine.
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1. Introduction

Steroids are an enormous group of very important natural products. The most significant
compounds of this group are sterols (cholesterol, ergosterol, stigmasterol), bile acids (lithocholic,
deoxycholic, cholic), and hormones (testosterone, estrogens, progesterone) [1–5]. Sterols are crucial
constituents of the cell membrane of eukaryotes. Bile acids are amphipathic molecules with large,
curved and rigid skeletons; chirality as well as the specific orientation of their chemically different
polar hydroxy groups play an important role in metabolic processes. In turn, hormones determine
the characteristics of sex and regulate pregnancy in animals, while plant hormones (brassinosteroids)
cause elongation of stems and stimulate cell division (e.g., brassinolide) [6].

Another class of compounds that are involved in many biological processes are polyamines
(spermidine, spermine, putrescine, cadaverine) [7–10]. Some of these are very important plant
hormones and coenzymes.

The connection of steroids and biogenic amines give the new conjugates unusual biological
properties. The best-known compound of this type is squalamine (3β-spermidine-7α-hydroxy-5α-
cholestan-24R-yl sulphate) (1) (Figure 1). The steroid–polyamine conjugate was isolated from the liver
tissues of the dogfish shark (Squalus acanthias) [11–14]. This aminosterol is a novel broad-spectrum
antibiotic and exhibits a biocidal activity against Gram-positive and Gram-negative bacteria, fungi,
protozoa, and viruses [15–23]. The antimicrobial activity of the squalamine has inspired work to
design and synthesize new derivatives of steroidal–polyamine conjugates [24–32].
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Figure 1. (a) The stereochemistry and numbering of squalamine and (b) a molecular model calculated 
by the PM5 method. 

2. Quaternary Alkylammonium Conjugates of Steroids 

The basic criteria for the synthesis of biologically active conjugates of steroids and polyamines 
have been given by Salunke et al. [11]. Firstly, the structure must have a rigid extensive hydrophobic part 
and a flexible hydrophilic chain with a polar head group attached to a hydrophobic part. Secondly, the 
sulfate groups can be removed or replaced by a hydroxyl or carboxylate group. In turn, the structure 
of the polyamine is not important, and parts of steroids can be modified in various ways. 

On this basis, Kim et al. described the synthesis of a squalamine analogue from bisnoralcohol (2) 
(Scheme 1) [16]. The structure of the product was confirmed by 1H-NMR, 13C-NMR, DEPT, COSY, 
HETCOR, and FT-IR, as well as low- and high-resolution mass spectra. Additionally, the biological 
activity of (4) has been determined. The squalamine analogue shows biocidal activity against  
M. luteus 9341, S. aureus 6538P, K. pneumoniae 10031, S. equi 6580C, and B. subtilis 6633. However,  
E. coli 25922, P. aeruginosa 27853, P. mirabilis 25933, S. marcescens 27117, and S. typhimurium 14028 are 
not sensitive to (4). In general, the antimicrobial activity of compound (4) is weaker in comparison to 
the antibacterial activity of squalamine. 
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Other analogs (6–15) of MSI-1436 (5) have been synthesized from stigmasterol by Shu et al.
(Figure 2) [33]. The multistep reactions gave final products with very good yields. All analogs exhibit
a broad spectrum of antimicrobial activity, which strongly depend on the stereochemistry of C(7) and
C(3). By contrast, the stereochemistry at the C(24) has a negligible effect on the antibacterial activity.

Molecules 2015, 20, page–page 

3 

Other analogs (6–15) of MSI-1436 (5) have been synthesized from stigmasterol by Shu et al. 
(Figure 2) [33]. The multistep reactions gave final products with very good yields. All analogs exhibit 
a broad spectrum of antimicrobial activity, which strongly depend on the stereochemistry of C(7) and 
C(3). By contrast, the stereochemistry at the C(24) has a negligible effect on the antibacterial activity. 

HN
H

OH

N
H

H
N

(5)

OSO3H

NH2

R1

H
R3

R2

C(24) mixed isomers

(6)   R1 = α−spermine, R2= NH2, R3 = H
(7)   R1 = β−spermine, R2= NH2, R3 = H
(8)   R1 = α−spermine, R2= OH, R3 = H
(9)   R1 = β−spermine, R2= OH, R3 = H
(10) R1 = α−spermine, R2= OH, R3 = OH
(11) R1 = β−spermine, R2= OH, R3 = OH

C(24) single stereoisomer

(12)   R1 = α−spermine, R2= (R)OH, R3 = OH
(13)   R1 = β−spermine, R2=  (R)OH, R3 = OH
(14)   R1 = α−spermine, R2= (R)OSO3H, R3 = OH
(15)   R1 = β−spermine, R2=  (R)OSO3H, R3 = OH

 
Figure 2. The structure of MSI-1436 (5) and its synthesized analogs (6–15). 

Similarly, Kim and co-workers focused on the effect of stereochemistry at the C(3) and C(5) atoms 
of steroids’ skeleton, as well as the types of polyamine attached to C(3) on activity against various 
human pathogens (Figure 3) [34–37]. The results showed that the stereochemistry of the C(3) and C(5) 
carbon atoms has a significant influence on the antimicrobial activity. For example, 3α-spermidine- 
23,24-bisnor-5α-cholane (16) was found to be more active than other spermidine analogues (16–19). 
However 3β-spermine-23,24-bisnor-5β-cholane (23) exhibits the highest biological activity among  
all the compounds (16–23). The conjugate (17), which is similar to (24–26) with the exception of the 
functional group at position C(7), has comparable antimicrobial activity to (25). Both compounds were 
much more active than the compounds (24) and (26). All synthesized conjugates (16–26) exhibited very 
good activity against Gram-positive bacteria. 
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The synthesis of a series of 7-fluoro-3-aminosteroids (36–42) is shown in Scheme 2 [37]. These 
compounds demonstrate a high antimicrobial activity, especially against Staphylococcus aureus, 
Pseudomonas aeruginosa, Streptococcus pyogenes, and Escherichia coli (Table 1). 
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Similarly, Kim and co-workers focused on the effect of stereochemistry at the C(3) and C(5)
atoms of steroids’ skeleton, as well as the types of polyamine attached to C(3) on activity against
various human pathogens (Figure 3) [34–37]. The results showed that the stereochemistry of the
C(3) and C(5) carbon atoms has a significant influence on the antimicrobial activity. For example,
3α-spermidine-23,24-bisnor-5α-cholane (16) was found to be more active than other spermidine
analogues (16–19). However 3β-spermine-23,24-bisnor-5β-cholane (23) exhibits the highest biological
activity among all the compounds (16–23). The conjugate (17), which is similar to (24–26) with the
exception of the functional group at position C(7), has comparable antimicrobial activity to (25). Both
compounds were much more active than the compounds (24) and (26). All synthesized conjugates
(16–26) exhibited very good activity against Gram-positive bacteria.
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The synthesis of a series of 7-fluoro-3-aminosteroids (36–42) is shown in Scheme 2 [37].
These compounds demonstrate a high antimicrobial activity, especially against Staphylococcus aureus,
Pseudomonas aeruginosa, Streptococcus pyogenes, and Escherichia coli (Table 1).

20889



Molecules 2015, 20, 20887–20900

Molecules 2015, 20, page–page 

4 

OH

O

OR

HN
H

F

OR

H2N
H

F

N
H2

NH3

3Cl-

(27) (36) 3α,7α-F, R = H
(37) 3α,7β-F, R = H
(38) 3β,7β-F, R = H
(39) 3α,7α-F, R = SO3H
(40) 3β,7α-F, R = SO3H
(41) 3α,7β-F, R = SO3H
(42) 3β,7β-F, R = SO3H

H
F

N

H
N

Boc

Boc

i ii

(28) 3α,7α-F, R = H
(29) 3β,7α-F, R = H
(30) 3α,7β-F, R = H
(31) 3β,7β-F, R = H
(32) 3α,7α-F, R = SO3H
(33) 3β,7α-F, R = SO3H
(34) 3α,7β-F, R = SO3H
(35) 3β,7β-F, R = SO3H

i) Boc-spermidine, NaBH3CN, THF/MeOH; ii) SOCl2, MeOH, CH2Cl2  
Scheme 2. Synthesis of 7-fluoro-3-aminosterols (36–42). 
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review of methods for the synthesis of spermine and spermidine analogues of squalamine is made 
by Brunel and Letourneux [43]. They reviewed the synthesis of squalamine from cholestane and 
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Table 2. Minimum inhibitory concentrations (MIC) of 3β-aminosterols [15].

Microorganisms Conjugates/MIC (µg/mL)
1 43 44 45 46 47 48

S. aureus (29213) 1 4–8 8–16 2 8–16 8 2
E. coli (25922) 4 128 16 8 256 128 16

P. aeruginosa (27853) 16 32 16 16 256 128 16
C. albicans (90028) 16 16 32 32 128 32 2

Synthesis of 6β-hydroxy-3-α-(or β-)aminosterols (53–58) from hyodeoxycholic acid (49) has been
presented by Jones et al. (Scheme 3) [44]. The modification of hyodeoxycholic acid was carried out by
the esterification of the carboxyl group and oxidation of both hydroxyl groups to ketones, followed by
a conversion of the A/B ring system from cis to trans by acid-catalyzed isomerization. Then various
polyamines were added and the corresponding stereoconjugates were obtained.

Molecules 2015, 20, page–page 

5 

Table 2. Minimum inhibitory concentrations (MIC) of 3β-aminosterols [15]. 

Microorganisms 
Conjugates/MIC (μg/mL)

1 43 44 45 46 47 48 
S. aureus (29213) 1 4–8 8–16 2 8–16 8 2 

E. coli (25922) 4 128 16 8 256 128 16 
P. aeruginosa (27853) 16 32 16 16 256 128 16 

C. albicans (90028) 16 16 32 32 128 32 2 

Synthesis of 6β-hydroxy-3-α-(or β-)aminosterols (53–58) from hyodeoxycholic acid (49) has been 
presented by Jones et al. (Scheme 3) [44]. The modification of hyodeoxycholic acid was carried out by 
the esterification of the carboxyl group and oxidation of both hydroxyl groups to ketones, followed by 
a conversion of the A/B ring system from cis to trans by acid-catalyzed isomerization. Then various 
polyamines were added and the corresponding stereoconjugates were obtained. 

HO

(49)

CO2H

OH
H

O

CO2Me

O
H

i) MeOH, H+; ii) PCC, CH2Cl2; iii) HCl, MeOH; iv) ethylene glycol, TsOH, PhH; v) NaBH4, MeOH; vi) H+, acetone; vii) NaBH3CN, ethylene   
   diamine or spermine, THF, MeOH; viii) NaOH, THF.

i-iii

CO2Me

OH
H

O

O

iv-v

CO2Me

OH
H

vi

O

vii

CO2Me

OH
H

R

viii

CO2H

OH
H

R

(50) (51)

(53) R = α-ethylene diamine
(54) R = β-ethylene diamine
(55) R = α-spermine
(56) R = β-spermine

(52)(57) R = β-ethylene diamine
(58) R = β-spermine

 
Scheme 3. Synthesis of analogues of squalamine (53–58) from hyodeoxycholic acid (49). 

The synthesized aminosterol conjugates (53–58) exhibit a broad spectrum of antimicrobial 
activity, similar to other aminosterols (Table 3). 

Table 3. Minimum inhibitory concentrations (MIC, μg/mL) of 3α (or 3β)-aminosterols [44]. 

Microorganisms 
Conjugates/MIC (μg/mL)

1 53 54 55 56 57 58 
S. aureus 0.5–1 16 1 2–4 2 >256 16 

E. coli 2–4 32–64 8–16 32 32 >256 16 
P. aeruginosa 16 128 64 128 32 128 8 

C. albicans 8 8 2–4 4 2 >256 4 

The presented data show that the β-analogs (54, 56) are slightly more active against 
microorganisms than the α-analogs (53, 55). Moreover, the biocidal efficacy against S. aureus is higher 
for methyl esters (54, 56) in comparison to free acids (57, 58). The chain length of the polyamine has no 
significant effect on biocidal activity. However, for acid derivatives, a conjugate with spermine chain 
(58) was much more active than a conjugate with an ethylene diamine chain (57). 

Scheme 3. Synthesis of analogues of squalamine (53–58) from hyodeoxycholic acid (49).

The synthesized aminosterol conjugates (53–58) exhibit a broad spectrum of antimicrobial
activity, similar to other aminosterols (Table 3).

Table 3. Minimum inhibitory concentrations (MIC, µg/mL) of 3α (or 3β)-aminosterols [44].

Microorganisms Conjugates/MIC (µg/mL)
1 53 54 55 56 57 58

S. aureus 0.5–1 16 1 2–4 2 >256 16
E. coli 2–4 32–64 8–16 32 32 >256 16

P. aeruginosa 16 128 64 128 32 128 8
C. albicans 8 8 2–4 4 2 >256 4

The presented data show that the β-analogs (54, 56) are slightly more active against
microorganisms than the α-analogs (53, 55). Moreover, the biocidal efficacy against S. aureus is higher
for methyl esters (54, 56) in comparison to free acids (57, 58). The chain length of the polyamine has
no significant effect on biocidal activity. However, for acid derivatives, a conjugate with spermine
chain (58) was much more active than a conjugate with an ethylene diamine chain (57).
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Maitra et al. used their own method to modify the side chain of bile acids [45,46]. The synthesis
of quaternary alkylammonium conjugates of bile acids (63–75) is shown in Scheme 4.
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Bile acids (59, 60) were transformed to the 24-nor-23-iodo (61, 62) derivatives by a Hunsdiecker
reaction followed by a reaction with secondary or tertiary amines, respectively. All conjugates (63–75)
were obtained with good yields 65%–75% and were characterized by 1H-NMR, 13C-NMR, and FT-IR,
as well as mass spectrometry. These quaternary ammonium conjugates were found to be good
gelators. Some of the quaternary ammonium bile salts gelled water and many of them gelled aqueous
salt solutions even in the presence of organic solvents such as alcohol (methanol, ethanol) as well as
DMF or DMSO. These gels form fibrous networks [46].

Lopushanskii and Udovitskaya described the method to prepare cholesteryl 3β-bromoacetate
and 3β-chloroacetate, which were used in the synthesis of quaternary ammonium derivatives of
cholesterol and its 5α,6β-dibromo derivatives (81–91) (Scheme 5) [47].
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In addition to monoquaternary salts (81–83) and (89), as well as symmetrical bisquaternary salts
(84–88) and (90, 91), the authors obtained and described unsymmetrical bisquaternary salts (92–105)
(Figure 5). The unsymmetrical bisquaternary ammonium salts (92–101) demonstrate a bacteriostatic
activity that depends on the alkyl chain length.
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The authors also obtained a series of N,N-dimethyl-3-phthalimidopropylammonium conjugates 
of sterols (ergosterol, cholesterol, cholestanol) (118–120) and bile acids (lithocholic, deoxycholic, 
cholic) (121–123) (Figure 7) [50]. The synthesis and physicochemical properties of quaternary 
N,N-dimethyl-3-phthalimidopropylammonium conjugates of ergosteryl 3β-bromoacetate, cholesteryl 
3β-bromoacetate, and dihydrocholesteryl 3β-bromoacetate, as well as methyl litocholate 
3α-bromoacetate, methyl deoxycholate 3α-bromoacetate, and methyl cholate 3α-bromoacetate with 
N,N-dimethyl-3-phthalimidopropylamine in acetonitrile were investigated and described. 

Figure 5. The structures of unsymmetrical bisquaternary salt (92–105) derivatives of cholesterol.

Brycki and co-workers obtained the series of quaternary alkylammonium conjugates of
ergosterol, cholesterol, and cholestanol [48]. The conjugates were synthesized by two-step reactions.
In the first step ergosterol, cholesterol, and cholestanol were reacted with bromoacetic acid bromide
with TEBA and calcium hydride (or sodium hydride) in anhydrous toluene to give 3β-bromoacetates
of sterols [49]. In the second step, 3β-bromoacetates have been treated with tertiary alkylamines
(CH3–(CH2)n–N(CH3)2, n = 7, 9, 11, 13) under SN2 reaction conditions to give conjugates of ergosterol
(106–109), cholesterol (110–113), and cholestanol (114–117) (Figure 6).
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Figure 6. The quaternary alkylammonium conjugates of sterols (106–117).

The authors also obtained a series of N,N-dimethyl-3-phthalimidopropylammonium conjugates
of sterols (ergosterol, cholesterol, cholestanol) (118–120) and bile acids (lithocholic, deoxycholic,
cholic) (121–123) (Figure 7) [50]. The synthesis and physicochemical properties of quaternary
N,N-dimethyl-3-phthalimidopropylammonium conjugates of ergosteryl 3β-bromoacetate, cholesteryl
3β-bromoacetate, and dihydrocholesteryl 3β-bromoacetate, as well as methyl litocholate
3α-bromoacetate, methyl deoxycholate 3α-bromoacetate, and methyl cholate 3α-bromoacetate with
N,N-dimethyl-3-phthalimidopropylamine in acetonitrile were investigated and described.

20893



Molecules 2015, 20, 20887–20900

Molecules 2015, 20, page–page 

8 

O

O

N
R

(118)

Br

(119)

(120)

O

O

N
R

Br

O

O

N
R

Br

N

O

O

CH2 CH2 CH2

(121) R1 = R2 = H
(122) R1 = H, R2 = OH
(123) R1 = R2 = OH

O

CO2CH3

O

N
R

R2

R1

R =

Br

H H

 
Figure 7. N,N-dimethyl-3-phthalimidopropylammonium conjugates of sterols (118–120) and bile 
acids (121–123). 

The symmetrical dimeric quaternary alkylammonium conjugates of sterols (124–132) prepared 
by two-step reactions of ergosterol, cholesterol, or cholestanol with bromoacetic acid bromide, 
followed by bimolecular nucleophilic substitution with N,N,N',N'-tetramethyl-1,3-propanediamine, 
N,N,N',N'',N''-pentamethyldiethylenetriamine, and 3,3′-iminobis-(N,N-dimethylpropylamine) have 
been also described by Brycki et al. (Figure 8) [51]. The final reactions were carried out in acetonitrile 
to favor bimolecular nucleophilic substitution and optimize the reaction yields. 
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Figure 8. The symmetrical bisquaternary alkylammonium conjugates of sterols (124–132). 

All structures of the conjugates were confirmed by spectral (1H-NMR, 13C-NMR, and FT-IR) 
analysis and mass spectrometry as well as theoretical semiempirical methods (PM5). PM5 semiempirical 
calculations were performed using the WinMopac 2003 program [52–54]. In all cases, the heat of 
formation (HOF) was consistent with the expected values. The lowest values of HOF for sterols were 
observed for conjugates of cholestanol (114–117, 120, 130–132) where there were no double bonds to 
stabilize the molecule and hinder its reactivity. This was in contrast to conjugates of ergosterol 

Figure 7. N,N-dimethyl-3-phthalimidopropylammonium conjugates of sterols (118–120) and bile
acids (121–123).

The symmetrical dimeric quaternary alkylammonium conjugates of sterols (124–132) prepared
by two-step reactions of ergosterol, cholesterol, or cholestanol with bromoacetic acid bromide,
followed by bimolecular nucleophilic substitution with N,N,N',N'-tetramethyl-1,3-propanediamine,
N,N,N',N'',N''-pentamethyldiethylenetriamine, and 3,31-iminobis-(N,N-dimethylpropylamine) have
been also described by Brycki et al. (Figure 8) [51]. The final reactions were carried out in acetonitrile
to favor bimolecular nucleophilic substitution and optimize the reaction yields.
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Figure 8. The symmetrical bisquaternary alkylammonium conjugates of sterols (124–132).

All structures of the conjugates were confirmed by spectral (1H-NMR, 13C-NMR, and FT-IR)
analysis and mass spectrometry as well as theoretical semiempirical methods (PM5). PM5
semiempirical calculations were performed using the WinMopac 2003 program [52–54]. In all cases,
the heat of formation (HOF) was consistent with the expected values. The lowest values of HOF
for sterols were observed for conjugates of cholestanol (114–117, 120, 130–132) where there were no
double bonds to stabilize the molecule and hinder its reactivity. This was in contrast to conjugates
of ergosterol (106–109, 118, 124–126) and cholesterol (110–113, 114, 127–129), where the double bonds
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increase the reactivity of the molecule, thereby increasing values of HOF (Figure 9). In turn, the HOF
of conjugates of methyl esters of bile acids (121–123) can be explained in a similar manner. For these
compounds the number of hydroxyl groups in the steroid skeleton lowers the value of HOF.
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Figure 9. The representative quaternary alkylammonium conjugates of sterols calculated by the  
PM5 method. 

The potential pharmacological activities of the synthesized compounds have been studied 
using a computer-aided drug discovery approach with the in silico Prediction of Activity Spectra for 
Substances (PASSs) program. It is based on a robust analysis of the structure–activity relationships in a 
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Figure 9. The representative quaternary alkylammonium conjugates of sterols calculated by the
PM5 method.

The potential pharmacological activities of the synthesized compounds have been studied using
a computer-aided drug discovery approach with the in silico Prediction of Activity Spectra for
Substances (PASSs) program. It is based on a robust analysis of the structure–activity relationships in
a heterogeneous training set currently including about 60,000 biologically active compounds from
different chemical series with about 4500 types of biological activities. Since only the structural
formula of the chemical compound is necessary to obtain a PASS prediction, this approach can be
used at the earliest stages of investigation. There are many examples of the successful use of the PASS
approach leading to new pharmacological agents [55–59]. The PASS software is useful for the study
of the biological activity of secondary metabolites. The types of activities that were predicted for a
potential compound with the highest probability (focal activities) have been selected. If predicted
activity (PA) > 70, the substance is very likely to exhibit experimental activity and the chance of the
substance being the analogue of a known pharmaceutical agent is also high. If 50 < PA < 70, the
substance is unlikely to exhibit the activity in experiment, the probability is less, and the substance is
unlike any known pharmaceutical agent. A research group led by Brycki selected the types of activity
that were predicted for a potential compound with the highest probability (Table 4).
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Table 4. Probability “to be Active” (PA) values for predicted biological activity of compounds (106–132).

Focal Predicted Activity (PA > 80) Conjugates
106–109 110–113 114–117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

Cholesterol antagonist 88 90 87 – – – – – – 81 85 – 87 89 82 82 86 –
Antihypercholesterolemic 91 87 – – – – – – – 88 83 86 85 80 83 – 94 –
Glyceryl-ether monooxygenase inhibitor 89 92 95 87 91 93 93 94 95 89 89 88 92 92 91 95 95 94
Acylcarnitine hydrolase inhibitor – 87 97 – – 81 83 91 94 – – – 85 80 – 96 – 93
Alcohol O-acetyltransferase inhibitor 91 – – – – – – – – 91 90 90 – – – – – –
Oxidoreductase inhibitor 81 – – – – – – – – 87 86 85 – – – – – –
Prostaglandin-E2 9-reductase inhibitor – 86 – – – – – – – – – – – – – – – –
Alkylacetylglycerophosphatase inhibitor – – 92 – – 84 82 90 86 – – – – – – 90 87 83
Alkenylglycerophosphocholine hydrolase inhibitor – – 90 – – – – 80 – – – – – – – 88 82 80
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3. Conclusions

The design and preparation of new steroid conjugates allow us to develop the fields of
supramolecular chemistry, material chemistry, and nanotechnology. In this paper we described the
synthesis and physicochemical properties of quaternary alkylammonium conjugates of steroids. Most
of the described compounds are characterized by high biological activity with a broad spectrum
of antimicrobial and antifungal activity. Moreover, these compounds can actively participate in
transport across biological membranes, which offers tremendous possibilities in biochemistry,
pharmacology, and medicine. The spectroscopic data, semiempirical calculations, and potential
pharmacological properties (PASS) obtained in this work significantly extend the library of new
steroid conjugates.
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