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Abstract

Aims Application of the latent class analysis to acute heart failure with preserved ejection fraction (HFpEF) showed that the
heterogeneous acute HFpEF patients can be classified into four distinct phenotypes with different clinical outcomes. This
model-based clustering required a total of 32 variables to be included. However, this large number of variables will impair
the clinical application of this classification algorithm. This study aimed to identify the minimal number of variables for the
development of optimal subphenotyping model.
Methods and results This study is a post hoc analysis of the PURSUIT-HFpEF study (N = 1095), a prospective, multi-referral
centre, observational study of acute HFpEF [UMIN000021831]. We previously applied the latent class analysis to the
PURSUIT-HFpEF dataset and established the full 32-variable model for subphenotyping. In this study, we used the Cohen’s
kappa statistic to investigate the minimal number of discriminatory variables needed to accurately classify the phenogroups
in comparison with the full 32-variable model. Cohen’s kappa statistic of the top-X number of discriminatory variables com-
pared with the full 32-variable derivation model showed that the models with ≥16 discriminatory variables showed kappa
value of >0.8, suggesting that the minimal number of discriminatory variables for the optimal phenotyping model was 16.
The 16-variable model consists of C-reactive protein, creatinine, gamma-glutamyl transferase, brain natriuretic peptide, white
blood cells, systolic blood pressure, fasting blood sugar, triglyceride, clinical scenario classification, infection-triggered acute
decompensated HF, estimated glomerular filtration rate, platelets, neutrophils, GWTG-HF (Get With The Guidelines-Heart Fail-
ure) risk score, chronic kidney disease, and CONUT (Controlling Nutritional Status) score. Characteristics and clinical outcomes
of the four phenotypes subclassified by the minimal 16-variable model were consistent with those by the full 32-variable
model. The four phenotypes were labelled based on their characteristics as ‘rhythm trouble’, ‘ventricular-arterial uncoupling’,
‘low output and systemic congestion’, and ‘systemic failure’, respectively.
Conclusions The phenotyping model with top 16 variables showed almost perfect agreement with the full 32-variable
model. The minimal model may enhance the future clinical application of this clustering algorithm.
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Background

Few evidence-based medical therapies for heart failure with
preserved ejection fraction (HFpEF) have been established.
One reason for this may be the multifactorial pathophysiol-
ogy of the disease, which involves impairments in cardiac,
vascular, and peripheral reserve caused by common risk fac-
tors such as aging, adiposity, hypertension, and metabolic
stress.1 This pathophysiological heterogeneity makes the
conventional ‘one-size-fits-all’ approach difficult. In order to
identify some distinct phenogroups, unsupervised machine
learning technique was first applied to chronic HFpEF.2,3 We
recently applied the technique to acute HFpEF and found that
the heterogeneous acute HFpEF patients can be classified
into four distinct phenotypes with different clinical
outcomes4: Phenotypes 1–4 were labelled based on group
characteristics as ‘rhythm trouble’, ‘ventricular-arterial
uncoupling’, ‘low output and systemic congestion’, and
‘systemic failure’, respectively. A total of 32 variables were
selected by the latent class analysis for the best
subphenotyping model. However, the large number of vari-
ables will impair the clinical application of this classification
algorithm.

Aims

This study aimed to identify the minimal phenotyping
model to accurately and comparably subclassify acute
decompensated HFpEF patients to the full 32-variable
model.

Methods

The present study is a post-hoc analysis of the database of
the Prospective mUlticenteR obServational stUdy of patIenTs
with Heart Failure with preserved Ejection Fraction (PURSUIT-
HFpEF) study (N = 1095), a prospective, multi-referral centre,
observational study [UMIN-CTR ID: UMIN000021831].4–6

Consecutive patients with acute decompensated heart failure
and preserved ejection fraction (≥50%) were prospectively
registered. Acute decompensated heart failure was diag-
nosed on the basis of the following criteria: (i) clinical symp-
toms and signs according to the Framingham Heart Study
criteria7; and (ii) a serum N-terminal pro-B-type natriuretic
peptide (NT-proBNP) level of ≥400 pg/mL or brain natriuretic
peptide (BNP) level of ≥100 pg/mL. Basic patient characteris-
tics, echocardiography, laboratory tests, and lists of medica-
tions were obtained on admission, at discharge, and at each
annual follow-up time point. The study conformed to the eth-
ical guidelines outlined in the Declaration of Helsinki and the
study protocol was approved by the ethics committee of each
participating hospital. All patients provided written informed
consent for participation in this study.

We applied the latent class analysis (‘VarSelLCM’ package
in R 4.0.5) to the PURSUIT-HFpEF dataset.4 A total of 160
variables on hospital admission were considered as primary
candidates for latent class analysis, and finally the latent class
analysis selected 32 variables for the best model. In the pres-
ent study, we used the Cohen’s kappa statistic to investigate
the minimal number of discriminatory variables needed to ac-
curately classify the phenogroups in comparison with the full
32-model with the ‘irr’ package. The Cohen’s kappa statistic is
an inter-rater reliability metric that takes into consideration
the possibility of agreement by chance. Scores range from

Figure 1 Cohen’s kappa statistic of the top-X number of discriminatory variables compared with the full 32-variable derivation model. Kappa value
>0.8 indicates almost perfect agreement (horizontal dotted line). The minimal number of discriminatory variables for the optimal phenotyping model
was 16.
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�1 to +1 and a score greater than 0.80 indicates almost per-
fect agreement.8 The dataset of the PURSUIT-HFpEF study
(2016–2020) was categorized based on enrollment period
into a derivation cohort (N = 623) to construct a
subphenotyping model and a validation cohort (N = 472) to
assess the validity of the model. Risk of the clinical outcomes
across the phenogroups was assessed in a time-to-first-event
fashion with the Kaplan–Meier method and compared with
the log-rank test and Cox proportional hazards model
(‘survival’ package). The proportional hazards assumption of
the phenogroups for the primary endpoint was confirmed
by Schoenfeld residuals (P = 0.13).

Results

Cohen’s kappa statistic of the top-X number of discriminatory
variables compared with the full 32-variable derivation model
is presented in Figure 1. The models with ≥16 discriminatory
variables showed kappa value of >0.8 (almost perfect agree-
ment), indicating that the minimal number of discriminatory
variables for the optimal phenotyping model was 16. The
16-variable model consists of C-reactive protein, creatinine,

gamma-glutamyl transferase, brain natriuretic peptide, white
blood cells, systolic blood pressure, fasting blood sugar, tri-
glyceride, clinical scenario classification,9 infection-triggered
acute decompensated HF, estimated glomerular filtration
rate, platelets, neutrophils, GWTG-HF (Get With The
Guidelines-Heart Failure) risk score,10 chronic kidney disease,
and CONUT (Controlling Nutritional Status) score11 (Table 1).
The following variables in the full model were excluded from
this minimal model: uric acid, low-density lipoprotein choles-
terol, uncontrollable hypertension-triggered hospital admis-
sion, age, sodium, atrial fibrillation, HF hospitalization history,
the ratio of mitral peak velocity of early filling E to the
velocity of mitral annulus early diastolic motion e’, total
bilirubin, rhythm on admission, arrhythmia-triggered hospital
admission, haemoglobin, hyperuricemia, diabetes mellitus,
left ventricular mass index, and plasma volume status.12

Characteristics of phenotypes subclassified by the minimal
model are summarized in Table 2. Clinical outcome data are
illustrated in Figure 2 and Figure 3. Like the original paper,4

Groups 1–4 may be labelled based on group characteristics
as ‘rhythm trouble’, ‘ventricular-arterial uncoupling’, ‘low out-
put and systemic congestion’, and ‘systemic failure’, respec-
tively. In Group 1 ‘rhythm trouble’, arrhythmia triggering
was the frequent reason for acute worsening of HF. Diabetes

Table 1 Variables for the minimal optimal phenotyping model

Number Features Type of data Unita/Optionsb Discriminative powerc

1 C-reactive protein Continuous mg/dL 794.6
2 Creatinine Continuous mg/dL 480.8
3 Gamma-glutamyl transferase Continuous IU/L 277.6
4 Brain natriuretic peptide Continuous pg/mL 274.5
5 White blood cells Continuous ×103/μL 142.4
6 Systolic blood pressure Continuous mmHg 114.2
7 Fasting blood sugar Continuous mg/dL 114.0
8 Triglyceride Continuous mg/dL 108.1
9 Clinical scenario classificationd Nominal CS1/CS2/CS3/CS4/CS5 80.8
10 Trigger of acute decompensated HF: infection Nominal yes/no 77.0
11 Estimated glomerular filtration rate Continuous mL/min/1.73 m2 73.5
12 Platelets Continuous ×104/μL 56.9
13 Neutrophils Continuous % 46.8
14 GWTG-HF risk scoree Continuous N/A 46.5
15 Chronic kidney diseasef Nominal yes/no 43.4
16 CONUT scoreg Ordinal 0–12 33.9

CONUT, Controlling Nutritional Status11; CS, clinical scenario9; GWTG-HF, Get With The Guidelines-Heart Failure10; HF, heart failure; N/A,
not applicable.
Variables are listed in descending order of discriminative power.
aUnit for continuous value.
bOptions for nominal or ordinal values.
cWe computed the discriminative power of each variable as the logarithm of the ratio between the probability that the variable is relevant
for clustering versus the probability that it is irrelevant for clustering.
dClinical scenario is a classification system considering the systolic blood pressure and other symptoms: (CS1) dyspnoea and/or congestion
with systolic blood pressure >140 mm Hg; (CS2) dyspnoea and/or congestion with systolic blood pressure 100–140 mm Hg; (CS3) dys-
pnoea and/or congestion with systolic blood pressure <100 mm Hg; (CS4) dyspnoea and/or congestion with signs of acute coronary syn-
drome; and (CS5) isolated right ventricular failure.

eGWTG-HF risk score is a scoring system that can predict in-hospital mortality in patients with preserved or impaired left ventricular systolic
function using seven following clinical factors: age, systolic blood pressure, blood urea nitrogen, heart rate, sodium, chronic obstructive
pulmonary disease, and nonblack race.10

fChronic kidney disease is defined as kidney damage and/or glomerular filtration rate <60 mL/min/1.73 m2 for 3 months or more. Kidney
damage can be ascertained by the presence of albuminuria or proteinuria, defined as albuminuria >30 mg/gCr or proteinuria >0.15 g/
gCr.
gCONUT score is a tool to identify undernourished patients. The score consists of serum albumin, total cholesterol, and lymphocyte counts.
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mellitus, chronic kidney disease and dyslipidaemia were less
frequently observed, showing a lower comorbidity burden
in this group. Group 2 ‘ventricular-arterial uncoupling’ was
characterized by sinus rhythm on admission but the highest

BNP level among the groups. Clinical scenario 1 was the most
frequent presentation on hospital admission.9 Diabetes and
chronic kidney disease were more frequently observed in this
group, and they had the highest left ventricular mass index.

Figure 2 Kaplan–Meier analysis. Survival analysis using the Kaplan Meier method for (A, D) a composite of all-cause death and HF readmission, (B, E)
all-cause death, and (C, F) HF readmission in the derivation cohort (upper panel) and the validation cohort (lower panel). *Analysis was carried out with
patients who survived to discharge and had follow-up data after discharge. HF, heart failure.

Figure 3 Association between phenogroups and clinical outcomes. Forest plots show risks in each phenogroup with reference to group 1 for the pri-
mary and secondary end points. The derivation cohort (A) and the validation cohort (B) showed similar results. HF, heart failure; ref, reference.
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Group 3 ‘low output and systemic congestion’ showed the
highest level of γ-glutamyl transferase at initial presentation.
Blood pressure and heart rate on hospital admission were
lowest among the groups. Most of the patients in this group
showed clinical scenario 2 on hospital admission. Group 4
‘systemic failure’ was characterized by high C-reactive pro-
tein, infection-triggered hospitalization, and the impaired nu-
tritional status. During the follow-up period, a composite of
death or heart failure hospitalization occurred most fre-
quently in Group 3. These group features were almost consis-
tent across the derivation and validation cohorts. The overall
results were similar between the subclassification by the orig-
inal full-model and the present minimal model.4

Conclusions

We recently reported four distinct phenotypes of acute de-
compensated HFpEF subclassified by the latent class
analysis.4 We have established the subclassification ma-
chine-learning-based algorithm consisting of the 32 variables.
In this study, minimal model with 16 variables showed
the comparable subclassification performance to the full
32-variable model.

Cohen’s kappa statistically confirmed the comparable per-
formance of the minimal model, which was further confirmed
by the descriptive statistics of each phenotype. Characteris-
tics and clinical outcomes were consistent across the full
model and the current minimal model. The latent class anal-
ysis offers a stochastic modelling and can provide probability
of each cluster membership, which allows prospective clinical

application of the clustering model. Variables in the minimal
model (Table 1) are all basic laboratory parameters and vital
signs. Although we included various echocardiographic
parameters as candidates for the clustering variables, no
echocardiographic parameters remained after the selection
process of the latent class analysis. Furthermore, although
one of the phenotypes is characterized by rhythm disorder,
no electrocardiogram data remained in the final model. We
speculate that the basic laboratory data and vital signs may
represent such detailed hemodynamic parameters. This
minimal model does not require electrocardiogram and
echocardiographic assessment. Subphenotyping can be done
only with medical interview and blood sampling test, which
will further enhance the clinical application also in the area
with limited medical resources.

Our final goal is the establishment of a phenotype-specific
treatment strategy for acute HFpEF. Figure 4 illustrates
specific characteristics of the four phenotypes. Different phe-
notypes may have different underlying pathophysiology (pre-
viously described in detail4), suggesting that specific effective
treatment may exist in each phenotype. To achieve the goal,
we need to conduct a prospective randomized study to eval-
uate a possible phenotype-specific treatment for a certain
phenogroup. The minimal model established in this study will
be the basis of future studies. Authors are planning to create
an online tool based on the clustering model so that physi-
cians can easily assess which phenotype a patient belongs
to with the 16 variables. The website will be available soon.

The most important limitation of the present model is its
generalizability. The differing healthcare system and the die-
tary and social differences in Japan compared with other
countries would limit the generalizability of the findings to

Figure 4 Specific features of acute HFpEF phenotypes. The latent class analysis subclassified the patients with acute decompensated HFpEF into four
distinctive clusters. BNP, brain natriuretic peptide; CRP, C reactive protein; GGT, gamma-glutamyl transferase; HFpEF, heart failure with preserved ejec-
tion fraction; LV, left ventricular; PURSUIT, Prospective mUlticenteR obServational stUdy of patIenTs. Reproduced with permission from BMJ Publishing
Group Ltd. & British Cardiovascular Society (Phenotyping of acute decompensated heart failure with preserved ejection fraction. Heart 2022.
doi: 10.1136/heartjnl-2021-320270).
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other regions and ethnicities.13,14 Furthermore, the deriva-
tion cohort of the phenotyping model consisted of very
elderly patients (median age; 82 years), which may impair
the applicability of the model to younger HFpEF patients.

In conclusion, the phenotyping model with top-16
variables showed almost perfect agreement with the full
32-variable model. The minimal model may enhance the fu-
ture clinical application of this clustering algorithm. Our next
scientific topic is to prospectively evaluate specific candidate
treatments for each phenotype categorized by this minimal
phenotyping model.
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