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Abstract

Background: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature,
but a systematic analysis on the interaction between various genetic and environmental factors is still lacking.

Methodology/Principal Findings: We conducted a population-based, case-control study comprised of seventh-grade
children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for
DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 single-
nucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental
exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor
dimensionality reduction (MDR) method was used for the analysis. A three-way gene-gene interaction was elucidated
between the gene coding glutathione S-transferase P (GSTP1), the gene coding interleukin-4 receptor alpha chain (IL4Ra)
and the gene coding insulin induced gene 2 (INSIG2) on the risk of lifetime asthma. The testing-balanced accuracy on
asthma was 57.83% with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor
dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes,
including IL13, beta-2 adrenergic receptor (ADRB2), signal transducer and activator of transcription 6 (STAT6). We also used
likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance.

Conclusions/Significance: The results of this study suggest that GSTP1, INSIG2 and IL4Ra may influence the lifetime asthma
susceptibility through gene-gene interactions in schoolchildren. Home dampness combined with each one of the genes
STAT6, IL13 and ADRB2 could raise the asthma risk.
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Introduction

Asthma is the most common allergic disease giving rise to the

morbidity or school absence in children [1,2]. The prevalence of

childhood asthma is socially burdensome and results in significant

medical expenditure around the world [3]. Many gene and

environmental factors are associated with this complex disease, but

the effect of each of these factors is mild. It was known that

common diseases have complex etiologies such as the dependence

of genotypic effects on environmental factors (i.e., gene-environ-

ment interactions) and genotypes at other loci (i.e., gene-gene

interactions). Recently, there has been increased interest in gene-

gene and gene-environment interactions, which may affect asthma

pathophysiology.

Inflammatory lung diseases such as asthma [4] are associated

with reactive oxygen species (ROS). ROS are regulated by some

antioxidant genes and transcription factors. The epoxide hydrox-

ylase (EPHX1) and glutathione S-transferase (GST) genetic variants

are associated with an increased risk for lifetime asthma [5].

Obesity is an important risk factor in asthma [6,7,8]. Genetic

variations in the obesity-related genes beta-2 adrenergic receptor

(ADRB2), beta-3 adrenergic receptor (ADRB3), insulin induced

gene 2 (INSIG2), and peroxisome proliferator-activated receptor

gamma (PPARc) are also included in our study [9]. Mindful of the

importance of inflammation in asthma, we further included several

inflammatory genes in our analysis. Interleukin (IL)-13, IL-4,

interleukin 4 receptor (IL-4Ra), signal transducer and activator of

transcription 6 (STAT6) and tumor necrosis factor-alpha (TNFa)

genes are key inflammatory genes in the development of allergic

diseases such as asthma [10,11,12,13,14,15]. Asthma candidate

genes are thought to contribute only 40–60% overall risk [16].

Gene-gene and gene-environmental interactions could explain the

residual influence for asthma etiology when a single candidate

gene is considered. This study is the first to systematically

investigate the potential gene-gene and gene-environmental

interactions on various physiological pathway genes on asthma.

Indoor exposure to dampness is suspected to be an important

environmental factor for the development of asthma and allergic
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disease in modern societies. The Taiwan Children Health Study

(TCHS) is a population-based study from 14 Taiwanese

communities representing a wide range of exposures among

school-aged children. This study offers an opportunity to

investigate the interactive effects of gene-gene and gene-environ-

mental influences on children’s health. The multifactor dimen-

sionality reduction (MDR) approach allows high-dimensional

interactions of multiple factors to be simultaneously retrieved,

and has successfully identified gene-gene interactions in a variety

of diseases including breast cancer [17], essential hypertension

[18], type II diabetes [19], atrial fibrillation [20], coronary artery

calcification [21], and amyloid polyneuropathy [22]. In the

present study, gene-gene interactions for childhood asthma were

examined based on 17 SNPs in thirteen candidate genes,

encompassing three physiological groups. A number of environ-

mental factors thought to affect asthma were considered, and the

associations between candidate genes and environmental factors

were explored.

Results

Subjects and demographic data
Table 1 shows demographic characteristics and pulmonary

function indices for study participants. FEV1, MMEF and FEV1/

FVC in asthmatic children are generally lower than non-asthmatic

controls. A total of 17 SNPs from thirteen candidate genes were

selected for their association with childhood asthma (Table 2). All

SNPs were under the Hardy-Weinberg equilibrium (HWE) [23].

Environmental factors including in utero smoking, environmental

tobacco smoke (ETS), pets at home, incense burning, carpet use,

cockroaches in the home and indoor dampness were used to explore

the gene-environment interactions. The genotyping call rate for each

SNP was over 98% in our study. Data from 1,310 samples were

subjected to further gene-gene and gene-environment interaction

analysis.

Gene-gene interactions in childhood asthma
MDR was used to analyze gene-gene interaction models in

childhood asthma. The two- to ten-way gene-gene interaction

models are listed in Table 3. The SNP (rs1805010) in the IL4Ra

gene had the highest testing-balanced accuracy among the 17

SNPs. A three-way interaction found between GSTP1, IL4Ra and

INSIG2 showed the highest testing-balanced accuracy and cross-

validation consistency. A two-way interaction model of IL4Ra and

INSIG2 also exhibited high testing-balanced accuracy and cross-

validation consistency, but the testing-balanced accuracy was

lower than the three-way interaction model. In order to elucidate

potential two- and three-way gene-gene interactions in childhood

asthma, the top ten two-way and three-way interaction models

were listed (Table 4, Table 5). The rank was determined by the

training-balanced accuracy of MDR. In the two-way gene-gene

interaction models (Table 4), interaction between IL4Ra and

INSIG2 has the highest training-balanced accuracy at 56.82%.

IL4Ra also has a statistically significant interaction with EPHX1

exon4 in childhood asthma. For the three-way interaction models

(Table 5), interaction between GSTP1, IL4Ra, and INSIG2 had the

highest training-balanced accuracy. The information gain derived

by the entropy-based analysis in the MDR software package was

all positive in each pair-wise combination of GSTP1, IL4Ra and

INSIG2.

Moreover, the IL4Ra and INSIG2 gene combination interacted

with GSTP1, STAT6, ADRB2, ADRB3, IL13 and EPHX1 exon 3 to

reveal a high training-balanced accuracy above 58.38% in

childhood asthma.

Gene-environment interactions in childhood asthma
MDR analysis was used to investigate probable gene-environ-

ment interactions in childhood asthma, and revealed the

interaction between 17 SNPs and 9 environmental factors.

Dampness was found to be the most important environmental

factor affecting asthma susceptibility (Table 6). Two-way interac-

tions showed higher testing-balanced accuracy and cross-valida-

tion consistency, indicating that two-way interaction models were

the candidate gene-environment models in our population. The

top ten two-way interaction models are shown in Table 7. The

interaction of preterm birth and indoor dampness had the highest

training-balanced accuracy at 59.09%. IL4Ra-BMI interaction

also affected asthma susceptibility with a high training balanced

accuracy. In addition, indoor dampness also interacted with many

genes including IL13, ADRB2, and STAT6. The lowest training-

balanced accuracy was 57.34%, higher than the training-balanced

accuracy of 56.98% obtained when home dampness was a single

predictor (Table 6). In the two-way interaction listed in Table 7,

home dampness seems to be the most important environment

factor.

Validation of gene-gene and gene-environment
interactions

Two-way and three-way gene-gene and gene-environment

interactions were examined using the detailed interaction model

of MDR (Fig. 1 and Fig. 2). We used the likelihood ratio tests to

validate the gene-gene interactions between IL4Ra and INSIG2 on

childhood asthma and the P-value was 0.029. The three-way

interaction between GSTP1, IL4Ra, and INSIG2 genes was also

significant (P for LRT interaction = 0.003).

Chi-square tests were used to validate the high risk and low risk

phenotype classification. The dimensional reduction of the three-

way gene-gene interaction between GSTP1, IL4Ra and INSIG2 is

shown in Fig. 1A. Of the 27 combinations of three-way gene-gene

interaction, GSTP1 GG, IL4Ra GA and INSIG2 GG resulted in the

highest risk for childhood asthma. Chi-square tests also showed

statistical significance (P,0.001) (Fig. 1B). The detailed model of

two-way gene-environment interaction between high risk and low

risk groups of childhood asthma is shown in Fig. 2A. In the two-

way gene-environment interaction model shown in Fig. 2B, the

interaction between preterm birth and indoor dampness revealed

Table 1. demographic characteristics and pulmonary
function indices for study participants.

Asthmatics Controls

Characteristic (N = 235) (N = 1,075)

Gender

Boy 128 (54.5) 522(48.6)

Girl 107 (45.5) 553(51.4)

Age, yr 12.761.0 12.860.4

BMI 20.864.3 20.464.1

Pulmonary function indices

FVC (% predicted) 99.9613.3 100.1613.9

FEV1 (% predicted) 97.6614.1 99.9621.9

MMEF (% predicted) 93.7624.5 99.7622.5

FEV1/FVC (%) 88.866.2 90.965.4

Values were presented by n (%) or mean 6 SD.
doi:10.1371/journal.pone.0030694.t001

Gene and Environment Interaction of Asthma
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the highest risk at 59.09%. The lowest risk combination in preterm

birth and dampness was 14.04%. Chi-square tests also showed

significant differences between high risk and low risk classification

on childhood asthma.

Discussion

To the best of our knowledge, this study is the first to elucidate

potential interactions between antioxidative, inflammatory and

obesity-related genes on childhood asthma. Using an MDR

approach, our study suggests a three-way gene-gene interaction

between inflammatory gene IL4Ra, obesity-related gene INSIG2,

and antioxidative gene GSTP1. The three-way gene-gene

interaction between IL4Ra, INSIG2, and GSTP1 was not only

identified in gene-gene analyses but also confirmed in gene-

environment analyses in MDR approach. The entropy-based

analysis indicated that the interaction between GSTP1, IL4Ra and

INSIG2 was synergistic. The results of the gene-environment

interaction analyses showed that there was an association between

preterm birth and home dampness among schoolchildren.

Children carrying asthma candidate genes were more susceptible

to adverse effects of home dampness.

The link between asthma and obesity in childhood has been

examined in many epidemiological studies [24,25,26]. A recent

meta-analysis showed that children with high body weight were at

increased risk of developing asthma [7]. Patients with allergic

asthma showed significant higher BMI and insulin resistance than

non-asthmatic controls [27]. Some adipokines secreted by adipose

tissue have pro-inflammatory effects and also show the potential to

modulate the Th2 immunity [28]. SNP rs7566605 in INSIG2 gene

is a common genetic variant associated with obesity [29]. Herbert

and colleagues reported the association between SNP (rs7566605)

upstream of the INSIG2 with higher BMI [29]. The SNP

(rs7566605) genotype CC was significantly associated with obesity.

Table 2. Genotype characteristics of each single nucleotide polymorphism.

Gene
Chromosome
position Location Polymorphism MAF HWE P-value*

Inflammation SNPs

TNFa, rs1800629 6p21.3 59 near gene A/G 0.116 0.135 0.71

IL4, rs2243250 5q31.1 59 near gene C/T 0.179 1.839 0.18

IL13, rs20541 5q31 Exon C/T 0.313 1.759 0.18

IL13, rs848 5q31 UTR-3 G/T 0.324 0.095 0.76

IL13, rs1800925 5q31 59 promoter region C/T 0.142 4.571 0.03

IL4Ra, rs1805010 16p12.1-p11.2 Missense G/A 0.493 8.216 0.00

STAT6, rs324011 12q13 Intron C/T 0.244 0.064 0.80

Obesity-related SNPs

INSIG2, rs7566605 2q14.2 Intron C/G 0.399 0.001 0.98

PPARc, rs1801282 3p25 Exon C/G 0.045 2.391 0.12

ADRB2, rs1042713 5q31-q32 Missense A/G 0.415 2.887 0.09

ADRB2, rs1042714 5q31-q32 Missense C/G 0.096 0.398 0.53

ADRB3, rs4994 8p12 Missense C/T 0.153 0.570 0.45

Antioxidative SNPs

EPHX1 exon 4, rs2234922 1q42.1 Exon A/G 0.137 4.828 0.03

EPHX1 exon 3, rs1051740 1q42.1 Exon C/T 0.471 0.813 0.37

GSTP1, rs1695 11q13 Exon A/G 0.178 0.213 0.64

GSTT1 22q11.23

GSTM1 1p13.3

Notes: MAF, minor allele frequency; HWE, Hardy Weinberg Equilibrium.
*p-value for Hardy-Weinberg Equilibrium.
doi:10.1371/journal.pone.0030694.t002

Table 3. Summary of MDR gene-gene interaction results.

Model Training Bal. Acc. (%) Testing Bal. Acc. (%) Cross-validation Consistency

IL4Ra 53.98 49.04 7/10

IL4Ra, INSIG2 56.83 55.78 9/10

GSTP1, IL4Ra, INSIG2 60.93 57.83 10/10

GSTP1, IL4Ra, INSIG2, IL13 (rs1800925) 64.99 57.75 6/10

GSTP1, IL4Ra, INSIG2, ADRB2 (rs1042713), EPHX1 exon 3 70.72 49.31 5/10

doi:10.1371/journal.pone.0030694.t003

Gene and Environment Interaction of Asthma
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In animal models, the INSIG1 and INSIG2 gene double-knockout

mice were found to be more obese than the control mice [30]. We

found that the INSIG2 gene played a key role in the three-way

gene-gene interaction (Table 3). Our results constitute new

evidence that obesity-related genes may show interactive effects

with asthma candidate genes, such as antioxidative and Th2

pathway inflammatory genes.

Although the underlying mechanism for the link between

asthma and obesity is still not fully understood, some pathophys-

iological pathways have been suggested , such as altered lung

mechanics, enhanced systemic pro-inflammatory state, shared

inherited predispositions and dietary intake [31], as well as the

increased systemic oxidant stress [8,32]. In a community-based

study, Keaney et al. reported that BMI was strongly associated

Table 5. Three-way gene-gene interactions of MDR analysis.

Rank Model
Training Bal. Acc.
(%)

Testing Bal. Acc.
(%) P-value* P-value#

1 GSTP1 IL4Ra INSIG2 60.93 57.83 0.002 0.001

2 STAT6 IL4Ra INSIG2 59.03 51.84 0.251 0.310

3 IL13 (rs848) STAT6 ADRB2 (rs1042713) 59.01 55.57 0.017 0.016

4 ADRB2 (rs1042714) IL4Ra INSIG2 58.82 55.31 0.023 0.022

5 ADRB3 IL4Ra INSIG2 58.77 56.34 0.008 0.006

6 IL13 (rs1800925) IL4Ra INSIG2 58.68 53.59 0.084 0.114

7 EPHX1 exon 3 IL4Ra INSIG2 58.62 54.23 0.057 0.073

8 EPHX1 exon 3 IL4Ra IL4 58.47 53.08 0.122 0.161

9 ADRB2 (rs1042713) IL4Ra INSIG2 58.45 51.99 0.240 0.294

10 GSTP1 IL4Ra STAT6 58.38 55.12 0.028 0.026

*Two- or Three-way interactions were validated based on 1000 permutations.
#Two- or Three-way interactions were validated based on 1000 explicit tests.
doi:10.1371/journal.pone.0030694.t005

Table 4. Two-way gene-gene interactions of MDR analysis.

Rank Model Training Bal. Acc. (%) Testing Bal. Acc. (%) P-value* P-value#

1 IL4Ra INSIG2 56.82 55.78 0.011 0.007

2 IL4Ra EPHX1 exon 4 55.80 53.77 0.085 0.108

3 IL4Ra STAT6 55.73 53.86 0.079 0.094

4 IL4Ra GSTT1 55.58 55.58 0.018 0.010

5 IL4Ra IL4 55.39 53.54 0.099 0.133

6 GSTP1 IL13 (rs1800925) 55.34 54.73 0.037 0.037

7 IL13 (rs848) ADRB2 (rs1042713) 55.34 53.75 0.085 0.110

8 IL4 IL13 (rs1800925) 55.25 54.80 0.035 0.036

9 EPHX1 exon 4 IL13 (rs20541) 55.17 54.80 0.035 0.036

10 IL4Ra GSTP1 55.00 53.61 0.093 0.127

*Two- or Three-way interactions were validated based on 1000 permutations.
#Two- or Three-way interactions were validated based on 1000 explicit tests.
doi:10.1371/journal.pone.0030694.t004

Table 6. Summary of gene-environment interaction results.

Model Training Bal. Acc. (%) Testing Bal. Acc. (%) Cross-validation Consistency

Dampness 56.98 56.98 10/10

Preterm birth, Dampness 59.09 55.60 8/10

IL4Ra, INSIG2, BMI 62.00 52.17 5/10

IL4Ra, INSIG2, IL13 (rs20541) , BMI 67.88 50.60 4/10

IL4Ra, INSIG2, EPHX1 exon 3, ADRB2 (rs1042713), BMI 76.76 49.30 9/10

doi:10.1371/journal.pone.0030694.t006

Gene and Environment Interaction of Asthma
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Table 7. Two-way gene-environment interactions of MDR analysis.

Rank Model Training Bal. Acc. (%) Testing Bal. Acc. (%) P-value* P-value#

1 Preterm birth Dampness 59.09 55.60 0.003 1.000

2 IL4Ra BMI 58.42 55.26 0.008 1.000

3 Dampness BMI 58.27 56.88 0.002 0.934

4 Carpet Dampness 58.04 58.04 0.001 0.701

5 STAT6 Dampness 57.85 57.22 0.001 0.914

6 IL13 (rs20541) Dampness 57.75 56.41 0.002 0.967

7 IL13 (rs1800925) Dampness 57.54 57.54 0.001 0.883

8 Preterm birth BMI 57.49 56.42 0.002 0.966

9 in utero ETS Dampness 57.40 56.80 0.002 0.947

10 ADRB2 (rs1042714) Dampness 57.34 57.03 0.001 0.914

*Two-way gene-environment interactions were validated based on 1000 permutations.
#Two- or Three-way interactions were validated based on 1000 explicit tests.
doi:10.1371/journal.pone.0030694.t007

Figure 1. The best three-way gene-gene interaction between IL4Ra, INSIG2, and GSTP1 for childhood asthma. (A) The 27 genotype
combinations displayed by MDR. High-risk genotype combinations are in grey and low-risk genotype combinations in white. The left bar represent
the asthma group and the right bar represent the controls. (B) The validation of high and low risk classification by Chi-square test.
doi:10.1371/journal.pone.0030694.g001

Gene and Environment Interaction of Asthma
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with the increased systemic oxidative stress, estimated by 8-epi-

PGF2a [33]. Correlation between fat accumulation and systemic

oxidative stress was also found in animal models. In obese mice,

reactive oxygen species (ROS) level was noted to be increased

selectively in adipose tissue, accompanied by decreased expression

of antioxidative enzymes [34]. ROS is responsible for many

chronic lung diseases such as asthma, and is proposed to be the

major source of cell and tissue damage [4]. Glutathione-

transferases (GSTs) play important roles in airway antioxidant

defenses [4], and theGSTP1 gene contributes more than 90% of

GST-derived enzyme activity in human lung epithelium [35]. Our

findings suggest that the GSTP1 gene may be the most important

gene in the antioxidative gene group (Table 3). The three-way

gene-gene interaction involves GSTP1 and INSIG2 characterize the

obesity affects on antioxidative gene further influence asthma.

Obesity-associated low-grade systemic inflammation has been

suggested to be a major factor mediating the asthma susceptibility

in many studies [36,37,38]. Polymorphisms in the inflammatory

gene IL4Ra are associated with numerous atopic diseases such as

asthma [39,40]. In a previous study among German children, the

combination of the IL4, IL13, STAT6 and IL4Ra genes was

revealed to increase the risk of bronchial asthma up to 16.8 times

compared with the effects of individual gene polymorphisms [41].

IL13 and IL4 cytokines produced by Th2 cells and inducing IgE

after allergen exposure are noted to share a common receptor

IL4Ra [42]. The IL4Ra is a key component in the induction of the

Figure 2. The best two-way gene-environment interaction between preterm birth and home dampness for childhood asthma. (A)
The 4 gene-environment combinations displayed by MDR. High-risk genotype combinations are in grey and low-risk genotype combinations in
white. The left bar represent the asthma group and the right bar represent the controls. (B) The validation of high and low risk classification by Chi-
square test.
doi:10.1371/journal.pone.0030694.g002

Gene and Environment Interaction of Asthma
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Th2 lymphocyte phenotype and its antagonist improved respira-

tory function and asthma control in human studies [43,44].

Results from the top ten gene-gene interaction models elucidated

the IL4Ra gene as a hub for gene-gene interactions on childhood

asthma (Table 5), supporting that the IL4Ra gene may be the key

regulatory element of the Th2 immune response. Gene-gene

interaction between IL13 and IL4Ra was reported to affect asthma

in white Dutch and Chinese populations [45]. Since MDR

determines one optimal interaction model that can successfully

predict high/low risk asthma phenotype, the combination of IL13

and IL4Ra gene may not be the optimal model in our analysis.

Asthma is a complex disease affected by many genetic factors,

which in turn may be influenced by environmental exposures.

Taiwan is located in a subtropical climate zone, with high

temperatures and humidity (monthly mean 68–80%). Home

dampness is a common problem and an important environmental

factor for asthma [46,47,48,49]. However, few studies are

concerned with the genetic modification effects of home dampness

on childhood asthma [50]. In our data, the gene-environmental

MDR analyses showed that home dampness is the most important

environmental factor on childhood asthma (Table 7). Using home

dampness as a predictor, the testing accuracy on asthma is 56.98%

(Table 6). Home dampness combined with each one of the genes

STAT6, IL13 and ADRB2 raised the testing accuracy on asthma

higher than 57.34% (Table 7). Our findings from interaction

models with significant permutated p-values but non-significant

explicit p-values might be due to the strong marginal effects from

environment variables.

The six-way interaction model also showed 10/10 cross-

validation consistency and high training-balanced accuracy

(tables 3), but this result was not followed-up due to low testing-

balanced accuracy. Low testing-balanced accuracy may be caused

by the model over-fitting problem, in which the generated model

fits the training data too well, increasing the high generalization

error [51]. The presence of noise or paucity of representative

samples in the training dataset is possible causes of model over-

fitting. A model that is too complex may fit the noise, leading to

lower testing-balanced efficiency. In our analysis, we used a 10-

fold cross-validation approach to avoid the model over-fitting

problem.

Our study has some limitations. Asthma assessment was based

on parental questionnaire reports. Although misclassification of

asthma status may have arisen, questionnaires are widely used to

define respiratory outcomes in epidemiologic studies among

children [52,53]. Another possible limitation is the retrospective

recall of environmental exposures by questionnaire, which is likely

to have resulted in some misclassification. However, the reliability

and validity of questionnaire on measuring dampness exposure has

been verified by a strong association between inspectors and self-

reported dampness [51,52]. Due to limitations of the MDR model

approach, any participants with missing data were eliminated in

our study, which made selection bias possible. However, in our

analysis it was found that participants without missing data did not

differ greatly from all eligible participants on most of the

demographic factors (data not shown).

In conclusion, our study suggests that gene-gene interactions

may occur between different pathophysiological pathways and a

significant three-way gene-gene interaction between GSTP1,

INSIG2 and IL4Ra on childhood asthma. Home dampness

combined with each one of the genes STAT6, IL13 and ADRB2

could also raise the asthma risk. Further classifying asthma into

different phenotypes and whole genome association genotyping

will improve the understanding of gene-gene interactions. The

MDR interaction model may work as a phenotype predictor based

on the genetic information to improve the clinical diagnosis.

Materials and Methods

Ethics Statement
The study protocol was approved by the institutional review

board of National Taiwan University Hospital and complied with

the principles outlined in the Helsinki Declaration. All participants

gave written informed consent.

Study population
The study protocol was approved by the institutional review

board of National Taiwan University Hospital and complied with

the principles outlined in the Helsinki Declaration. TCHS

recruited 4,134 seventh-grade children from 14 diverse commu-

nities in Taiwan. The design and study protocol for the TCHS has

been published previously [50,54]. Information on childhood

exposure to indoor dampness and health status were collected with

a questionnaire, which was completed by the child’s parents or

guardians. In this study, a total of 3,810 children who provided

their oral mucosa were subjected for genotyping. All participating

children were arranged to measure height/weight and complete

pulmonary function tests with functional vital capacity (FVC),

forced expiratory volume in 1 second (FEV1) and maximal mid-

expiratory flow (MMEF) recorded. The sex-specific percentage

predicted pulmonary function indices were estimated by using

linear regression models [55,56].

Definition of asthma
Children were considered to have asthma if there was an

affirmative answer to the question ‘‘Has a doctor ever diagnosed

this child as having asthma?’’ There were 235 asthmatic children

in our cohort. Family history of asthma or atopic diseases, and a

personal history of wheeze or bronchitis may affect asthma

susceptibility. With a proper consideration for non-asthmatic

selection, the control group in present study comprised of 1,075

children without wheeze, bronchitis, or family history of either

asthma or atopic disease.

Environmental exposure assessment
Environmental factors comprised in utero exposure to maternal

smoking (in utero ETS), preterm birth, pet ownership, cockroaches

in the home, household carpet use and environmental tobacco

smoke (ETS) at home. Body mass index (BMI) was calculated as

weight/(height)2[kg/m2] and we categorized the study participants

into quartiles. The baseline questionnaire collected information on

several dampness indices at home. Home dampness was

established by an affirmative answer to one of following questions:

‘‘Have you had visible mould in the walls or bathroom in your

house in the past 12 months?’’; ‘‘Have you perceived mould odor

in the house during the past 12 months?’’ and ‘‘Have you

perceived wet stamps due to moisture in the ceilings, floors or walls

of your house during the past 12 months?’’.

DNA collection and genotyping
Genomic DNA was isolated from cotton swabs containing oral

mucosa using the phenol/chloroform extraction method [50,54].

All oral mucosa samples were stored at 280uC. The 17 single

nucleotide polymorphisms (SNPs) were assessed by real-time

polymerase chain reaction (PCR) using the TaqMan Allelic

Discrimination (AD) assay on an ABI PRISMTM 7900 Sequence

Detector (Applied Biosystems, Foster City, CA).
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Multifactor dimensionality reduction (MDR) analysis
The selected candidate genes were classified into three

categories: inflammatory genes, obesity-related genes, and anti-

oxidative genes. Gene-gene and gene-environment interactions

were detected by an open-source MDR software package [57,58].

MDR is a model-free and non-parametrical approach method that

can identify high dimensional gene-gene or gene-environment

interactions in a small population [57]. The combinations of

factors which provide the most information in high risk and low

risk group classification are suggested to be the most significant

gene-gene or gene-environment interactions. There are no

underlying assumptions about the independence or biological

relevance of SNPs or any other factor. Previous studies have

shown MDR to be a useful method for identifying gene-gene

interactions in high dimensional data [58].

The MDR algorithm determines one optimal model that can

successfully predict a high risk and low risk phenotype in a study

population. Subjects with missing values in any of the factors

should be deleted prior to data import. Firstly, the sample dataset

is divided into training and an independent testing sub dataset

for cross-validation. Cross-validation aims to avoid the model

over fitting problem. Secondly, an exhaustive search of a listed of

n genetic and environmental factors is performed. For example,

for two loci with three genotypes each, there are nine possible

combinations. Then, the case/control ratio for each combination

is counted. Finally, each combination is assigned as high risk or

low risk based on the comparison to the sample population case/

control ratio. If the case/control ratio of a multifactor

combination is higher than the original population, then this

combination is labeled as a high risk group and vice versa.

Multidimensional data are reduced to one dimension with two

classes via this rocess.

An MDR model with the best testing-balanced accuracy and

cross-validation consistency is selected. For example, in a 10-fold

cross-validation, the original dataset is divided into 10 subsets. The

maximum value of cross-validation consistency is 10 if the same

combination of factors is identified across all 10 subsets, and the

minimum value is 1. When the number of cases and controls are

not equal, balanced-accuracy weighs the classification accuracy of

the two classes equally, which is more powerful than using

accuracy alone. Testing balanced-accuracy is obtained from the

sum of true positive plus true negative divided by the total number

of samples in the testing dataset.

For those interaction models that showed higher testing-

balanced accuracy, we further used permutation tests, explicit

tests [59], and the likelihood ratio test (LRT) comparing a full

model that included an interaction term with a reduce model to

validate the MDR interaction results on childhood asthma. The

significant difference between high and low risk group on

childhood asthma was also validated by chi-square tests.

Furthermore, we used the entropy-based analysis included in the

MDR software package to determine whether the interactions are

synergistic or non-synergistic [60].
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