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Surfactant protein D (SP-D) is a soluble C-type lectin, belonging to the collectin  
(collagen-containing calcium-dependent lectin) family, which acts as an innate immune 
pattern recognition molecule in the lungs at other mucosal surfaces. Immune regulation 
and surfactant homeostasis are salient functions of SP-D. SP-D can bind to a range of 
viral, bacterial, and fungal pathogens and trigger clearance mechanisms. SP-D binds 
to gp120, the envelope protein expressed on HIV-1, through its C-type lectin or car-
bohydrate recognition domain. This is of importance since SP-D is secreted by human 
mucosal epithelial cells and is present in the female reproductive tract, including vagina. 
Another C-type lectin, dendritic cell (DC)-specific intercellular adhesion molecule-3-grab-
bing non-integrin (DC-SIGN), present on the surface of the DCs, also binds to HIV-1 
gp120 and facilitates viral transfer to the lymphoid tissues. DCs are also present at the 
site of HIV-1 entry, embedded in vaginal or rectal mucosa. In the present study, we 
report a direct protein–protein interaction between recombinant forms of SP-D (rfhSP-D) 
and DC-SIGN via their C-type lectin domains. Both SP-D and DC-SIGN competed for 
binding to immobilized HIV-1 gp120. Pre-incubation of human embryonic kidney cells 
expressing surface DC-SIGN with rfhSP-D significantly inhibited the HIV-1 transfer to 
activated peripheral blood mononuclear cells. In silico analysis revealed that SP-D and 
gp120 may occupy same sites on DC-SIGN, which may explain the reduced transfer of 
HIV-1. In summary, we demonstrate, for the first time, that DC-SIGN is a novel binding 
partner of SP-D, and this interaction can modulate HIV-1 capture and transfer to CD4+ 
T cells. In addition, the present study also reveals a novel and distinct mechanism of host 
defense by SP-D against HIV-1.
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inTrODUcTiOn

Surfactant protein D (SP-D) is a collagen-containing C-type lec-
tin, belonging to the collectin family (1). The primary structure 
of human SP-D is composed of three subunits of polypeptide 
chains; each subunit consists of a short N-terminal region, a 
triple-helical collagen-like region, an α-helical coiled-coil neck 
region, and a calcium-dependent highly conserved C-type lectin 
or carbohydrate recognition domain (CRD) at the C-terminus  
(2, 3). The primary structure can get cross-linked via the cysteine-
containing N-terminal region to give rise to a cruciform structure, 
which can undergo further multimerization to yield a fuzzy ball, 
where the CRD regions are facing toward the exterior. SP-D, via 
its homotrimeric CRD region, is known to interact with a wide 
range of viral, bacterial, and fungal pathogens and bring about 
clearance mechanisms that involve aggregation or agglutina-
tion, opsonization, enhanced phagocytosis, and super-oxidative 
burst (3, 4). Primarily found in the lungs as a part of pulmonary 
surfactant, SP-D has been localized at a range of extrapulmonary 
sites as a part of mucosal defense system (5).

SP-D is present throughout the female genital tract, with likely 
involvement in the prevention of uterine infections (6). Epithelial 
linings of vagina, cervix, uterus, fallopian tubes, and ovaries are 
positively immunostained for SP-D (7). SP-D has been shown to 
bind to different strains of HIV-1 (BaL and IIIB) at pH 7.4 (physi-
ological) and 5.0 similar to the pH found in the female urogenital 
tract (8). Glycoprotein gp120, a highly conserved mannosylated 
oligosaccharide present on the envelope of HIV-1 virion, plays an 
important role in the viral entry and facilitates viral replication 
by activating the NF-κB pathway. SP-D has been shown to bind 
gp120 of various strains of HIV-1 and prevent HIV-1 interaction 
with CD4 receptor on T cells, thereby inhibiting viral entry and 
replication (9, 10).

Another pattern recognition immune regulatory molecule, 
DC-SIGN/CD209, a type-II transmembrane protein of 44  kDa 
present on dendritic cell (DC) surface (11), plays a major role in 
mediating DC adhesion, migration, inflammation, and activation 
of T cell. DC-SIGN can serve as a route of immune escape for 
pathogens and tumors (12) and is a known receptor for many 
viruses, including HIV-1 and HIV-2. DC-SIGN is expressed by 
both mature and immature DCs in lymphoid tissues (11, 13), but 
not on follicular DCs, plasmacytoid DCs or CD1a+ Langerhans 
cells (14), monocytes, T cells, B cells, thymocytes, and CD34+ bone 
marrow cells. It is also expressed by polarized (M2) macrophages 
that infiltrate tumors (15), and on antigen-presenting cells such as 
macrophages, and in chorionic villi of placenta (16). Cells express-
ing DC-SIGN are located in T cell area of lymph nodes, tonsils, 
and spleen and dermal DCs in skin (CD14+ macrophages) (17). 
DC-SIGN expressing cells are seen in mucosal tissue of rectum 
(18) (with high antigen-presenting capacities), cervix, and uterus, 
in hepatic sinusoid and lymphatic sinus (19, 20).

HIV-1 virus, when exposed to genital and anal mucosal tis-
sues, binds to DC-SIGN on tissue embedded DCs (21, 22) and 
gets transmitted to CD4+ T  cells, activating adaptive immune 
response (23, 24). DC-SIGN facilitates HIV-1 transmission 
in both cis and trans fashion (25). Expression of DC-SIGN is 
regulated by IL-4 during monocyte–DC differentiation pathway, 

along with GM-CSF (26). TGF-β and IFNs are known to be 
inhibitors of DC-SIGN expression, and, thus, indirectly regulate 
HIV-1 transmission (26).

The interaction between HIV-1 and DC-SIGN takes place in 
the mucosal tract where SP-D is present. Since both SP-D and 
DC-SIGN can bind gp120, we set out to examine if interplay 
between these proteins can modulate DC-SIGN-mediated viral 
transfer of HIV-1. This view was further substantiated by obser-
vations that SP-D levels are increased in the broncho-alveolar 
fluid of HIV-1 patients (27); and recombinant forms of SP-D 
(rfhSP-D) can bind to gp120 of HIV-1, acting as a potent inhibitor 
of viral infection in vitro via inhibition of the interaction between 
CD4 and gp120 (10). In this study, we show, using recombinant 
forms of tetrameric and monomeric forms of DC-SIGN and its 
homolog, DC-SIGNR, that there is a protein–protein interaction 
between the two C-type lectins via CRD regions. They compete 
for binding to HIV-1 gp120, and thus, SP-D suppresses DC-SIGN 
mediated transfer of HIV-1 to CD4+ cells.

MaTerials anD MeThODs

recombinant expression and Purification 
of soluble Forms of Tetrameric and 
Monomeric Dc-sign and Dc-signr
E. coli strain BL21 (λDE3) (Invitrogen, UK) was transformed with 
pT5T plasmid encoding DC-SIGN and DC-SIGNR sequences 
(inserted at the BamHI restriction site into plasmid construct) 
with and without multimerizing neck region. In the presence of 
neck region, the bacterial cells expressed tetrameric DC-SIGN 
and DC-SIGNR; without the neck region, the corresponding con-
structs produced monomeric forms of DC-SIGN and DC-SIGNR 
(28). E. coli strain BL21 (λDE3) cells containing ampicillin (50 µg/
ml) (Sigma-Aldrich) resistant plasmids [except in the case of 
DC-SIGNR monomer expressing construct that was kanamycin 
(50 µg/ml) (Sigma-Aldrich) resistant] were subcultured overnight 
at 37°C. One liter LB medium containing ampicillin or kanamy-
cin was inoculated with 10 ml of overnight bacterial culture and 
grown at 37°C until the OD600 reached 0.7, and then induced with 
0.5  mM isopropyl β-d-1-thiogalactopyranoside (IPTG). After 
3 h, the bacterial cells were centrifuged at 13,800 × g for 15 min 
to collect the bacterial pellet. Protein expression was analyzed via 
12% SDS-PAGE.

The cell pellet was treated with 22 ml of lysis buffer, containing 
100 mM Tris, pH 7.5, 0.5 M NaCl, lysozyme (50 µg/ml), 2.5 mM 
EDTA, pH 8.0, and 0.5  mM phenylmethylsulfonyl fluoride 
(PMSF), and left to stir for 1 h at 4°C. Cells were then sonicated 
for 10 cycles, each cycle of 30 sec with 2 min interval. The soni-
cated cell suspension was spun at 10,000 × g for 15 min at 4°C. The 
inclusion bodies, present in the pellet, were solubilized in 20 ml of 
6 M urea, 10 mM Tris–HCl, pH 7.0, and 0.01% β-mercaptoethanol 
(β-ME) by rotating on a shaker for 1 h at 4°C. The mixture was 
then centrifuged at 13,000 × g for 30 min at 4°C and the superna-
tant was drop-wise diluted fivefold with loading buffer containing 
25 mM Tris–HCl, pH 7.8, 1 M NaCl, and 2.5 mM CaCl2 with gentle 
stirring. This was then dialyzed against 2 l of loading buffer with 
three buffer changes every 3 h. Following further centrifugation 
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at 13,000 × g for 15 min at 4°C, the supernatant was loaded onto 
a Mannan agarose column (5 ml; Sigma) pre-equilibrated with 
the loading buffer. The column was washed with five bed volumes 
of the loading buffer and the bound protein was eluted in 1 ml 
fractions using the elution buffer containing 25 mM Tris–HCl, 
pH 7.8, 1 M NaCl, and 2.5 mM EDTA. The absorbance was read 
at 280 nm and the peak fractions were frozen at −20. Purity of 
protein was analyzed by 15% w/v SDS-PAGE.

expression and Purification of rfhsP-D
E. coli BL21 (λDE3) pLysS containing plasmid pUK-D1 (con-
taining cDNA sequences for 8 Gly–X–Y repeats, neck, and CRD 
region of human SP-D) was cultured in ampicillin (100  µg/
ml) (Sigma-Aldrich) and chloramphenicol (50  µg/ml) (Sigma-
Aldrich) at 37°C overnight. Expression and purification was car-
ried out as described earlier (29, 30). Bacterial cells were grown 
until the OD600 reached 0.6 to 0.8, then induced with 0.4 mM IPTG 
and allowed to grow for an additional three hours. Cells were then 
pelleted via centrifugation and was re-suspended in 50 ml of lysis 
buffer (50 mM Tris–HCl, pH 7.5, 200 mM NaCl, 5 mM EDTA 
with freshly added 0.1 mM PMSF, and 100 µg/ml lysozyme) at 
4°C for 1 h. The cell lysate was then sonicated at 4 kHz for 30 s 
with 2 min interval for 15 cycles. The sonicate was centrifuged 
at 13,800 × g for 15 min at 4°C to collect the rfhSP-D-rich pel-
let containing inclusion bodies. 25  ml of solubilization buffer 
(50  mM Tris–HCl, pH 7.5, 100  mM NaCl, 5  mM EDTA, 6  M 
urea) was used to re-suspend the pellet, and incubated at 4°C for 
1 h. The dialysate was then centrifuged at 13,800 × g, at 4°C for 
15 min, and the supernatant was dialyzed against solubilization 
buffer containing 4 M urea and 10 mM β-ME for 2 h at 4°C. The 
dialysis buffer was serially changed to solubilization buffer con-
taining 2, 1, and 0 M urea at 4°C, 2 h each. Final dialysis was done 
in solubilization buffer containing 5 mM CaCl2 for 3 h to com-
pletely remove any traces of urea. The dialysate was centrifuged at 
13,800 × g, 4°C for 15 min and the clear supernatant containing 
rfhSP-D was affinity-purified using maltosyl-agarose column 
(Sigma-Aldrich). The bound protein was eluted with solubiliza-
tion buffer containing 10 mM EDTA, pH 7.5. Endotoxin levels 
were removed by passing the purified protein fractions through 
Polymyxin B column (Detoxi-Gel, Peirce & Warriner, UK) and 
the levels were measured using the Limulus Amebocyte Lysate 
Assay (BioWhitaker, UK). The endotoxin level was found to be 
<5 pg/μg rfhSP-D.

sDs-Page and Far Western Blot analysis
DC-SIGN and DC-SIGNR proteins were separated on a 12% 
(w/v) SDS-PAGE under reducing conditions. After electro-
phoresis, the polyacrylamide gels were stained with Coomassie 
Brilliant Blue. For the far western blotting, proteins were electro-
transferred onto polyvinylidene difluoride (PVDF) membrane 
(Sigma) and blocked with 5% w/v milk in PBS. The membrane 
bound proteins were probed with rfhSP-D (5 μg/ml) for 2 h, 
followed by addition of anti-SP-D (1:1,000) (Medical Research 
Council Immunochemistry Unit, Oxford) polyclonal antibod-
ies. The blot was then probed with Protein A-HRP Conjugate 
(1:1,000) (Sigma), followed by color development with diamin-
obenzidine as a substrate (Sigma-Aldrich, UK).

elisa
Microtitre wells were coated with DC-SIGN and DC-SIGNR 
proteins in carbonate/bicarbonate buffer, pH 9.6 in decreasing 
double dilutions (5–0.625 µg/well) in duplicates and left overnight 
at 4°C. The microtiter wells were blocked with 2% w/v BSA in 
PBS for 2 h at 37°C. The wells were then washed three times with 
PBS + 0.05% v/v Tween 20 and incubated with a constant concen-
tration (2.5 µg) of rfhSP-D in 20 mM Tris–HCl, pH 7.5, 100 mM 
NaCl, 5 mM CaCl2 or 5 mM EDTA at 37°C for 1 h, followed by 
1 h at 4°C. Following PBS + Tween 20 wash, the bound rfhSP-D 
was detected using anti-SP-D (1:5,000) polyclonal antibody and 
Protein A-HRP conjugate (1:5,000). Color was developed using 
o-Phenylenediamine (OPD) as a substrate and absorbance was 
measured at 490 nm.

competitive elisa
The ability of rfhSP-D to compete with and DC-SIGN for binding 
to HIV-1 gp120 (Abcam; ab167715) gp120 was analyzed by com-
petitive ELISA. Gp120 was coated at 250  ng/well in duplicates 
and left overnight at 4°C. Wells were blocked with 2% BSA in 
PBS for 2  h at 37°C. The wells were washed three times with 
PBS + 0.05% v/v Tween 20. A constant concentration of DC-SIGN 
tetramer (5 μg/ml) and decreasing concentrations of rfhSP-D  
(5 −  0.625 μg/well) in calcium buffer were added to the wells, 
which were subsequently probed with anti-DC-SIGN (1:5000) 
polyclonal antibodies. Following washes, the wells were incubated 
with Protein HRP conjugate (1:1,000). Color was developed using 
OPD as a substrate.

Fluorescence Microscopy
Human embryonic kidney cells 293 (HEK 293), transfected 
with DC-SIGN construct (DC–HEK) (31), were grown and 
maintained in DMEM (Life technologies, UK) containing 10% 
v/v fetal calf serum, 2 mM l-glutamine, penicillin (100 U/ml)/
streptomycin (100  µg/ml) (Thermo Fisher), and blasticidin 
(5 µg/ml) (Gibco). HEK 293 cells were grown and maintained in 
DMEM (Life technologies) containing 10% FBS. Both cell lines 
were grown under standard conditions (37°C, 5% v/v CO2) until 
80–90% confluency was reached. HEK 293 and DC–HEK cells 
(0.5 × 105) were grown on the coverslips in a 24-well plate (Nunc) 
overnight to perform three different sets of immunofluorescence 
experiments; DC-SIGN expression (primary antibody: rabbit 
anti-DC-SIGN, 1:500 and secondary antibody: anti-rabbit/CY3, 
1:500, Thermo Fisher), rfhSP-D (10 µg/ml) binding to DC-SIGN 
(primary antibody: monoclonal anti-SP-D, 1:500 and second-
ary antibody: anti-mouse conjugated/CY5, 1:500, Abcam) and 
co-localization of DC-SIGN and rfhSP-D (primary antibodies: 
anti-DC-SIGN polyclonal and anti-SP-D monoclonal, 1:500 
and secondary antibodies: anti-rabbit/CY3 and anti-mouse/
FITC, 1:500) on the cell surface of DC–HEK cells. HEK 293 cells 
were used as a control for all experiments and DC–HEK cells 
were incubated with secondary antibody alone as an additional 
control. Hoechst (1:10,000, Thermo Fisher) was used to stain the 
nucleus for all the staining experiments. The cells were incubated 
for 1 h with primary antibody followed by 1 h incubation with 
secondary antibodies as described earlier with three times 
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FigUre 1 | SDS-PAGE analysis of purified recombinant forms of DC-SIGN, DC-SIGNR, and recombinant forms of SP-D (rfhSP-D). (a) 12% SDS-PAGE of 
affinity-purified tetrameric and monomeric forms of DC-SIGN and DC-SIGNR under reduced conditions. (B) 12% v/v SDS-PAGE of affinity-purified rfhSP-D.
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phosphate-buffered saline (PBS, Thermo Fisher) washes between 
each step. For rfhSP-D binding with DC-SIGN analysis, the 
rfhSP-D was incubated with the cells for 1 h at 4°C. The cells were 
fixed with 4% paraformaldehyde (Sigma) before mounting on the 
coverslips to visualize under a HF14 Leica DM4000 microscope.

Viral Transfer assay
Pooled human peripheral blood mononuclear cells (PBMCs) 
(HiMedia Laboratories, India) were stimulated in RPMI 
1640 medium (Sigma-Aldrich) containing 10% v/v FBS, 1% 
Penicillin–Streptomycin and 5 µg/ml phytohemaglutinin (PHA) 
and 10 U/ml of rhIL-2 (Gibco) for 24 h. PHA/IL-2 was washed 
off and activated PBMCs were cultured further in complete 

RPMI medium. For the experiment, DC–HEK cells were grown 
in a 12-well tissue culture plate until 80% confluence in complete 
DMEM/F12 (Sigma-Aldrich, USA) containing 10% FBS (Gibco) 
and blasticidin. Indicated concentrations of rfhSP-D containing 
5  mM CaCl2 was added to each well and incubated for 2  h to 
allow binding to DC-SIGN. The wells without rfhSP-D were used 
as controls. Excess protein was removed, and cells were chal-
lenged for 1 h with 5 ng/ml p24 of HIV-1 SF-162 strain (kindly 
provided by Dr. Jay Levy, AIDS Program, National Institutes of 
Health, USA). 5 mM EDTA was added along with the virus in 
EDTA controls. Unbound virus was washed off and DC–HEK 
cells were cocultured with PHA/IL-2 activated PBMCs for 24 h 
to facilitate transfer. PBMCs along with the medium were then 
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FigUre 2 | Direct binding ELISA showing interaction between recombinant forms of SP-D (rfhSP-D) and DC-SIGN/DC-SIGNR. DC-SIGN tetramer (a), DC-SIGNR 
tetramer (B), DC-SIGN monomer (c), and DC-SIGNR monomer (D) were coated at decreasing double dilutions from 5 to 0.625 µg/well and then probed with 
2.5 µg of rfhSP-D in either in calcium or EDTA buffer. The binding was detected using anti-human surfactant protein D polyclonal antibodies (1:5,000 dilutions).  
The data represent mean and SD values of at least five experiments.
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separated (siphoned off) from the DC–HEK monolayer and were 
transferred to fresh plates. They were cultured further in RPMI 
1640 medium containing 10% FBS for 7  days, and viral titers 
were determined in supernatants on day 4 and 7 using HIV-1 p24 
antigen ELISA kit (XpressBio Life Science Products, Frederick, 
MD, USA).

Molecular Modeling and Bioinformatics
The crystal structures of trimeric human lung SP-D (PDB ID: 
1PW9), CD4 bound to HIV-1 envelope glycoprotein gp120 
(PDB ID:1GC1) and homo 10-mer DC-SIGN complexed with 
sugars (PDB ID:1K9I) were retrieved from Protein Data Bank. 
The tetrameric form of non-glycosylated DC-SIGN was used for 
docking studies as this structure was found to bind to rfhSP-D 
in  vitro experiments. DC-SIGN tetramer was docked to CD4 
already bound to HIV-1 envelope glycoprotein gp120 (PDB ID: 
1GC1) using Patch Dock server with default parameters.

The CRD-mediated protein–protein interaction between 
trimeric SP-D and tetrameric DC-SIGN, as observed in this study 
was further examined by docking these two molecules using 
ZDOCK algorithm of Discovery Studio (Accelrys Inc.). The best 
pose of these two molecules was subsequently docked into gp120 
using Patch Dock server. The shortlisted poses from PatchDock 
and ZDOCK were further refined using Fire Dock and RDOCK, 
respectively.

resUlTs

rfhsP-D and Dc-sign can interact with 
each Other via Their c-Type lectin 
Domains
Structurally, DC-SIGN is composed of an extracellular domain 
(ECD) which exists as a tetramer, stabilized by an N-terminal 
α-helical neck region, followed by a CRD. DC-SIGN and 
DC-SIGNR comprising of the entire ECD (tetramer) (Figure 1A) 
and the CRD region alone (monomer) (Figure 1A) were expressed 
in E. coli and affinity-purified on Mannose-agarose (28). The 
CRD regions of DC-SIGN and SIGNR bound mannose weakly 
as majority of the proteins appeared in the flow through. The ECD 
domains of both DC-SIGN and DC-SIGNR bound to mannose 
with much greater affinity in the presence of Ca2+ and eluted 
with EDTA. A recombinant form of human SP-D, containing 8 
Gly–X–Y repeats of the collagen, neck, and CRD regions were 
expressed and purified as homotrimeric molecules, as described 
earlier (29, 30) (Figure 1B). Tetrameric and monomeric forms 
of DC-SIGN and DC-SIGNR were checked for their respective 
interactions with rfhSP-D via ELISA (Figure 2), which showed a 
calcium- and dose-dependent interaction between the two lectins; 
tetrameric forms bound rfhSP-D better than the monomers. This 
was confirmed by a far western blot (Figure 3A), which revealed 
that rfhSP-D was able to bind to DC-SIGN and DC-SIGNR 
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FigUre 4 | Competitive inhibition ELISA to show that recombinant form of 
SP-D (rfhSP-D) inhibits DC-SIGN binding to immobilized HIV-1 gp120. HIV-1 
gp120 trimer (250 ng per well) was first coated to which 5–0.625 µg/well of 
rfhSP-D and a constant concentration (5 µg/well) of DC-SIGN tetramer were 
added. Bound DC-SIGN tetramer was detected by anti-DC-SIGN polyclonal 
antibodies. Protein A-HRP conjugate (1:1,000) was used to detect the 
antibodies bound and color was developed using o-Phenylenediamine. 0 in 
the graph represents the control where only PBS was used instead of gp120, 
and the experiments were repeated three times.

FigUre 3 | Far western blot to detect binding of recombinant forms of SP-D 
(rfhSP-D) to PVDF bound DC-SIGN and DC-SIGNR. (a) Tetrameric and 
monomeric variants of DC-SIGN and DC-SIGNR were run on a SDS-PAGE 
and were transferred to a PVDF membrane followed by incubation with  
5 µg/ml rfhSP-D and then probed with anti-SP-D polyclonal antibody.  
(B) Docked structure of trimeric surfactant protein D (SP-D) (yellow cartoon) 
and tetrameric DC-SIGN (blue cartoon). The two molecules interact via their 
carbohydrate recognition domains.
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proteins immobilized on PVDF membrane. The CRD-mediated 
protein–protein interaction between trimeric SP-D and tetrameric 
DC-SIGN was further studied by docking these two molecules. 
The docked pose showed that the two molecules likely interact 
via their CRD regions (Figure 3B).

rfhsP-D:Dc-sign interaction leads to 
competition for Binding to hiV-1 gp120
To examine if rfhSP-D can inhibit the binding of DC-SIGN to 
gp120, we carried out a competitive ELISA. As expected, both 
rfhSP-D and DC-SIGN tetramer bound gp120 in a dose- and 
calcium-dependent manner (data not shown) (32). In order to 
assess a likely interference by rfhSP-D in DC-SIGN: gp120 inter-
action, a constant concentration of DC-SIGN tetramer was used 
against different concentrations of rfhSP-D and added to solid-
phase gp120 (Figure 4). With increasing concentration, rfhSP-D 
was able to inhibit DC-SIGN-gp120 interaction, suggesting that 

the binding sites on these two C-type lectins for gp120 may be 
overlapping.

rfhsP-D co-localizes with Dc-sign on 
the surface of Transfected heK 293 cells
Human embryonic kidney cells transfected with DC-SIGN 
construct (DC–HEK cells) were shown to express DC-SIGN 
via immunofluorescence microscopy. The DC-SIGN expres-
sion seen on the cell surface on DC–HEK cells was evenly dis-
tributed, as compared to HEK 293 cells, which were used as a 
control, using anti-DC-SIGN polyclonal antibody (Figure 5A). 
DC–HEK cells, incubated with secondary antibody alone, did 
not show any expression (Figure  5A). rfhSP-D binding was 
visible on the cell surface of DC–HEK cells, whereas rfhSP-
D binding could not be detected in either HEK 293 cells or 
DC–HEK cells incubated with secondary antibody alone as 
controls (Figure 5B). rfhSP-D and DC-SIGN co-localized on 
the HEK cell surface transfected with DC-SIGN construct 
(Figure 5C).

rfhsP-D inhibits Dc-sign-Mediated Viral 
Transfer to PBMcs in a Dose-Dependent 
Manner
To understand whether interaction between rfhSP-D and 
DC-SIGN impacted upon DC-SIGN-mediated HIV-1 transfer 
to T  cells, we performed a coculture assay using DC–HEK 
cells and mitogen-activated PBMCs. Presence of rfhSP-D led 
to a significantly (p < 0.005) reduced HIV-1 p24 levels in day 
4 and day 7 PBMC culture supernatants in a dose-dependent 
manner (Figure 6). This suggested that, in presence of rfhSP-D, 
the viral uptake by DC–HEK was significantly inhibited result-
ing in reduced transfer and replication of HIV-1 in PBMC 
cultures. It is likely that rfhSP-D may have occupied sites on 
both DC-SIGN as well as HIV-1 gp120 that resulted in reduced 
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FigUre 5 | Immunofluorescence microscopy to show recombinant forms of SP-D (rfhSP-D) binding to DC-SIGN on the surface of the human embryonic kidney 
(HEK) cells transfected with DC-SIGN construct (DC–HEK cells). (a) DC–HEK cells incubated with anti-rabbit/CY3 did not show DC-SIGN expression (control). 
DC–HEK and HEK cells incubated with anti-DC-SIGN followed by anti-rabbit conjugated with CY3 showed the DC-SIGN expression in DC–HEK cells only and not 
HEK cells. Hoechst was used to stain the nucleus. (B) Analysis of rfhSP-D binding to DC-SIGN on the DC–HEK cells via immunofluorescence. DC–HEK cells 
incubated with anti-SP-D for 1 h and then probed with anti-mouse/CY5 did not show binding. DC–HEK cells incubated with rfhSP-D (5 µg/ml) for 1 h, followed by 
anti-SP-D for 1 h and then anti-mouse/CY5 showed the binding on the cell surface. (c) DC-SIGN expression and rfhSP-D binding co-localization analysis via 
immunofluorescence microscopy. DC–HEK cells incubated with secondary antibodies only (anti-mouse/FITC and anti-rabbit/FITC) for 1 h did not show 
immunofluorescence. DC–HEK and HEK cells incubated with rfhSP-D for 1 h prior to incubation anti-SP-D monoclonal and anti-DC-SIGN polyclonal for 1 h followed 
by anti-mouse/FITC and anti-rabbit/CY3 for 1 h showed co-localization for rfhSP-D binding and DC–HEK expression.
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DC-SIGN interaction with HIV-1 gp120. EDTA significantly 
inhibited DC–HEK-mediated viral transfer, as reported previ-
ously (33).

Bioinformatics analysis revealed That 
hiV-1 gp120 and rfhsP-D May Occupy the 
same site on the crDs of Dc-sign
To support our hypothesis that DC-SIGN once bound to rfhSP-D 
may not interact with gp120, we performed in silico analyses. The 
best-docked pose of rfhSP-D and DC-SIGN was subsequently 
docked to gp120 using Patch Dock server. The shortlisted poses 
from Patch Dock and ZDOCK were further refined using Fire 
Dock and RDOCK, respectively. Two poses appear to suggest 
that HIV-1 gp120 and rfhSP-D possibly occupy the same site 
on the CRD of DC-SIGN (Figure  7). Thus, in the presence of 
rfhSP-D, it is likely that interaction of DC-SIGN with gp120 could 
be inhibited. To validate our bioinformatics strategy, we evalu-
ated the known interaction of gp120 with DC-SIGN followed by 
docking with CD4. DC-SIGN binds to gp120 at a site distant 

from its CD4 binding site, and hence, DC-SIGN-bound HIV-1 
possibly interacts with CD4 for viral transmission (Figure 8). The 
global energy of these docked complexes has also been presented 
(Table 1).

DiscUssiOn

In this study, we report, for the first time, an interaction of 
DC-SIGN and SP-D, two C-type lectins and pattern recognition 
receptors; both proteins are known to bind to HIV-1 gp120. We 
demonstrate that this interaction involves their CRD domains, 
which is relevant in inhibiting DC-SIGN-mediated HIV-1 
trans-infection of CD4+ T cells. Interaction of HIV-1 gp120 with 
DC-SIGN not only increases the affinity of gp120 for CD4 (34) 
but also leads to a productive infection via reactivation of provirus 
involving NF-κB pathway (35, 36). This interaction also results 
in downregulation of Nef-induced release of IL-6 (37) and leads 
to Ask-1-dependent activation leading to induction of apoptosis 
of human DCs (38). Simultaneous binding of rfhSP-D to both 
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FigUre 7 | Two poses suggesting that HIV-1 gp120 and recombinant forms 
of SP-D possibly occupy the same site on carbohydrate recognition domain of 
DC-SIGN. Docked structures of surfactant protein D trimer (yellow cartoon 
and calcium ions as red spheres) complexed with DC-SIGN tetramer (blue 
cartoon and calcium ions as green spheres) and HIV-1 envelope glycoprotein, 
gp120 (cyan cartoon). The sugars present in gp120 are shown as sticks. The 
calcium ions of DC-SIGN are represented as green spheres. (a) Rank no. 1. 
(B) Rank no. 2.

FigUre 6 | DC-SIGN-mediated HIV-1 transfer assay. DC–HEK cells were 
grown in a 12-well plate until 80% confluence. 20, 10, and 1 µg/ml of 
recombinant forms of SP-D (rfhSP-D) concentrations were added to the cells 
and incubated for 2 h for binding. Unbound protein was removed and cells 
were challenged with 2.5 ng/ml p24 of HIV-1 (SF-162 strain) for 1 h (to bind 
to DC-SIGN). After 1 h, unbound virus was washed off and cells were 
cocultured with phytohemaglutinin-activated peripheral blood mononuclear 
cells (PBMCs) for 24 h. This allows the DC-SIGN captured virus to be 
transferred to CD4+ cells, where virus will multiply. PBMCs were separated 
from the monolayer and cultured separately for 4 days to determine viral titer.
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gp120 and DC-SIGN, thus, may result in blockade of DC-SIGN-
mediated viral transmission and inhibition of replication.

Structure–function studies have revealed that the CRD 
region of DC-SIGN is the specific ligand-binding site that is 
reliant on the neck region within the extracellular domain 
(ECD) (39). This notion was validated in our binding ELISA 
type assays when we used the tetrameric forms of DC-SIGN 
and DC-SIGNR (comprising of the ECD and CRD region) as 
well as the monomeric forms, which only consist of the CRD 
region. The binding studies involving rfhSP-D highlighted that 
multimeric forms of DC-SIGN and DC-SIGNR bind better, not 
surprisingly, due to multivalent nature of interactions. Since 
DC-SIGN promotes HIV-1 infection, we examined if rfhSP-D 
by virtue to its ability to bind gp120 as well as DC-SIGN can 
potentially interfere with HIV-1 (40–42). We also included 
DC-SIGNR (DC-SIGN-Related), a homolog of DC-SIGN, in 
our study. DC-SIGNR, expressed on endothelium including 
liver sinusoidal, lymph node sinuses, and placental capillary, 
can also bind gp120 to facilitate HIV-1 viral infection (43).

The current study provides the first evidence that DC-SIGN is 
a novel immune receptor or adaptor for the CRD region of SP-D, 
modulating the HIV-1 infection. Interaction of gp120 and rfhSP-
D is calcium dependent as reported earlier (8–10). Tetrameric 
DC-SIGN also efficiently binds gp120 in a dose-dependent 
manner, which is not significantly inhibited in presence of sugars 
similar to previous reports (28, 44). The recombinant rfhSP-D 
has been shown to inhibit the gp120-CD4 interaction (10) while, 
DC-SIGN-bound trimeric gp140 interacts with CD4 more avidly 
(34). In vitro competitive assays and the bioinformatics analysis 
confirmed that rfhSP-D and DC-SIGN compete for gp120. The 
reduced p24 levels confirmed that rfhSP-D significantly inhibits 
the DC-SIGN mediated viral transfer.

The rfhSP-D molecule (a recombinant fragment of human 
SP-D comprising homotrimeric C-type lectins), with part of 

collagen region, α-helical coiled-coil neck, and CRD region, has 
been extensively studied via in vitro, in vivo, and ex vivo experi-
ments. In a number of studies, rfhSP-D has worked at par with 
full-length SP-D, as evident from its ability to be therapeutic in 
murine models of allergic bronchopulmonary aspergillosis (45, 
46), invasive pulmonary aspergillosis (45), and dust mite allergy 
(47). It can also induce apoptosis in activated eosinophils (29, 
48) and PBMCs (49). Thus, rfhSP-D is an excellent well-tested 
therapeutically active molecule.

Mannose-binding lectin, another serum collectin, is also 
known to inhibit DC-SIGN-mediated trans-infection of HIV-1 
T cells (50) whereas SP-A and SP-D facilitate this transfer (8, 
51). Madsen et  al. incubated SP-D-HIV-1 complexes with 
immature monocyte-derived DCs and demonstrated increased 
viral uptake and transfer from DCs to PM-1 cells. However, 
the assay system employed in the two studies (Madsen and 
ours) significantly differed, thus the observed variation in 
the results. Further studies in appropriate animal models will 
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TaBle 1 | Energy for docked complexes of DC-SIGN and gp120 bound to CD4 
refined using FireDock.

rank no. global energy (kcal/mol)

1 −27.01
2 −21.83
3 −11.99
4 −10.94
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FigUre 8 | Known interaction of gp120 with DC-SIGN followed by docking with CD4. Selected docked poses of tetrameric DC-SIGN (blue cartoon) and HIV-1 
envelope glycoprotein gp120 (cyan cartoon) bound to CD4 (pink cartoon). The sugars present in gp120 are shown as sticks. (a) Rank no. 1. (B) Rank no. 2. (c) Rank 
no. 3. (D) Rank no. 4.

help to determine the overall effects of SP-D and DC-SIGN 
binding during virus infections. Our findings have revealed 
a new phenomenon in SP-D-mediated viral transfer through 
DCs as rfhSP-D occupies similar sites as gp120 on DC-SIGN. 
Hence, pre-incubation of rfhSP-D may have occupied gp120-
binding site on DC-SIGN (displacement of gp120 via ELISA 
and in  silico analysis), resulting in poor uptake. This must 
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