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Abstract: Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-
weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using
supervised classification algorithms in the prediction of outcomes and prognosis. Materials and
Methods: Retrospective evaluation of the imaging was conducted for a study cohort of uterine
cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated
from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled
postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection
analysis—by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49
for lymph node and >0.40 for metastasis—was performed to predict clinical outcomes. Results:
The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28–79
(Median = 53 years) with a median follow-up of 26.5 months (range: 7–76 months). Disease recurrence
occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with
24 radiomics features and preADC using a monotone multi-layer perceptron neural network to
predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition
of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC
and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis
returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations
by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input
of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation
with clinical outcomes of recurrence and metastasis. Conclusions: The study is an effort to bridge
the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer
patients based on prognosis.
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1. Introduction

Uterine cervical cancer incidence ranks seventh of all cancers [1] and represents a
significant burden in low and middle-income nations [2], while in developing nations, it
accounts for leading mortality in women [3]. Radiation with concurrent chemotherapy
forms the cornerstone of the management of stage IB2 to IVA uterine cervical cancer disease
for the International Federation of Gynecology and Obstetrics (FIGO) [4]. This treatment
strategy, used in neoadjuvant settings, has gained popularity because of excellent responses
leading to the debulking of these tumors, and further, leading to shrinkage and possible
resection [5–7]. Tumor size, histology, lymph node involvement, the infiltration of neigh-
boring structures and the presence of distant metastases are steering the prognostication in
cervical cancer [8], with a notable discrepancy in the prognosis among patients belonging
to the same stage, which could not be attributed to the constellation of clinico-pathological
features [9]. The determination of a few of these factors requires representative tumor tissue,
which warrants invasive procedures that add to the risk and burden of existing disease.

Magnetic resonance imaging (MRI) and 18F–fluorodeoxyglucose (FDG) positron
emission tomography/computed tomography (PET/CT) are vital for the initial staging,
therapeutic approach [10], and response assessment to treatment [11]. Studies in the past
have explored the advanced functional imaging parameters obtained during MRI, namely,
diffusion-weighted images (DWI) to identify tumors and further use the apparent diffusion
coefficient (ADC) quantitative parameter from these DW images to assess response [12–16].
There is still a broad disparity regarding the selection of regions to measure ADC, as it
argued that the selected part might not be representative of tumors exhibiting heterogeneity.

Radiomics is a growing arena of scientific research that uses imaging sets of high
dimensional features, extracted from the normal acquired cross-sectional images and yields
information that semantic analysis otherwise fails to acquire. The cystic and necrotic areas
within the volume of the tumor that are representative of tumoral heterogeneity, and
behavior that marks aggressiveness and hence outcome, are captured by radiomics [17,18].
This branch of science exploits mathematical modeling to dig quantitative features from
medical images in order to gain predictive models that provide insight into treatment
prognosis and survival [19–21], with preliminary studies [22–28] expressing a multitude
of clinical outcomes by exploring radiomics. The present study endeavored to increase
our existing knowledge regarding the role of functional imaging using diffusion-weighted
derived quantitative parameters, namely the apparent diffusion coefficient (ADC) and
the augmented role of radiomics using supervised classification algorithms by machine
learning in the prediction of clinical outcomes, namely the FIGO stage, lymph node status,
metastasis, and development of recurrence in uterine cervical cancer patients.

2. Methods
2.1. Patient Cohort with Treatment Characteristics

After obtaining approval from the institutional review board, this retrospective study
was carried out between January 2016 and January 2017, in our institute, on patients
who were referred to our hospital for a pelvic MR examination for the evaluation of
histopathologically diagnosed uterine cervical cancer, fulfilled criteria for upfront treatment
with chemoradiation, and were not surgical candidates. Eighty-three patients with cervical
cancer of variable stage (FIGO IB2-IVA) were enrolled, details of which are outlined
in the Supplementary File. The CPRS (Computerized patient record system—hospital
information system) was reviewed to evaluate the patient’s age, presence of para-aortic
lymph nodes, development of distant metastasis and recurrence. Nodal recurrences were
documented as pelvic or para-aortic. Metastasis was similarly recorded as to lung or
other sites. The administration of radiotherapy may be delivered as external pelvic beam
RT (EBRT), followed by brachytherapy or interstitial needle devices. The study cohort
included patients who were given upfront EBRT in a total dose of 45 Grays in 25 fractions.
An MR examination after the conventional EBRT was conducted to ascertain the status
of any residual disease and facilitate the further decision for brachytherapy. As per the
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institutional protocol, CT-based image-guided brachytherapy was performed. The ICRT
dose was 7.5 Grays in 3–5 fractions, and the MUPIT dose was 20–25 Grays in 4–5 fractions.

2.2. Magnetic Resonance Imaging Technique

The standard non-contrast MRI of the pelvis was performed using the Siemens Avanto
Magnetom 1.5 T MR Scanner. All patients were imaged in supine position using a pelvic
body coil. Conventional and diffusion weighted (DW) MRI studies were conducted
before the initiation and post completion of chemoradiation treatment. All of the patients
underwent DWIs by using a multisection spin echo single shot echo planar imaging (EPI)
sequence with b values of 0, 400, and 800 s/mm2. An average of 15 sections was obtained
in the axial plane covering the area of interest. Imaging parameters were: TR/TE of
10,000/108 ms, FOV of 40 × 40 cm, and acquisition matrix of 256 × 256 and section
thickness of 5 mm with an intersection gap of 1–2 mm.

2.3. Conventional Image Analysis

A radiologist (XX), with more than six years of training in pelvic MR imaging, au-
tonomously evaluated the Diffusion images and corresponding ADC maps, with an aware-
ness of the fact that patients had cervical carcinoma but blinded to the final clinical outcome.
Under the supervision of a board-certified radiologist with 25 years of experience in treat-
ing genitourinary cancers, quantitative DWI analysis of the tumor was performed, based
on a freehand-drawn region of interest (ROI) on the ADC map [29] that showed restricted
diffusion (i.e., high signal on b800 DWI and low signal on the ADC map); mean ADCs were
recorded. The labeling of ROI was independently checked by a senior radiation oncologist
(XX) with more than 25 years of experience in treating genitourinary cancers. If any, the
disagreement was resolved by two senior radiologists (XX) with more than 40 years of
experience. The ADC measured in initial baseline imaging was coded as ADCpre, and
follow-up imaging post-treatment completion was coded as ADCpost, with a separate
calculation for change referred to as ADCchange. Regarding lymph nodes, a positive node
was defined by a short-axis diameter > 8 mm [30]. When in doubt, positive cytology was
considered as the gold standard for the diagnosis of malignancy, both for pelvic and distal
recurrence and distant metastasis.

2.4. Image Segmentation and Feature Extraction

All segmentations of the tumor were performed by a radiologist (XX) using the 3D
Slicer software produced by Slicer [31] (http://www.slicer.org/, accessed on 12 December
2019). To minimize the errors involved in cropping from intra-operator and inter-operator
variability, arising as a result of manual segmentation, a semi-automatic segmentation
process was adopted [32]. This was further encouraged by the use of the Grow cut
algorithm [33]. The task of 3D segmentation was aimed at culminating a volume of interest
(VOI). The VOI consisted of regions of interest (ROIs) that were manually segmented
along the tumor contour on each transverse section concerning T2 weighted images in the
transverse axial planes. To remove any potential bias, the same radiologist re-segmented
the VOIs, blinded to the previous task of segmentation, approximately two months after the
first segmentation process. Finally, all segmentations were validated by a senior radiologist
(XXX) who has 40 years of experience. A representative ROI and VOI definition are shown
in the Supplementary File. Post-segmentation of images, using a semi-automated algorithm,
851 radiomics features were extracted using PyRadiomics [34], an open-source software
package. The details of radiomic features in concordance with previous literature [35–37]
are provided in the Supplementary File as text.

2.5. Radiomic Feature Selection

The Pearson correlation of radiomic features with clinical prognostications was used
for selecting the features, and this was calculated using the stats v3.5.1 package in R
v3.5.1 Features passing through any of the following correlation cut-off criteria were se-

http://www.slicer.org/
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lected for the model building: (i) correlation coefficient with Recurrence > 0.35 [cor(fi,
Recurrence) > 0.35], (ii) correlation coefficient with Stage > 0.35 [cor(fi, Stage) > 0.35],
(iii) correlation coefficient with Lymph Node > 0.49 [cor(fi, Lymph Node) > 0.49], (iv) cor-
relation coefficient with Metastasis > 0.40 [cor(fi, Metastasis) > 0.40] (details of radiomics
features are provided in the Supplementary File).

2.6. Model Building

After feature selection, we used multiple modeling algorithms to predict the following
clinical outcomes: (i) recurrence, (ii) distant metastasis, (iii) lymph node metastasis, and
(iv) FIGO stage. Various models with leave-out-one cross-validation and hyper-parameter
tuning were trained using different classification algorithms using the caret v6.0-86 package
for the R statistical software package. To find the significance of radiomics features over
ADC parameters, each model was trained using different sets of features as follows:
(i) 24 Radiomics features; (ii) 24 Radiomics features, preADC, postADC and change ADC
(postADC—preADC); (iii) 24 Radiomics features, and preADC; (iv) 24 Radiomics features,
and changeADC; (v) preADC, postADC2, and changeADC.

2.7. Statistical Analysis

Cohen’s Kappa and area under the curve (AUC) were used as the statistical parameters
to establish the model efficiency, which was calculated using the pROC v1.16.2 and caret
packages available in R (details in Supplementary File).

3. Results
3.1. Patient Characteristics and Disease Outcome

The study enrolled 52 patients who presented with variable FIGO stages, with an
age range of 28–79 (Median = 53 years) and a median follow-up of 26.5 months (range:
7–76 months). Disease recurrence occurred in 12 patients (23%). Four patients (33%)
had an isolated pelvic recurrence and eight (67%) a distant recurrence (omentum = 1,
peritoneum = 2, supra-clavicular node= 2, paraaortic node = 3), with a median recurrence-
free survival of 19 months (range: 5–60 months). Metastasis occurred in 15 patients (28%).
Ten patients had distant metastases to the lung, which were proven histopathologically in
all cases, and clinical follow up with symptoms of the development of a second primary
lung carcinoma ruled out. The remaining five patients showed metastasis to the peritoneum
(n = 3), spine (n = 1) and liver (n = 1). PreADC had a median of 0.615 × 10−3 mm2/s (range:
0.615–1.400 × 10−3 mm2/s) with an arithmetic mean value of 0.889 × 10−3 mm2/s, and
postADC had a median of 1.760 × 10−3 mm2/s (range: 0.656–1.620 × 10−3 mm2/s with an
arithmetic mean value of 1.469 × 10−3 mm2/s. The details of clinical characteristics are
depicted in Table 1. The range of the selected 24 radiomics features and the average values
are included in the Supplementary File.

3.2. Application of Machine Learning Classifiers Algorithms to Predict Clinical Outcomes

A monotone multi-layer perceptron neural network model generated with 24 radiomics
features and preADC predicted recurrence with an AUC of 0.80 and a Kappa value as
0.55, outperforming other combinations of radiomics features (preADC, postADC and
changeADC). AUC and Kappa generated by using only ADC features (preADC, postADC,
and changeADC) are 0.57 and 0.17, respectively, using fuzzy rules with a weight factor,
which shows that the addition of radiomics features to ADC values improves the results.
The use of the same set of radiomic features for the prediction of metastasis combined
with preADC, postADC and changeADC, in addition to a neural network with feature
extraction to predict the distant metastasis, returns an AUC of 0.84 and a Kappa value
as 0.65, which outperforms other possible combinations of radiomics features (preADC,
postADC and changeADC). AUC and Kappa values generated using only ADC features
(preADC, postADC, and changeADC) are 0.67 and 0.27, respectively, using fuzzy rules
with a weight factor.
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Table 1. Clinical characteristics of patients included in study.

Clinical Parameters Total N = 52 (%)

Age range 28–79 (Median = 53 years)

FIGO Stage
IB2 3 (5.7%)
IIA 8 (15.5%)
IIB 16 (30.7%)
IIIA 16 (30.7%)
IIIB 4 (7.7%)
IVA 3 (5.7%)

Clinical Outcomes/Variables
Recurrence/No recurrence 12/40 (23%/77%)
Distant Metastatic/Non metastatic 15/37 (28%/72%)
Metastasis to Lung/Other sites 5/10 (9%/19%)
Lymph node Present/Absent 15/37 (28%/72%)
Paraaortic lymph node/Pelvic node 2/13 (3.8%/25%)
Mean follow up 29.9 months
Median follow up 28.5 months
Mean recurrence interval 18.5 months

The prediction of stage with 24 radiomics features, preADC, postADC and changeADC,
using the k-nearest neighbors (KNN) algorithm, yields an AUC of 0.71 and a Kappa value
as 0.25, which outperforms other possible combinations of radiomics features (preADC,
postADC and changeADC). The use of the Regularized Random Forest (method = RRF-
global) for the same caused a drop in AUC to 0.51 but improved the Kappa value to 0.31.
The AUC and Kappa values generated using only ADC features (preADC, postADC, and
changeADC) are 0.71 and 0.25, respectively, using the k-nearest neighbors (KNN) algorithm
with a weight factor. This result is inconsistent with our previous results for recurrence
and metastasis, and we did not achieve any marginal increment in our AUC or Kappa
with the integration of radiomics into functional MR parameters for the prediction of
stage. Lastly, the prediction of Nodal metastasis using 24 radiomics features, preADC,
postADC and changeADC, in addition to the Evolutionary Learning of Globally Optimal
Trees (evtree) with feature extraction, returns an AUC of 0.75 and a Kappa value as 0.60,
while the combination of ADC parameters using evtree provides an AUC of 0.64 and a
Kappa value of 0.32 (Tables 2–5).

Table 2. Tabulated content of recurrence with relevant classifier algorithm and corresponding AUC with Kappa values.

Output Features Model Metric AUC Kappa

Recurrence Radiomics pcaNNet
(Neural Networks with Feature Extraction) Kappa + AUC 0.77 0.53

Radiomics + ADC1 + ADC2 +
Change ADC

svmLinearWeights
(Linear Support Vector Machines with Class
Weights)

Kappa + AUC 0.76 0.49

Radiomics + ADC1 Monmlp
(Monotone Multi-Layer Perceptron Neural Network) Kappa + AUC 0.8 0.55

Radiomics + change ADC RRFglobal
(Regularized Random Forest) Kappa 0.74 0.5

Radiomics + change ADC
svmLinearWeights
(Linear Support Vector Machines with Class
Weights)

AUC 0.77 0.48

ADC FRBCS.W
(Fuzzy Rules with Weight Factor) Kappa + AUC 0.57 0.17
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Table 3. Tabulated content of metastasis with relevant classifier algorithm and corresponding AUC with Kappa values.

Output Features Model Metric AUC Kappa

Metastasis Radiomics
svmLinearWeights
(Linear Support Vector Machines with Class
Weights)

Kappa + AUC 0.76 0.5

Radiomics + ADC1 + ADC2 +
Change ADC

pcaNNet
(Neural Networks with Feature Extraction) Kappa + AUC 0.84 0.65

Radiomics + ADC1 pcaNNet
(Neural Networks with Feature Extraction) Kappa + AUC 0.79 0.59

Radiomics + change ADC pcaNNet
(Neural Networks with Feature Extraction) Kappa + AUC 0.73 0.46

ADC Rocc
(ROC-Based Classifier) Kappa 0.63 0.3

ADC
svmLinearWeights
(Linear Support Vector Machines with Class
Weights)

AUC 0.67 0.27

Table 4. Tabulated content of stage with relevant classifier algorithm and corresponding AUC with Kappa values.

Output Features Model Metric AUC Kappa

Stage Radiomics RRFglobal
(Regularized Random Forest) Kappa 0.51 0.31

Radiomics Knn
(k-Nearest Neighbors) AUC 0.71 0.25

Radiomics + ADC1 + ADC2 + Change ADC Earth
(Multivariate Adaptive Regression Spline) Kappa 0.64 0.3

Radiomics + ADC1 + ADC2 + Change ADC Knn (k-Nearest Neighbors) AUC 0.71 0.25

Radiomics + ADC1 Evtree
(Tree Models from Genetic Algorithms) Kappa 0.63 0.33

Radiomics + ADC1 Knn (k-Nearest Neighbors) AUC 0.71 0.25

Radiomics + change ADC Earth
(Multivariate Adaptive Regression Spline) Kappa 0.64 0.31

Radiomics + change ADC Knn (k-Nearest Neighbors) AUC 0.71 0.25

ADC RRFglobal
(Regularized Random Forest) Kappa 0.57 0.19

ADC LogitBoost AUC 0.66 0.06

Table 5. Tabulated content of lymph node with relevant classifier algorithm and corresponding AUC with Kappa values.

Output Features Model Metric AUC Kappa

Lymph Node Radiomics evtree (Tree Models from Genetic Algorithms) Kappa + AUC 0.75 0.6

Radiomics + ADC1 + ADC2 +
Change ADC evtree (Tree Models from Genetic Algorithms) Kappa + AUC 0.75 0.6

Radiomics + ADC1 evtree (Tree Models from Genetic Algorithms) Kappa + AUC 0.75 0.6

Radiomics + change ADC evtree (Tree Models from Genetic Algorithms) Kappa + AUC 0.75 0.6

ADC evtree (Tree Models from Genetic Algorithms) Kappa + AUC 0.64 0.32

Figures 1–4 depict the correlation between different radiomics and ADC features with
the two classes of Lymph Node (Absent and Present), Metastasis (Absent and Present),
recurrence and clinical outcomes, respectively. The details of the interpretation of these
heat maps are provided in the Supplementary File.
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4. Discussion

The results of this study show the original GLSZM and wavelet features to be corre-
lated with clinical outcomes, with major contributions from the GLSZM features (SALGLE
and LGLZE) and GLDM features (SDLGLE and DE) to recurrence and metastasis. This
study documents the earliest correlation between coarseness, SALGLE, LGLZE, and differ-
ence entropy with clinical outcomes. Distant metastasis is a primary factor amounting to
treatment failure despite good rates of local control in cervical cancer post-chemo-radiation,
and has an incidence as high as twenty percent [38]. Recurrence is seen in a third of the
patients and occurs shortly after treatment completion [39]. Up to forty percent of the
patients with a positive para-aortic node have distant metastasis [40]. In our study, among
three patients with paraaortic nodes, distant lung metastasis was seen in one patient.

A previous study of Mu W et al. found a statistically significant difference, with an
AUC of 0.8, between the early and advanced stages by combining texture features derived
from FDG-PET CT and SUV parameters using the SVM algorithm [41]. We achieved an
AUC (0.71) using a higher number of patients with multiple classifiers to predict differences
in stages, with the best AUC obtained with the k-nearest neighbors (KNN) algorithm. Due
to differences in the acquisition and considering our granular approach of staggering
the model output into four stages, rather than clubbing into early and advanced stages,
a direct comparison of the study of Mu W et al. with this study is not possible. The
majority of determinants of pelvic LN metastasis are assessed only in a post-operative
setting, such as depth of stromal invasion and lymphovascular invasion [42]. Therefore, a
robust parameter that could help in the pre-treatment prediction of LN metastasis would
be desirable, as LN involvement is an independent prognostic marker for recurrence
and overall survival [27,43,44]. While this study had an AUC of 0.864 for the prediction
of LN involvement, we were able to achieve comparable levels with another study [45]
(AUC = 0.75). Some radiomics features exhibited an escalating trend analogous to patients
who developed either distant metastasis or recurrence versus patients with a lack of such
events. Previous studies have shown an AUC of 0.747–0.85 to discriminate nodal metastasis
by using radiomic features on functional ADC maps in cervical cancer [46,47]. We attained a
similar AUC (0.75) using the evTree classifier on a similar number of patients. Furthermore,
our study could also demonstrate that the combination of radiomic features with ADC
parameters did not show any better performance than radiomics alone in LN assessment.
This is in contrast to a study of Kan Y et al. that focused solely on the prediction of the nodal
metastatic stage (AUC 0.75), with the integration of seven distinct clinical characteristics
into the equation [48].

One of the wavelet features, HLH_GLSZM_small_area_low_grade_level_emphasis,
was reported in an earlier study conducted on T2WI for the prediction of Disease-free sur-
vival (DFS) in uterine cervical cancer [49], using 18 radiomic features and lymphovascular
space invasion (LVI) with contrast MRI, to obtain a Rad score for the prediction of the DFS.
Another wavelet feature, LLL_glrlm_Gray_Level_NonUniformity_Normalized, was also
found to be significant in the prediction of recurrence in uterine cervical cancer [50] and
5-year survival [51]. In concordance with the previous studies where GLCM Entropy is
reported as a feature to predict Disease free survival [52], we found significant entropy
in our results for GLDM, GLRLM and GLSZM. Unlike GLCM, which characterizes the
local information on gray levels between pairs of voxels, GLRLM captures the coarseness
and GLSZM quantifies the clusters of homogeneous intensity regions within the tumor.
The feature energy has been reported to predict recurrence, with an AUC of 0.885, when
derived from ADC maps in a previous study [50]. We found both first order and wavelet
derivatives of energy to be useful in building our radiomics model, and, in combination
with functional quantitative parameters, yielded an AUC of 0.84 in our study for the
prediction of distant metastasis. A worse clinical outcome was associated with elevated
values of these parameters, asserting the fact that a poor prognosis is exhibited by more
heterogeneous tumors.



Tomography 2021, 7 353

Most studies performed in the past have focused on the standardized uptake value
(SUV) derived from PET CT imaging, with few exploring ADC maps on MR imaging as
predictors of treatment response overall survival and lymph node involvement [53], and
proved the superiority of radiomic features, in comparison to SUV, in the assessment of
clinical outcome and as a descriptor of tumor heterogeneity [54]. Changes in ADC have
been reported to be a promising imaging biomarker for early radiation response in prostate
cancer [55]. Few studies have revealed the role of ADC as a predictor of recurrence [14,56].
In our study, pretreatment ADC (preADC) values did not show considerable performance
as compared to radiomics features. One likely explanation for the above observation
could be attributable to wide differences in methodology, where a certain ROI was drawn
manually on ADC maps excluding the areas of necrosis. On a related note, the radiomics
features achieved VOI in a semi-automatic fashion through the use of a grow cut feature
that encompassed the whole volume of the tumor. This potentially captures the tumor
heterogeneity, including the areas of necrosis, which are believed to steer the clinical
outcome and response, even in uterine cervical cancer. The analysis of conventional
methods of tumor assessment using diffusion sequences and ADC maps was prone to
errors because ADC values were consequential from manually drawn ROIs. There are
always chances of human errors while measuring the same, and the measurement also
suffers from a certain degree of inter observer variability. Further restrictions in terms of
efficacy occur in the assessment of the mean ADC change within the ROI of the tumor on
a single ADC map image, which pertains to tumor heterogeneity in the post treatment
response [57]. Few studies show the jarring results concerning the prognostic value of
ADC in cervical cancer, some documenting poorer prognosis with a lower ADC value [58].
The VOI delineated on the T2W image could have been extrapolated on the ADC maps
to extract the radiomic features on ADC images, as was the case in previous studies [59],
but the additional normalization and binning involved was beyond the scope of this study.
Undeniably, a better understanding of the core spatial heterogeneity could be offered by
the VOI delineation and analysis of ADC imaging; however, the above factors, with their
resource and time constraints, prevented us from exploring this particular aspect, thus
limiting its usefulness in terms of routine clinical practice [60]. Further ADC values show
heterogeneity between various MR scanners [61], which would be an obstacle in terms
of standardization.

The monocentric and retrospective nature of studies are the limitations that have
been repeated in most of the radiomics studies of uterine cervical cancers. Despite the
use of cross-validation, a clear limitation is the fact that there was no validation dataset
(Study cohort included only 52 patients overall, and hence, a split would not have made
statistical sense). Being monocentric, however, the study erases problems that arise due
to variations in acquisition and image reconstruction parameters, which have negatively
affected analysis [62]. The study cohort, though small, included a large number of features
(more than 800), but training and testing was performed using the Pearson correlation,
and statistical significance was corrected through multiple rounds of testing with the
application of leave-one-out cross validation and hyper parameter tuning in order to avoid
both overfitting and false-discovery. As has been pointed out previously, most radiomics
studies encompass higher numbers of features than patients, likely culminating in a high
risk of false-positives [63]. Since the clinical variables rather than the outcomes were
dichotomized, the supervised analysis conducted aimed towards the creation of a good
union of these variables with the help of statistical learning models. In pursuit of this, we
chalked out the most efficient radiomic features that could predict clinical outcomes.

5. Conclusions

Devising a robust and noninvasive strategy to assess tumor heterogeneity, prior
to treatment, might have an insightful impact on the management of individual cancer
patients through the early prediction of treatment outcomes with the prospect of modifying
therapy as part of the precision medicine exemplar. We tried to devise a machine learning
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prediction method for clinical outcomes by exploiting the multi classifier system. We
further aim to validate our findings in larger cohorts, both within our centre and in multi-
institutional centers. Our results revealed an incremental role of radiomics in functional MR
imaging that deploys ADC values for the prediction of recurrence and distant metastasis.
The model will be particularly helpful for low to middle income nations that have an
increasing incidence of cervical cancer as our study does not incorporate the use of FDG,
PET, CT and Contrast MR imaging, the availability and interpretation of which are limited
in resource-constrained low resource nations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/tomography7030031/s1, Figure S1: Heat map showing correlation between different radiomics
and ADC features with Stages, Figure S2: (A–D) Line plot is used to represent the variation in the
efficiency metrics of the model using different sets of features and modeling algorithms. The above
figure shows our various classifiers used to predict clinical outcomes with Kappa plotted on a scale
of 0–1, Figure S3: (A–D) Line plot is used to represent the variation in the efficiency metrics of the
model using different sets of features and modeling algorithms. The above figure shows our various
classifiers used to predict clinical outcomes with AUC plotted on a scale of 0–1, Figure S4: T2 WI
and diffusion imaging showing representative method of ADC calculation, Figure S5: Segmentation
process using Slicer-3d software and VOI delineation for radiomics feature extraction, Table S1: Using
Pearson coefficient method of cut-off, the final set of features has 24 radiomics features listed, which
are: two first-order features; two GLDM gldm features; two GLSZM features and 18 wavelet features
((i) six first-order features; (ii) two GLDM features; (iii) seven GLSZM features; (iv) one GLCM feature;
(v) two GLRLM feature), Table S2: The baseline and follow up ADC values in the various groups
with percentage change in ADC. There is an obvious change in ADC in the recurrence and metastatic
groups. The nodal positive and negative groups did not show much of change.
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