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The Gleason score contributes significantly in predicting prostate cancer outcomes and selecting the appropriate treatment option,
which is affected by well-known inter-observer variations. We present a novel deep learning-based automated Gleason grading
system that does not require extensive region-level manual annotations by experts and/or complex algorithms for the automatic
generation of region-level annotations. A total of 6664 and 936 prostate needle biopsy single-core slides (689 and 99 cases) from
two institutions were used for system discovery and validation, respectively. Pathological diagnoses were converted into grade
groups and used as the reference standard. The grade group prediction accuracy of the system was 77.5% (95% confidence interval
(CI): 72.3-82.7%), the Cohen’s kappa score (k) was 0.650 (95% Cl: 0.570-0.730), and the quadratic-weighted kappa score (kquaq) Was
0.897 (95% Cl: 0.815-0.979). When trained on 621 cases from one institution and validated on 167 cases from the other institution,
the system’s accuracy reached 67.4% (95% Cl: 63.2-71.6%), k 0.553 (95% Cl: 0.495-0.610), and the Kquaq 0.880 (95% CI: 0.822-0.938).
In order to evaluate the impact of the proposed method, performance comparison with several baseline methods was also
performed. While limited by case volume and a few more factors, the results of this study can contribute to the potential
development of an artificial intelligence system to diagnose other cancers without extensive region-level annotations.

npj Digital Medicine (2021)4:99; https://doi.org/10.1038/s41746-021-00469-6

INTRODUCTION

Prostate cancer is the second most common malignancy in men
worldwide and the second leading cause of cancer death among
men in the United States.! Prostate cancer prognosis depends on
numerous factors, including histologic grade, type, cancer stage,
and patient condition.?

A prostate needle biopsy is the most reliable diagnostic method
performed on patients suspected to have prostate cancer.® The
Gleason score, which is assigned after the prostate needle biopsy
by a pathologist after examining the tissue under a microscope, is
the most powerful prognostic predictor and provides the basis for
selecting a treatment modality.*

The Gleason grading system was devised in the late 1960s by
Dr. Donald F. Gleason and members of the Veterans Administra-
tion Cooperative Urological Research Group.® The Gleason grading
system categorizes architectural features of tumors using a five-
point scale, designating patterns 1 and 5 as the most differ-
entiated and the least differentiated type of cancer, respectively.
The Gleason score for a needle biopsy sample is the sum of
primary and secondary pattern numbers, where the most
prevalent pattern in the sample is graded as the primary and
any amount of the worst pattern is graded as secondary. The
Gleason grading system suffers from a well-known lack of
interobserver reproducibility among practicing pathologists.®”

A new classification for prognostic grade grouping was
proposed in 2013 by a research group at the Johns Hopkins
Hospital, resulting in five prognostically distinct grade groups,
namely grade group 1 = Gleason score <6, grade group 2 =
Gleason score 3 + 4 =7, grade group 3 = Gleason score 4 +3 =7,
grade group 4 = Gleason score 4 +4 =38, and grade group 5 =
Gleason scores 9 and 10.2 The new grading system was accepted
at the 2014 ISUP consensus conference, and the terminology of

grade groups 1-5 has also been accepted by the World Health
Organization in 2016.%'°

The computer-assisted analysis of images in the field of medical
imaging is attracting increasing attention as a major research
topic, driven by breakthroughs in artificial neural networks, often
termed deep learning (DL), and a set of techniques and algorithms
that enable computers to discover complicated patterns in large
data sets.'"""2

With advancements in the whole-slide image (WSI) technique
and the Food Drug Administration approval for using a digital
pathology system in primary diagnosis, computer-assisted analysis
has been actively studied across all areas of pathology.'®

Automated Gleason grading is an actively studied topic in the
research of computer-assisted pathological diagnosis. Several
outstanding results have recently been reported, whose grading
performance is comparable to those of participating patholo-
gists."*""” They are commonly based on a two-stage architecture
utilizing a DL model that separately recognizes Gleason patterns 3,
4, and 5 to extract features such as pattern-wise size and
likelihood, which are then fed into the Gleason grade
prediction model.

To this end, researchers have manually performed region-level
Gleason pattern annotation tasks on WSIs,'*'® extracted diag-
nostic marker annotations on WSIs using computer vision
techniques,'® or employed an epithelial tissue detection model,
which was developed using immunohistochemistry-stained tissue
slide images."”” All of these techniques involve large manual
annotation costs and/or the development of complex algorithms.

Based on the assumption that the prostate cancer detection
model actually learns the features that differentiate Gleason
patterns, we developed a convolutional neural network (CNN)-
based Gleason grading system named Yet Another Automated
Gleason Grading System (YAAGGS) that accepts the WSl-level
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Table 1. Number of slides and cases in the entire dataset for this study.
Category Discovery (HUMC) Discovery (KUGH) Validation (HUMC) Validation (KUGH) Gleason2019
Benign 3537 (490) 604 (109) 439 (64) 89 (15) 26

66.3% 45.4% 59.6% 44.5% 10.7%
Grade group 1 570 (311) 134 (67) 76 (42) 19 (10) 70
(Gleason score < 6) 10.7% 10.1% 10.3% 9.5% 28.7%
Grade group 2 379 (190) 80 (55) 68 (33) 14 (9) 23
(Gleason score 7 =3+ 4) 7.1% 6.0% 9.2% 7.0% 9.4%
Grade group 3 274 (142) 231 (87) 51 (23) 40 (12) 21
(Gleason score 7=4+3) 5.1% 17.4% 6.9% 20.0% 8.6%
Grade group 4 300 (132) 118 (57) 47 (18) 20 (10) 101
(Gleason score 8) 5.6% 8.9% 6.4% 10.0% 41.4%
Grade group 5 275 (90) 162 (43) 55 (14) 18 (6) 3
(Gleason score = 9) 5.2% 12.2% 7.5% 9.0% 1.2%
Total 5,335 (543) 1,329 (146) 736 (78) 200 (21) 244

100% 100% 100% 100% 100%
The ratio of each category is also presented per each dataset type and institution. As each case can contain multiple slides from different categories, the sum
of the cases for each category does not coincide with the total cases. For Gleason 2019, the case id couldn't be identified for each TMA image.

feature maps constructed using a CNN-based prostate cancer
detection model that trained by slide-level annotations using the
multiple-instance learning (MIL) method, and predicts the corre-
sponding grade groups. We evaluated the prediction performance
of the system on the datasets from two hospitals, Hanyang
University Medical Center (HUMC) and Korea University Guro
Hospital (KUGH), in the inter-institutional setting to analyze the
generalization power of the model across the institutional
boundary (training on HUMC and validating on KUGH), as well as
in the holistic setting to assess its best achievable performance
(training on a part of HUMC+ KUGH and validating on the
remainder). An additional experiment was performed in the holistic
setting to measure the effect of the dataset size on the model
performance. For the external validation, we applied our model on
data from the Gleason 2019 Challenge'®'®, which is publicly
available.

The proposed system was also compared with several baseline
methods. As the performance indices, the Cohen’s kappa score
(k) and quadratic-weighted kappa score?' (Kquag) Were used, along
with the grade group prediction accuracy (accuracy).

In the mechanism analysis of the proposed system, the features
extracted via the trained cancer detection model were shown to
be distinguishable according to the Gleason pattern. Furthermore,
in the grade group prediction, the system worked presumably
following the method of assessing the relative ratio of Gleason
patterns by pathologists.

RESULT

Performance analysis

A total of 788 cases (7600 WSIs) from two institutions HUMC and
KUGH were used for this study after the quality check. It is notable
that each case corresponds to a different patient. In the holistic
experimental setting, 99 cases (936 WSIs) randomly selected from
the entire dataset per category per institution were used for the
internal validation, and the remaining 689 cases (6664 WSIs) were
used for the discovery, as detailed in Table 1. More specifically, the
discovery WSIs were split into 5716 WSls for training and 948 for
tuning. Among the training WSIs, randomly chosen 5206 WSls
were used for training in the additional experiment. In the inter-
institutional setting, 621 cases (6071 WSlIs) from HUMC were used
for the discovery, and 167 cases (1529 WSIs) from the KUGH were
used for the internal validation. For the external validation, 244
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tissue microarray (TMA) images of the Gleason 2019 Challenge'®'®

training dataset were evaluated with the model trained in the
holistic setting.

In the holistic setting, for the WSI-level cancer detection task,
the first stage model exhibited the receiver operating character-
istic (ROC) area under the curve (AUC) value of 0.983 (95% ClI:
0.964-1.000) and the precision-recall (PR) AUC value of 0.984 (95%
Cl: 0.965-1.000) on the validation dataset. The cancer detection
accuracy, sensitivity, and specificity were 94.7% (95% Cl:
91.4-98.0%), 0.936 (95% Cl: 0.900-0.972), and 0.960 (95% Cl:
0.931-0.989), respectively. For the grade group prediction, the
second stage model showed the accuracy of 77.5% (95% Cl:
72.3-82.7%), k of 0.650 (95% Cl: 0.570-0.730), and Kquaq Of 0.897
(95% ClI: 0.815-0.979). The confusion matrices are depicted in
Fig. 1 (a, b). Representative patch images sampled from the model
failure case (false positive and negative) WSIs are presented in
Fig. 2. Representative patch images sampled from the WSIs in
each predicted category are shown in Supplementary Fig. 1. In the
additional experiment where the second stage model was trained
on the subset of data, the model showed the accuracy of 69.3%, k
of 0.521, and Kquaq Of 0.824.

In the inter-institutional setting, as a WSI-level cancer detector,
the first stage model exhibited the ROC AUC value of 0.982 (95%
Cl: 0.967-0.997) and the PR AUC value of 0.984 (95% Cl:
0.970-0.998). For the second stage model, the accuracy dropped
to 67.4% (95% Cl: 63.2-71.6%), kK to 0.553 (95% Cl: 0.495-0.610),
and Kquaq to 0.880 (95% Cl: 0.822-0.938). The confusion matrices
are presented in Fig. 1 (c, d).

In the external validation using Gleason 2019 dataset, the first
stage model exhibited the ROC AUC of 0.943 (95% Cl: 0.913-0.973)
and the PR AUC of 0.985 (95% Cl: 0.972-0.998). For the second
stage model, the accuracy was 54.5% (95% Cl: 48.3-60.8%), k was
0.389 (95% Cl: 0.305-0.473), and Kquag Was 0.634 (95% Cl:
0.468-0.800).

Comparative analysis

The performance comparison result of the proposed model to
three baseline methods is presented in Table 2. More specifically,
the grade group prediction accuracy dropped from 77.5% of the
proposed model to 72.6% (95% Cl: 67.2-78.1%) when an
ImageNet pre-trained model was used for the first stage, to
75.6% (95% Cl: 70.3-80.9%) when a multi-class MIL method** was
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Slide-level confusion matrices between the proposed model and the reference standard in grade group prediction in the holistic

setting. a normalized, b original; in the inter-institutional setting: ¢ normalized, d original; in the external validation setting: e normalized,

f original.

used for training the first-stage model, and to 67.3% (95% ClI:
61.6-73.0%) when the CLAM*® was used.

Mechanism evaluation

We analyzed the output feature vectors of the first stage model
through the t-distributed stochastic neighbor embedding (t-SNE)
data visualization to evaluate the overlaps among Gleason
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pattern-wise feature distributions (Fig. 3). The diagrams of t-SNE
plots for three different perplexity values are shown in Supple-
mentary Fig. 2. In this figure, each dot corresponds to a feature
vector, and the dots of the same color correspond to the feature
vectors of the same label, indicating that the vectors from the
patch images of the same Gleason pattern. Bigger dots
correspond to the mean feature vectors of each label. It shows
that the first stage model embeds different patterns to the

npj Digital Medicine (2021) 99
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Fig. 2 Sample patch images from failure cases (Hematoxylin-eosin stain, x200). False-negative cases showed small-sized cancers, which
consisted of only several cancer glands, or cancer glands located on the outer sample margin of the WSI. a was diagnosed as grade group 1
and b as grade group 4 in the reference standard, respectively. False-positive cases often exhibited diffuse infiltration of lymphocytes and
atrophic glands. The prediction of the model was grade group 4 for (c) and grade group 1 (d), respectively.

different positions in feature space, despite the fact that the
model only learned for the presence or absence of cancer.

Table 3 shows the mean and deviation values of the actual
output of the second stage model for a set of combination ratios
between Gleason patterns 3 and 4, evaluated on 30 synthetic WSIs
assembled from 5 pairs of WSIs in the validation set chosen to have
similar amounts of Gleason patterns 3 and 4, respectively. The
graphs showing the model outputs according to the combination
ratio for each pair are presented in Supplementary Fig. 3.

DISCUSSION

We proposed YAAGGS, a novel two-stage WSI prostate cancer
grade group prediction system trained only with slide labels. In
the holistic setting, the proposed system yielded the kappa (k)
value of 0.650 compared to the pathologist-based reference
standards. In literature, the inter-observer Gleason scoring
concordance rates measured in k vary in the range of 0.40-0.50
between general pathologists, and 0.56-0.70 for urologic
pathologists.572%2°

Certain cases of grade groups 3 and 4 were predicted as benign.
By reviewing such cases, we found that the model missed small-
sized cancer which consisted of only several cancer glands, or
cancer glands located on the outer sample margin of the WSI (Fig.
2a, b). False-positive cases often exhibited diffuse infiltration of
lymphocytes and atrophic glands (Fig. 2c, d).

In the inter-institutional setting, the system yielded a lower but
still decent grading performance (k = 0.553). To analyze the cause
of this performance degradation, we performed an additional
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experiment in the holistic setting with the same number of
training slides as in the inter-institutional setting (n =5206) and
obtained a similar performance (k = 0.521), which supports the
assumption that this performance degradation is at least partly
due to the size reduction of the training dataset.

The prediction performance of the model was degraded when
externally validated using the Gleason 2019 dataset. The difference in
color distribution can be considered as the cause of the performance
decline. The stain color distribution of the Gleason 2019 dataset was
visually different from the HUMC and KUGH datasets. We have
incorporated color augmentation in model training to cope with the
stain color variations among institutions, but it might not have been
sufficient to deal with the external dataset.

There exist several studies that propose deep learning models
for prostate cancer grading that are trained without region-level
manual annotations. Bulten et al. reported a deep learning model
trained with the semi-automatic region-level annotation techni-
que and slide-level annotations to show Kquaq of 0.918 (95% Cl:
0.891-0.941)."” Similarly, Strém et al. developed an ensemble of
deep learning models trained with the automatically generated
region-level annotations from pen marks and slide-level annota-
tions, yielding the linear-weighted kappa score (kj;,) of 0.83.'° The
study by Li et al. likewise introduced a WSI classification model
trained by a weakly supervised learning method.?® However,
unlike our proposed system that requires no side-used algorithms
to create or enhance the data, the first two studies relied on
explicit complex algorithms to create annotations of sufficient
quality. The study by Li et al. differs from ours in that its second
stage model requires only cancer patch images to be fed.
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Table 2. Performance indices of the proposed system and baseline methods.

Value (95% Cl) The proposed system Using ImageNet pre-trained model Using multi-class MIL-trained model CLAM

Accuracy (%) 77.5 (72.3-82.7) 726 (67.2-78.1) 75.6 (70.3-80.9) 67.3 (61.6-73.0)

K 0.650 (0.570-0.730) 0.559 (0.471-0.647) 0.622 (0.540-0.703) 0.469 (0.376-0.562)
Kquad 0.897 (0.815-0.979) 0.845 (0.746-0.945) 0.901 (0.819-0.982) 0.779 (0.658-0.900)

For each criteria, the maximum value is set bold-faced, and the second maximum is set italic.

Table 3. Mean and deviation values of the actual output of the second stage model for a set of combination ratios between Gleason patterns
3 and 4.
GP3: GP4 100%: 0% 80%: 20% 60%: 40% 40%: 60% 20%: 80% 0%: 100%
benign 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 0.01 £0.00
grade group 1 030+ 0.05+0.10 0.02+0.02 0.01+0.03 0.01+£0.01 0.00+0.01
0.20%?
grade group 2 0.54 + 0.55+ 037+ 0.28+ 0.20+0.15 0.09+0.14
0.13 0.08%" 0.21? 0.26°
grade group 3 0.14 £ 0.08 033+ 0.44 + 044 + 040+ 0.28+0.15
0.132 0.07' 0.10% 0.10%
grade group 4 0.02 £ 0.01 0.06 + 0.05 0.14+0.12 0.19+£0.13 0.25+ 033+
0.132 0.09%"
grade group 5 0.00 £ 0.00 0.01+£0.01 0.04 £ 0.07 0.07 £ 0.08 0.11+0.14 0.29%
0.212

second maximum is with superscript 2.

For each combination ratio, superscript c indicate the accurate category, while the category with the maximum mean value is with superscript 1, and the

tSNE

tSNE dimen:

-30

B 20 -To o 10 20

Fig. 3 t-SNE data visualization of the feature vectors of the
Gleason pattern 3/4/5 image patches embedded by the first stage
model for perplexity 50 and 1000 iterations. Bigger dots
correspond to the mean feature vectors.

In the comparative analysis, our proposed method outperformed
other baseline methods. Using an ImageNet pre-trained model as a
feature extractor is a common technique to overcome the lack of
data.”” However, we discovered that incorporating a model that can
extract prostate cancer-specific histological features into our
proposed system leads to better performance. We also discovered
that there was no vivid performance change when using a feature
extractor that optimized for the Gleason pattern discrimination
instead of the original one that just for cancer detection. This
supports the assumption that our first stage model might have
actually learned the Gleason pattern-specific features.

While the attention-based MIL method is known as a powerful
one in the weakly supervised learning setting?>?%2°, adopting the
CLAM* model was not effective in our case even with some

Published in partnership with Seoul National University Bundang Hospital

extent of hyperparameter tuning. It would be valuable to discover
further the reason for this ineffectiveness, but it seems outside the
scope of this study.

In addition to the statistical analysis of the prediction
performance of the proposed model, we attempted to analyze
the model mechanism in terms of its analogy with the diagnosis
process of the pathologist. Diagnosing the grade group involves
two types of tasks: recognition of Gleason patterns and estimation
of respective portions. Therefore, we performed the mechanism
analysis in two steps. In the first step, we evaluated whether the
model distinguishes the Gleason patterns. The second step
assessed the proportion sensitivity of the model, which is
necessary to grade prostate cancer accurately. Figure 3 represents
the feature vector distributions for the patch images containing
Gleason patterns 3, 4, or 5 and shows that apparent differences
exist among Gleason pattern-wise distributions. Thus, we assume
that the first stage model assigns distinguishable features to
different Gleason patterns, enabling the second stage model to
predict the grade groups based on the generated feature map.

Next, we analyzed the change in the actual output of the
second stage model according to the combination ratio of
Gleason patterns to evaluate the proportion sensitivity. As shown
in Table 3, the model reacts sensitively as the proportion of
Gleason pattern 4 increases, such that the value for grade group 1
continually decreases, both the values for grade groups 4 and 5
increase, and both the values for grade groups 2 and 3 increase to
a certain point and then decreases. Thus, we found that the
second stage model is sensitive to the proportion of Gleason
patterns. Notably, we could perform a similar analysis with
Gleason patterns 3 and 5; however, we did not conduct the
analysis because a slight amount of Gleason pattern 5 results in
the grade group 4 or higher, making the analysis less sensitive.
Even a very small amount of Gleason pattern 5, as long as it is
observed, is reflected in the Gleason score because it is the
highest pattern, so the Gleason score does not change

npj Digital Medicine (2021) 99
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Fig. 4 Model training process of YAAGGS. The model classifies the
input WSIs into Gleason grade groups in two stages. In the first stage of
feature extraction, patch images of size 360 x 360 pixels covering the
entire slide area are extracted from the input WSI at 10x magnification
and fed into the first stage CNN model to extract 1024-dimensional
feature vectors. The extracted feature vectors were aligned according
to the locations of corresponding patch images to be assembled into a
1024-channel two-dimensional feature map. The second stage CNN
model accepts the feature maps as input and classifies them into one

of six categories: benign, grade group 1, grade group 2, grade group 3,
grade group 4, and grade group 5.

significantly by subtle differences in the amount of Gleason
pattern 5. On the other hand, a Gleason pattern score lower than
the most common score is ignored unless it exceeds 5% of the
total cancer area. In practice, the pathologist assesses the glass
slide at low magnification (x4 and x10 objectives) when using a
light microscope as an initial diagnostic step. Then by increasing
magnification, they determine the detailed ratio of each Gleason
pattern and make a final diagnosis. Considering the results, we
thought that our second stage model operates in the manner
reflecting quantitative change as the pathologist does.
Nevertheless, there are several limitations related to the size
and quality of the study data. First, the reference standard was not
strongly established. Gleason grading is known to be highly
variable among pathologists. Grading among experts is more
reproducible than among general pathologists. However, our
results were evaluated using a weak reference standard derived
from either a single pathologist or the original hospital diagnosis.
While this study aimed to lower the development cost of the
artificial intelligence systems, the clinical utility of the study would
be better proven with more strongly established reference
standards. Second, the inter-institutional generalization power is
not well demonstrated due to the limited case volume.
Additionally, as our study data is from two institutions, one
graded with either the 2005 or the 2014 ISUP Gleason grading
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guidelines and the other graded with the 2014 guidelines. For
HUMC data, the data collection period was very long (9 years) and
we were unable to analyze in detail whether the guideline changes
and inter-observer variability had an effect on the validation tests.
Future research is necessary through the participation of an
increased number of hospitals and pathologists.

In summary, we presented a novel weakly supervised deep
learning-based automated Gleason grading system trained only
from slide-level annotations using the MIL method. We expect that
this study can possibly contribute to the development of Al systems
to diagnose different types of cancer, which have several
morphological grades without constructing region-level annotation.

METHODS
Data

Hematoxylin and eosin (H&E) stained glass slides each containing a single
prostate needle biopsy core and their respective diagnoses were collected
from two hospitals: HUMC, Seoul, Korea (Institutional Review Board
Approval No. 2018-10-010-002) and KUGH, Seoul, Korea (Institutional
Review Board Approval No. K2017-4488-001). Prostatic needle biopsies
were performed from 2009 to 2017 and from 2010 to 2016 at HUMC and
KUGH, respectively. The Institutional Review Boards of the two hospitals
approved this retrospective study and waived the requirement for
informed consent. We confirm that all experiments were performed
according to relevant guidelines and regulations.

The slides were digitized using Aperio AT2 scanners (Leica Biosystems
Inc., Vista, CA, USA), at x40 magpnification, (i.e., resolution of 0.25 pum/pixel).
After digitization, a pathologist, H.C. blinded to the pathologic diagnosis
performed a manual quality check. Exclusion criteria included:

(1) slides for a tissue biopsied from organs other than the prostate or
surrounding tissues,

(2) immunohistochemistry or special stains slides,

(3) slides with inadequate quality for pathologic diagnosis, including
severe out-of-focusing or indelible markings.

The Gleason scores from the original hospital diagnoses were converted
into the corresponding grade groups and used as the slide label
annotations and the reference standard for the HUMC dataset. During
the period from 2009 to 2017, five surgical pathologists, whose experience
ranged from 1 to 20 years, worked at the HUMC on average, and one of
them was a genitourinary pathologist. For the KUGH dataset, a Korea
board-certified pathologist with 9 years of experience reviewed all WSIs
according to the 2014 ISUP Gleason grading guidelines and created the
slide label annotations and the reference standard. For the external
validation, the Gleason 2019 Challenge data was used.'®'® These patients
had undergone radical prostatectomy at the Vancouver General Hospital
between June 1997 and June 2011. The TMAs were prepared in the same
lab and with the same procedures at the Vancouver Prostate Centre in
Vancouver, Canada. The TMAs had been stained in H&E and scanned at 40x
magnification with a SCN400 Slide Scanner (Leica Microsystems, Wetzlar,
Germany). Six pathologists were asked to annotate the TMA images in
detail. The pathologists had 27, 15, 1, 24, 17, and 5 years of experience.
Four of the pathologists annotated all 333 cores. The other two
pathologists annotated 191 and 92 of the cores. Pixel-wise majority voting
is used to build the “ground truth label”."® The ground-truth Gleason grade
group for each TMA image is derived by simple pixel counting algorithm
according to the 2014 ISUP Gleason grading guidelines for needle
biopsy*°. But we ignored any pattern that is occupying <1% of the total
area, to deal with the noise induced by the pixel-level majority vote
process. We validated our model only on 244 training images because the
ground truth labels were not available for the remaining test images.

Two-stage WSI classification model

The proposed YAAGGS classifies the input WSIs into Gleason grade groups
in two stages. In the first stage of feature extraction, patch images of size
360 x 360 pixels covering the entire slide area are extracted from the input
WSI at 10x magnification and fed into the first stage CNN model to extract
1024-dimensional feature vectors. The extracted feature vectors were
aligned according to the locations of corresponding patch images to be
assembled into a 1024-channel two-dimensional feature map. The second
stage CNN model accepts the feature maps as input and classifies them
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into one of six categories: benign, grade group 1, grade group 2, grade
group 3, grade group 4, and grade group 5.

Model development

Throughout the study, WSIs in the discovery set were randomly distributed
into the training and tuning sets with the ratio of 6:1. Both the first stage
and second stage models were trained on the same training set, and the
performances of the models were evaluated on the same tuning set per
each training epoch to choose the best performing model parameters.

The first stage model was trained to classify input patch images into two
classes, benign and cancer. The MIL method was used to train the first-stage
model, as in another study.3' We adopted DenseNet-121 as our first stage
model architecture and used the ImageNet pre-trained weight parameters as
the initial model parameter values.>? The condition of the first stage model
training is as follows: Initial learning rate was 0.01. The stochastic gradient
descent (SGD) optimizer with 0.9 momentum and 1e-5 weight decay was
used. The learning rate was scheduled to be multiplied by 0.1 per every 25
epoch. The total training epoch was 100 epochs and the mini-batch size was
128. Applied data augmentations were random horizontal flip, random 90°
rotation, and random change of the brightness, contrast, saturation, and hue
as amounts of 0.1, £0.3, £0.3, and +0.05, respectively. The model with the
best PR AUC score at tuning set was chosen. After the training step, the last
hidden layer output of the model was tapped to obtain 1024-dimensional
feature vectors for the input patch images.

To train the second-stage model, we converted WSIs in the discovery set
into feature maps, as described above, using the first-stage model. More
specifically, patch images of 360 %360 pixel size in three channels were
converted into images of 1x 1 pixel size in 1024 channels, resulting in the
width and height of each WSI resized by 1/360. Accordingly, WSls equal to or
less than 2 x 2 cm? can be safely converted into 1024-channel 64 x 64 pixel-
sized feature maps. The second stage model was trained to classify these
feature maps into grade groups, based on the converted discovery set.

The architecture of the second stage model consists of two parts. The front
part is composed of five layers of a 1x 1 kernel convolution with batch-
normalization and rectified linear unit (ReLU) non-linear activation, and the
second part is composed of 16 blocks of convolution layer with the residual
connection.®® The exact configuration of the second-stage model and the
residual block is presented in Supplementary Table 1 and Supplementary
Table 2, respectively. In training the second-stage model, we minimize the
weighted cross-entropy loss as the objective function, as a class imbalance
exists in the discovery dataset. The weight parameter was 1, 1, 1.5, 1.4, 1.7, and
1.6 for each class from ‘benign’ to “grade group 5”. The training condition of
the second stage model was as follows. The initial learning rate was 0.1. The
SGD optimizer was used with 0.9 momentum and 1e-5 weight decay. The
learning rate scheduler used was a step learning rate scheduler with 40 epoch
step size and 0.1 decay rate. The total training epoch was 150 epochs and
mini batch size was 256. Applied data augmentations were random shift with
-5 to 5 pixel range horizontally and vertically, random vertical flip, and
random 90° rotation. The model with the best kqu.q Score at the tuning set
was selected. Figure 4 depicts the entire training process.

Performance analysis

In the holistic setting, we trained our model using a part of HUMC + KUGH
(6664 slides) and validated it for the remainder (936 slides). To analyze the
generalization power of the model across the institutional boundary, we
trained our model using HUMC and validated its performance on KUGH in
the inter-institutional setting. An additional experiment was conducted in
the holistic setting, using randomly sampled 5,206 training slides
(uniformly chosen from 5716 slides) while tuning and validation slides
were fixed, to analyze the effect of the size of the training data on the
model performance.

For the external validation, we validated the model trained in the holistic
setting, using publicly available data from the Gleason 2019 challenge.'®'®

Comparative analysis

To evaluate the impact of the proposed method, we compared its
performance with several baseline methods. The first method uses a pre-
trained model as a feature extractor instead of the proposed first-stage
model. We used an ImageNet pre-trained DenseNet-121 model here with
no further training. The second stage model is then trained based on the
feature vector output of the pre-trained model, extracted as proposed. The
second method adopts a multi-class MIL method to train the first-stage
model. We modified the DenseNet-121 model to have four binary
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classification outputs, each for benign, Gleason patterns 3, 4, and 5 and
trained it with the method proposed by Pathak et al.?*> The second stage
model is then trained as before. The last approach is based on a recently
proposed weakly supervised learning method named CLAM.>> We used
the authors’ code to train the CLAM model to classify WSIs into one of six
categories, as the proposed second stage model does. Because the optimal
settings may vary for different tasks, we searched for optimal hyperpara-
meters within a reasonable range; Patch-wise feature vectors were
extracted via an ImageNet pre-trained ResNet-50 and DenseNet-121
model and aggregated by attention-based pooling. And the feature vector
was classified by linear layers of size [128, 256, 512, 1024]. We tried bag
weights of [0.0, 0.3, 0.5, 0.7, 1.0]. We used Stochastic Gradient Descent
(SGD) optimizer with momentum 0.9 and weight decay 107* with a
learning rate between 10" and 10>, Early stopping is used based on the
best validation quadratic kappa score.

Mechanism evaluation

To evaluate whether the first stage model distinguishes the Gleason patterns,
we attempted to visualize the feature vectors extracted by the first stage
model onto a two-dimensional space using the t-SNE dimensionality
reduction.3* We randomly sampled 600 cancer image patches from the WSIs
in the validation dataset with the Gleason score 3 + 3,4 + 4, or 5+ 5 each. In
all, 1800 image patches were embedded into 1024-dimensional space by the
first stage model and processed through the t-SNE technique, and the result
was visualized as a two-dimensional plot. While the learning rate of the t-SNE
algorithm was fixed to 200, the number of iterations fixed to 1000, and the
perplexity hyperparameter varied from 5 to 1,000. We got consistent results
regardless of the parameters. The visualization in Fig. 3 is the results of
perplexity 50 and 1000 iterations.

To assess the proportion sensitivity of the second-stage model, we
performed an experiment to measure the change in the grade group
probabilities according to the proportions of the Gleason patterns. The
experiment was performed as follows. First, we sampled five non-
overlapping pairs of WSIs, each with Gleason score 3 + 3 and 4 + 4, from
the validation dataset. Next, we synthesized virtual WSIs according to the
six predefined combination ratio values, namely “100%: 0%", “80%: 20%",
“60%: 40%", “40%: 60%", “20%: 80%", and “0%: 100%", from each sampled
WSI pair. For example, a synthetic WSI with “60%: 40%” combination ratio
is a horizontal concatenation of 60% of 3 + 3 WSI and 40% of 4 4+ 4 WSI.
Subsequently, the synthesized WSIs were fed into the first stage model to
generate feature maps, which were then processed by the second stage
model to generate output values. Supplementary Fig. 4 depicts the overall
workflow of this experiment.

Statistical evaluation

As we trained the first stage model to identify cancer-specific visual
features, we evaluated its performance as a cancer detector. The output of
the model for a given patch image is its predicted probability of containing
a cancer lesion. We applied max pooling to the model outputs to obtain
the WSl-level probability of containing a cancer lesion. We measured
both the ROC AUC and the PR AUC for the validation dataset. We also
measured the sensitivity, specificity, and accuracy of the model with the
threshold yielding the best f1-score.

To assess the performance of the second stage model as a grade group
predictor, Cohen’s kappa score was measured between the model output
and the reference standard on the validation dataset, both with and
without quadratic weighting.?>?" The grade group prediction accuracy was
also assessed. Confidence intervals for kappa statistics were computed
based on the equation presented by McHugh.>®> For other performance
indices, such as accuracy, the normal approximation of the binomial
confidence interval was used.>®

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
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