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Despite a growing understanding of how environmental composition affects
microbial communities, it remains difficult to apply this knowledge to the
rational design of synthetic multispecies consortia. This is because natural
microbial communities can harbour thousands of different organisms and
environmental substrates, making up a vast combinatorial space that pre-
cludes exhaustive experimental testing and computational prediction. Here,
we present amethod based on the combination of machine learning andmeta-
bolic modelling that selects optimal environmental compositions to produce
target community phenotypes. In this framework, dynamic flux balance
analysis is used to model the growth of a community in candidate environ-
ments. A genetic algorithm is then used to evaluate the behaviour of the
community relative to a target phenotype, and subsequently adjust the
environment to allow the organisms to approach this target. We apply this
iterative process to thousands of in silico communities of varying sizes, show-
ing how it can rapidly identify environments that yield desired taxonomic
compositions and patterns of metabolic exchange. Moreover, this combination
of approaches produces testable predictions for the assembly of experimental
microbial communities with specific properties and can facilitate rational
environmental design processes for complex microbiomes.
1. Introduction
Microbial communities are complex ecosystems that are crucial to the health and
function of all biomes, from the oceans to the humangut [1–5]. In addition to yield-
ing a growing understanding of the composition of various microbial ecosystems
[6–8], recent advances in DNA sequencing and synthetic biology have enabled
new efforts to engineer synthetic multispecies consortia for a variety of appli-
cations [9–11]. For example, multispecies systems have been designed to
degrade complex substrates or pollutants [12–15], as well as to produce biofuels
and molecules for human consumption [15–18]. Advances such as these portend
the advent of new applications in synthetic ecology, in which communities of
microbes can be readily designed for a vast number of useful outputs. However,
this promise is hampered by the difficulty in genetically manipulating individual
organisms at community scales, aswell as by the lackof amechanistic understand-
ing of how environmental factors and interspecies interactions shape communities
[19–21]. These challenges raise the important question of whether a more accessi-
ble parameter, i.e. the chemical composition of the environment, can bemodulated
to confer specific functions on microbial consortia.

A number of studies have demonstrated the crucial role that changes in
environmental composition play in defining microbial community phenotypes,
such as in the gut microbiota [22,23] and in aquatic and terrestrial ecosystems
[24,25]. As natural ecosystems contain complex combinations of different nutri-
ents, studies have also begun to disentangle the nonintuitive relationship
between community properties and resource identity and heterogeneity
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[24,26–29]. These observations point to the manipulation of
environmental composition as a promising method for pro-
ducing synthetic consortia with defined functions. However,
these and other recent studies have demonstrated that com-
munity growth and structure can be so sensitive to the
environmental composition that even closely related environ-
ments can produce very different communities [29,30].
Therefore, in order to reach a phenotype of interest, in prac-
tice it often remains necessary to explicitly test a multitude
of different specific nutrient combinations—a task that can
quickly become experimentally intractable. For example,
screening a consortium under all combinations of 20 nutri-
ents—a quantity vastly lower than the number of unique
metabolites found in natural settings—would require 1.05
million individual experiments, a scale that remains
inaccessible to current conventional microbiological methods.
Organism-specific computational models can be deployed to
run in silico analogues of these experiments [27,31,32], though
the number of simulations required would also rapidly
become computationally intractable for more complex
environmental search spaces.

To begin addressing these challenges, we present here
the design of a genetic algorithm (GA) framework to rapidly
identify environmental compositions that result in target com-
munity phenotypes. This method, conceptually similar to
processes used to evolve communities toward specific functions
[33–36], searches large spaces of nutrient combinations to pro-
duce candidate environmental compositions that optimize
specific ecological objectives. Since their inception, GAs have
been used widely in the fields of biology and medicine to
address a variety of complex optimization problems [37–40].
As they require no explicit knowledge of the underlying
dynamics of the biological system being studied, they represent
an excellent candidate framework for identifying desired eco-
logical properties in an unbiased way. Nonetheless,
applications of GAs to community ecology are rare and have
been limited to individual objectives and relatively small combi-
natorial spaces [41,42]. As such, questions remain as to how they
perform in larger searchspaces andhowalgorithmperformance
can be optimized for awider variety of community phenotypes.

In order to address these knowledge gaps, we first rely on a
large set of in silico community experiments consisting of over
6000 unique environment–community pairings. This
dataset allows us to identify optimal search parameters and
to quantify the performance of our algorithm against known
maxima for a variety of objectives. Specifically, we demon-
strate the ability of our GA to identify environments that
result in desired community compositions, degrees of taxo-
nomic balance and patterns of metabolic secretion and
exchange. We then show how this pairing of an evolutionary
algorithm with computational models allows us to maximize
ecological objectives within a much larger (approx. 600 000
environments) combinatorial space. As our study is limited
to in silico community data, we also comment on how the
methodology presented here can be readily integrated with
increasingly available data from ultra-high-throughput exper-
imental platforms, which can produce large sets of community
phenotypes in combinatorial environments [43–45]. In sum,
this method is able to rapidly identify environmental compo-
sitions that optimize a variety of desiredmicrobial community
design goals, allowing it to serve as a versatile framework
for the exploration of large combinatorial spaces and future
applications in experimental synthetic ecology.
2. Results
2.1. Generation of microbial community phenotypes in

combinatorial environments
In order to test our search algorithm, we first simulated the
growth of multispecies microbial communities under a large
number of environmental compositions. This was done via a
dynamic flux balance analysis (dFBA) technique [46] using
the COMETS software package [47,48], which enables a
mechanistic evaluation of community growth and metabolic
exchange using experimentally validated computational
models of individual organisms (see Methods). Predictions
using dFBAhave been shown to recapitulate keymicrobial phe-
notypes, while also generating broader statistical mappings of
community structure and interactions [27,32,49,50]. Moreover,
the use of these models enables the enumeration of a complete
set of environment–phenotype mappings that is large yet com-
putationally tractable, allowing us to identify every possible
community outcome and evaluate the quality of solutions
identified by our algorithm against a known optimum. Our
mapping was generated by simulating the growth of 13-species
communities in a variety of environmental compositions. The
in silico organisms that make up our communities were selected
as they represent a diverse cross-section of taxa and metabolic
capabilities (seeMethods), in principle allowing us tomaximize
the variability of yields, taxonomic compositions and inter-
species interactions across different environments. We used
combinations of up to 4 of 20 different carbon sources (chosen
to limit the large search space) in order to generate a total of
6196 unique environmental compositions. Using COMETS,
we inoculated equal amounts of all 13 organisms into these
environments and assayed their growth over a simulated 24 h
timespan (see Methods).

Our simulated communities displayed high degrees of
compositional and functional variability across the environ-
mental conditions we tested (figure 1a). At least one
organism grew in each environment, and all organisms had
stopped growing by the end of the 24 h simulations in all but
40 environments (see Methods). Specifically, six in silico organ-
isms (B. subtilis, E. coli, P. aeruginosa, S. boydii, S. coelicolor, and
S. oneidensis) reached relative abundances of more than 50% in
at least one environment, and all organisms encountered at
least one environment inwhich they could not grow.Organism
relative abundances displayed mean variances of 0.02 and
species richness values (i.e. the number of organisms present
at the end of each simulation) of 3.30 ± 0.99 (mean ± s.d.,
figure 1b). In order to quantify the degree of taxonomic balance
in our communities, we calculated the Shannon entropy result-
ing from each simulation (see Methods). These values were
1.29 ± 0.49 (mean ± s.d., figure 1c), which, like our observed
relative abundance and species richness values, were compar-
able to those of similarly sized communities assayed
experimentally [29]. We also encountered a wide distribution
in the number of metabolic exchanges (defined as the transfer
of a unique metabolite from one organism to another) across
environments, identifying 435.49 ± 106.49 such transfers per
simulation (mean ± s.d., figure 1d). We additionally found
that that neither our environmental compositions nor themeta-
bolic exchanges observed in our simulations were enough to
allow six of the organisms (K. pneumoniae, L. lactis, P. gingivalis,
R. sphaeroides, S. cerevisiae and Z. mobilis) to grow, given that
they exhibit a variety of metabolic auxotrophies [51–54].
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Figure 1. Structural and ecological properties of simulated 13-species communities. (a) Relative abundances of organisms after 24 h of growth in all 6196 com-
binatorial environmental compositions. Only organisms that were present at the end of at least one simulation are shown. Environments are clustered based on
species relative abundances (see Methods). (b–d). Distributions of species richness (b), Shannon entropy (c) and the total number of exchanges (d ) observed across
all environments. Here, one exchange is defined as the transfer of a unique metabolite from one organism to another, e.g. the secretion of metabolite m by
organism A and its absorption by organism B represents one exchange. As our simulations contained 737 unique extracellular metabolites, the total possible

number of exchanges (i.e. if each organism transfers each metabolite to each other organism) totals
13
2

� �
� 737, or 57 486.
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The distributions of these attributes further prompted us to
quantify how robust they could be to incremental changes in
environmental composition. In doing so, we observed that
stronger environmental perturbation generally resulted in
more substantial changes to community composition and
patterns of metabolic exchange (electronic supplementary
material, figure S1). Despite these general trends, however,
we observed that even small changes in environmental compo-
sition often resulted in significantly different community
phenotypes. These observations, along with the diversity of
community properties described above, recapitulate elements
of the nonintuitive relationship between environment and phe-
notype observed in nature. As such, they point to our dataset as
being a suitable base on which to test our search algorithm.

2.2. An evolutionary algorithm rapidly identifies
environmental compositions

Having generated a broad environment–phenotype mapping,
we designed a search algorithm to identify environments
within this dataset that would result in specific community
properties. This method, a GA based on the process of natural
selection [55–58], functions as follows: first, a population of
P environmental compositions is chosen, each containing a
random assortment of a maximum of N unique nutrients.
Community phenotypic data (e.g. species abundances,
interspecies interactions and metabolic secretions) on each
environment are recorded, and each environment is scored
according to the community function being optimized.
A subset s containing the top-performing environments is
then selected to be propagated to the next generation. The
remaining P� s environments are generated by combining
nutrients contained in the top s environments (crossover),
and by introducing new nutrients (mutation) at rates defined
by a parameter grid search (see Methods; electronic sup-
plementary material, figure S2). The behaviour of the
communities on these new P environments is recorded, and
the optimization process continues until a set of convergence
criteria are met (see Methods) or for a maximum of G gener-
ations (figure 2). The objective of the algorithm is therefore to
converge to a final set of environmental compositions that
confer the desired properties on the community being tested.
For each objective we tested, we also compared the perform-
ance of our algorithm to that of a random selection process,
whereby new generations were composed of environments
randomly selected from the preceding generations (electronic
supplementary material, table S3).

We first applied this framework to identify environments
that would maximize the final taxonomic balance of our pre-
viously generated communities. Though it is uncommon
for organisms to be equally represented in natural settings
[59–64], coexistence of multiple organisms is a desirable prop-
erty for engineered consortia as it can enable tasks useful in
biotechnology, such as metabolic division of labour [19,65].
As such, we sought to identify environments within our data-
set that resulted in relatively even species abundances. To do
this, we applied the GA to search for environments that
would maximize the Shannon entropy of our in silico commu-
nities (seeMethods). In order to gain a statistical representation
of its performance, we ran our algorithm 50 separate times,
each with different random seed compositions of P ¼ 10
environments. For each GA process, we recorded the gener-
ation at which the algorithm’s proposed solutions crossed
the 99th percentile of all solutions as a way to quantify its
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Figure 2. Schematic of GA process for microbial community design. (a) A set of P environmental compositions, each containing a varying number of limiting
nutrients, is randomly generated. (b) The community phenotype observed in each environment is determined. As a representative example, this figure shows
the GA process with taxonomic balance as the objective to be optimized. The environments are ranked according to their resulting communities’ taxonomic balance,
and (c) the top s environments are selected. Here, the environments that yielded the top s ¼ 2 taxonomically balanced communities are chosen. (d ) A new
population of P environments is generated. First, the top s environments are carried over into the new population as ‘parents’, and the remaining P � s ‘offspring’
environments are generated via multipoint crossover (i.e. the individual nutrients in the parents are shuffled to produce heterogeneous offspring). Variation is
introduced into the new population via mutation, in which each individual element has a defined probability of being changed into a new one (red squares).
(e) The process of environment ranking, propagation, crossover and mutation is carried out for a total of G generations.
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Figure 3. Performance of GA on various ecological objectives. Displayed are the average number of generations (using 50 random seed sets of P ¼ 10 environ-
ments) required to identify environments that surpassed the 99th percentiles of (a) community Shannon entropy, (b) the relative abundance of B. subtilis and (c) the
total number of metabolic exchanges between organisms, compared to a random search process. Thick solid lines and shaded regions represent mean and s.e.m.,
respectively. Insets show the organism relative abundances of the top environmental conditions identified, with colours corresponding to the organisms in figure 1a.
Performance and convergence plots for each individual seed set of the GA are shown in electronic supplementary material, figure S3. All quantities, including results
for optimization of the remaining 12 organisms’ relative abundances and performance statistics for the random processes, are found in electronic supplementary
material, table S3.
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performance. We found that, on average, our algorithm ident-
ified solutions that exceeded the 99th percentile of Shannon
entropyvalues afterapproximately threegenerations (figure 3a;
electronic supplementary material, table S3). As each gener-
ation tested P ¼ 10 environmental compositions, this
performance represents explicitly carrying out only 30
unique in silico experiments within a space containing 6196
possible nutrient combinations. Though the algorithm gener-
ally converged quickly to near-optimal solutions (electronic
supplementary material, figure S3 and table S3), we observed
variability in the specific environmental compositions it
selected. For this particular objective, our method resulted in
13 distinct environmental compositions across the 50 different
random seed environments, all of which showed high degrees
of consistency and taxonomic balance in the resultant commu-
nities (figure 3a inset; for specific environmental conditions
selected see electronic supplementary material, figure S4).

In addition to optimizing general ecological properties, we
tested the capability of our algorithm to identify environments
that would maximize more specific features. We first chose to
optimize the relative abundances of individual organisms
and selected B. subtilis, which grew in 2130 out of 6196 environ-
ments (figure 1a), as a representative example. Again using
50 random initial seed environmental compositions,
we found that the GA was able to identify solutions that
exceeded the 99th percentile of B. subtilis abundances after
approximately six generations on average (figure 3b). We
found that our algorithm selected fewer distinct environmental
compositions for this objective across our 50 random seeds,
from which 10 distinct environments emerged (figure 3b
inset). An additional analysis of these environments showed
an enrichment for those containing disaccharides (electronic
supplementary material, figure S4), pointing to a potential
mechanism for maintaining the dominance of B. subtilis.
Applying our algorithm to the remaining organisms revealed
that similarly low numbers of generations were required to
reach and converge to optimal solutions (electronic supple-
mentary material, table S3), demonstrating the utility of this
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framework to identify environments that maximize individual
species abundances.

Interspecies metabolic cooperation, often associated with
microbial ecosystem stability, is a common target mechanism
for community engineering [66,67]. Nonetheless, identifying
environments that lead to the emergence of specific inter-
actions remains an elusive task. We thus sought to determine
whether our GA framework could also identify desired pat-
terns of metabolic exchange from our computational dataset.
We set the total number of interspecies exchanges as our objec-
tive function in order to identify the environments that would
maximize metabolic cooperation across all organisms. Our
GA was able to identify environments that surpassed the
99th percentile of metabolic exchanges after 6.55 genera-
tions on average, representing a maximum of 70 in silico
experiments (figure 3c; electronic supplementary material,
table S3). Notably, the selected environments resulted in
varied taxonomic compositions, ranging from those with
high abundances of E. coli and S. oneidensis to those with
more balanced compositions (figure 3c inset; for specific
environmental conditions selected see electronic supple-
mentary material, figure S4). This result suggests that the
degree of metabolic exchange does not necessarily correlate
with community taxonomic composition in our dataset,
which parallels experimental observations showing conflicting
correspondence between taxonomic structure and ecological
function [68,69].

Despite its ability to identify environments that exceeded
the 99th percentile for these and other optimization targets
(electronic supplementary material, table S3), we noticed that
some individual runs of the GA were not able to identify the
absolute maximum for Shannon entropy and the number of
exchanges (figure 3a,c; electronic supplementary material,
figure S3). This may be due to how these values are distributed
(figure 1c,d), as the maxima are far to the right of the bulk of
solutions. Though they may come at a cost to its speed, more
stringent criteria can be integrated into the search algorithm
if identifying the absolute maximum is desired. Such criteria
may be particularly useful for optimization targets that are
heavily skewed to the right (electronic supplementary
material, figure S5).

Given its ability to optimize the general prevalence of inter-
species interactions, we also tested our algorithm on more
specific patterns of secretion and exchange. In particular, we
sought to determine whether we could identify environments
that resulted either in greater metabolic flux toward one par-
ticular organism or in the greater overall secretion of a
particular metabolite, as such specific phenomena are com-
monly leveraged for synthetic community design [66,67]. We
again used B. subtilis as a representative organism to test the
former capability, finding that our GA identified environments
that surpassed the 99th percentile of metabolic exchanges
toward this organism after 9 generations on average. Testing
the same capability with our remaining organisms as targets
showed similar performance (electronic supplementary
material, table S3). We next set the net community-level
output of specific metabolites from all organisms as an optim-
ization target, in order to identify environments that would
maximize their secretion. To do this, we selected 24 metab-
olites: 12 that were most highly secreted across all 6196
simulations and 12 that were least secreted. For the former
set, we found that while our algorithm identified solutions sur-
passing the 99th percentile of secretion after 11 generations on
average, its performance suffered for metabolites with low
secretion flux (electronic supplementary material, table S3).

Despite eventually converging to near-optimal solutions
for all of the metabolite secretion patterns we tested, the
longer convergence time needed to identify solutions for
some metabolites prompted us to quantify its dependence
on the number of times a particular metabolite was observed
to be secreted across all simulations. We thus analysed the
average number of generations needed to surpass the 99th
percentile for a given target metabolite with respect to the
number of times it was observed in our dataset, finding
that these two quantities were inversely proportional to
each other (electronic supplementary material, figure S6a).
Though this effect reveals a limitation of our method (or
indeed of FBA itself ), a large number of generations is
needed for a rare minority of objectives. For this dataset,
we determined that the secretion of 61.4% of organic metab-
olites could be maximized within 50 generations, with
only 21.5% of metabolites requiring over 100 generations
(electronic supplementary material, figure S6b).

2.3. Searching for community phenotypes in larger
combinatorial spaces

Having benchmarked our GA framework on an exhaustive
environment–phenotype mapping, we aimed to test its per-
formance in a much larger search space. We thus applied it
to determine whether certain environmental compositions
could yield communities with highly specific organism relative
abundances. This goal draws from efforts to precisely control
organism ratios in mixed cultures, which is particularly rel-
evant for synthetic communities applied to the synthesis of
biofuels or chemicals [70–72]. Here, we sought to identify
environments that would allow one of three organisms—
B. subtilis, E. coli and S. coelicolor—to reach a high abundance
in a community (90%), while allowing the remaining two to
reach low abundances (5% each). We used a list of 154 limiting
carbon sources from which we allowed our algorithm to select
a maximum of 3, in order to search within a large but well-
defined solution space. This search space, consisting of
596 904 unique environmental compositions, remains compu-
tationally expensive to test exhaustively using ecological
modelling methods like dFBA and nearly impossible to test
experimentally. Therefore, this application illustrates the capa-
bility of ourGA framework to operate in an exploratory fashion
within spaces that cannot be fully mapped.

To search this larger combinatorial space, we carried out
dFBA simulations of our community in the selected envi-
ronments as they were produced by the GA, instead of
generating a full environment–phenotype mapping a priori
as above (see Methods). The environments proposed by the
GA were scored by calculating the sum squared error
between the resulting community compositions and our
target abundances [0.90, 0.05, 0.05]. As such, the objective
of the GA was to minimize this quantity. We found that, by
iteratively searching this large combinatorial space, the GA
framework successfully identified environments that allowed
each organism to reach a high relative abundance while
allowing the remaining two to reach low, but nonzero abun-
dances (figure 4a–c). Notably, the algorithm converged on
multiple such environmental compositions, indicating a
type of metabolic flexibility with regard to specific final
taxonomic compositions.
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We examined the highest scoring environmental compo-
sitions in greater detail, identifying common interaction
network structures that conferred the desired community
phenotypes (figure 4d–f ). For example, in one of the environ-
ments that was selected to have B. subtilis dominate the
community, our dFBA simulation revealed that it was the
exclusive consumer of two out of three primary nutrients,
while the third nutrient was shared between the three organ-
isms (figure 4d ). A similar structure was also observed for the
environments that optimized dominance of E. coli and S. coe-
licolor (figure 4e,f ), as well as in the other compositions
selected by the GA (electronic supplementary material,
figure S7), suggesting that nutrient specificity was a major
driving force of organism dominance in these communities.
We also observed dense networks of metabolic byproduct
exchange, with molecules such as acetate, formate, glycine
and succinate being frequently transferred between organ-
isms, paralleling previous experimental observations of
organic acid transfer [73–75]. Given that a crucial element
of our objective was for two organisms to reach low abun-
dances, these metabolic exchanges (along with consumption
of a third primary nutrient) may be allowing the commu-
nities to achieve the desired taxonomic proportions.
3. Discussion
The rational design of multispecies communities toward
defined phenotypes is an enticing, yet challenging, goal of syn-
thetic ecology. As the phenotypic traits of microbiomes in
complex settings remain difficult to predict [29,76,77], fulfilling
this potential will require a synthesis of computational and
experimental methods that focus on different aspects of these
communities [10,78–80]. Here, we used in silicomicrobial com-
munities to show how their ecological properties can be
modulated via environmental modification and presented a
search algorithm to identify specific nutrient combinations
that would result in desired phenotypes. We showed how
this algorithm was quickly able to identify high-quality sol-
utions for a variety of ecological objectives: from overall
taxonomic balance to specific organism abundances and pat-
terns of metabolic secretion and exchange. Given these
capabilities, this method represents a computationally inex-
pensive way to rapidly screen very large combinatorial
spaces to produce desired community properties. Therefore,
in addition to optimizing the various objectives tested here,
our dFBA–GA framework can be extended to encompass a
greater number of important environmental attributes and
experimental designs such as varying nutrient concentrations,
continuous culture platforms, spatio-temporal nutrient vari-
ation and periodic changes in species abundances [47,48,81].
In addition, as genome-scale models can be readily modified
to aid in the design of engineered microbial strains [32,82],
this framework can serve as a particularly valuable tool for bio-
technology applications such as the production of a desired
chemical compound.

Despite the flexibility and mechanistic insight afforded by
a dFBA approach, engineering synthetic ecosystems in vitro
will inevitably require experimental validation of modelling
predictions. Our approach can be applied to this goal in
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two ways. First, in silico analogues of the desired community
may be iteratively screened as we have performed here, and
the final environments generated by the GA may then be
explicitly tested experimentally. In this way, our method
serves as a way to generate an accessible number of testable
hypotheses pertaining to specific ecological systems. The
pairing of flux balance models and confirmatory experiments
in this way has been used extensively to obtain a greater
understanding of organism function, as well as to explore
previously unknown phenotypes [32,83–86]. However, as
high-quality genome-scale reconstructions are limited to
relatively few well-characterized model organisms, the appli-
cability of this method is limited to a small set of community
taxonomic compositions. Moreover, even these high-quality
flux balance models have limitations, which stem from a var-
iety of sources. These include (i) a lack of mechanistic
knowledge of reaction-specific uptake rates and kinetic
parameters [87,88], (ii) the potential for non-unique FBA sol-
utions and the choice of multiple objective functions [89] and
(iii) a limited ability to directly model non-metabolic modes
of interaction (e.g. via secondary metabolites) and additional
environmental parameters (e.g. pH or temperature) that can
impact FBA predictions [87,90].

A second strategy can thus forgo the dFBA component
altogether and use the evolutionary algorithm as a way to
search through experimentally derived community phenoty-
pic data. As we showed how the GA was able to reach high-
quality solutions with relatively few experimental data
points, one could envision implementing a similar framework
alongside the in vitro testing of a community. Here, iterative
cycles of testing could be fed into a GA structure, which
could inform the next stage of experiments [41,42]. It is
in such applications where the structure of a GA becomes par-
ticularly relevant, as it is based on testing and producing
populations of multiple candidate solutions. As such, an exper-
imentally tractable number of candidates can be tested
simultaneously, providing a particularly accessible choice
of methodology within existing machine learning tools. More-
over, given the transparent nature of the GA’s parametrization
and search process, it is amenable to a wide variety of par-
ameter choices (e.g. crossover and mutation probabilities)
and formulations (e.g. population size and scoring) that can
aid its applicability to experimental systems. We therefore pro-
pose that, given the increasing accessibility of high-throughput
platforms for microbial ecology (e.g. microfluidics, microdro-
plets, etc.) [43–45], a search algorithm like the one presented
here can be deployed alongside such techniques to rapidly
reach predefined and complex community objectives.
4. Methods
4.1. Generation of environment–phenotype mapping

with dynamic flux balance analysis
We employed a dFBA method [46] to test the response of a
multispecies community in a combinatorial assortment of environ-
ments. This process, which was carried out using the COMETS
(Computation of Microbial Ecosystems in Time and Space) soft-
ware package [47,48], allowed us to extract a wide array of
phenotypic data from simulated microbial communities. The pro-
cess by which COMETS carries out these simulations has been
outlined in detail in previous publications [27,47,48] and was car-
ried out in the followingway for our application. (i) Combinatorial
environments were generated by combining an in silico minimal
medium with limiting quantities of a set of carbon sources. This
minimal medium, modelled after the composition of M9, con-
tained nonlimiting concentrations of molecules necessary for
growth such aswater and ions, aswell as sources of nitrogen, phos-
phorus and sulfur. Limiting amounts of 20 carbon sources were
then added on an environment-by-environment basis. These nutri-
ents, an assortment of sugars, organic acids and amino acids
(electronic supplementary material, table S2), were added in all
combinations of up to 4 at equimolar ratios such that the total con-
centration of carbon in each environment was 50 mM C in 400 µl.
This scheme resulted in 6196 unique environmental compositions.
(ii) Genome-scale reconstructions [31,32] of 13 specific microbial
organisms were inoculated into our in silico media compositions.
These organism-specific models span a wide range of taxa and
metabolic strategies and were selected to maximize variation in
endpoint community composition and interactions across our
combinatorial environments (electronic supplementary material,
table S1). Based on an approximate total inoculum of OD600
0.05 corresponding to 1:6� 107 cells in 400 µl, and a cell mass of
2:8� 10�13 grams dry weight (gDW) [91], all 13 organisms were
inoculated into our in silico media at equal ratios of 3:45� 10�7

gDW for a total inoculum of 4:48� 10�6 gDW (OD600 0.05
total). (iii) The growth of these mixed cultures was then simulated
in COMETS over the course of 24 h, with a death rate parameter of
0.1 and a timestep of 0.01 h [47]. A more complete list of COMETS
modelling parameters is provided in electronic supplementary
material, table S5. Once completed, the total final biomass
quantities, relative abundances and secreted and absorbed
metabolites for each environment were recorded.

To determine whether our communities had stopped growing
by the end of the 24 h timespan, we analysed the growth curves of
each organism in each environment. If the derivative of the organ-
ism’s growth curve was greater than zero at least once during the
simulation (i.e. the organism grew), and was less than or equal to
zero at the end of the simulation, we determined that organism to
have stopped growing. For our visualization of the clustered rela-
tive abundances of our communities (figure 1a), we first computed
Spearman correlation coefficients between the species relative
abundance vectors under each environment. We then performed
hierarchical clustering on these coefficients using the ‘clustergram’
function in MATLAB, which calculated distances between clusters
using the UPGMA method based on Euclidean distance.

We calculated the Shannon entropy for each community in
order to quantify their degrees of taxonomic balance. We
define Shannon entropy H as

H ¼ �
X
i

pilog2pi,

where pi is the relative abundance of organism i in a community.
Organisms in a community with a larger H have more equal rela-
tive abundances, while those in onewith a smallerH are less equal,
due for example to a single organism outcompeting the rest.

For our second, exploratory application of the GA, a larger
pool of 154 carbon sources was used from which a maximum
of three nutrients were selected per environment, resulting in
596 904 unique environmental compositions. Here, we did not
explicitly simulate the community phenotypes in all combinator-
ial environments. Instead, only the environmental compositions
selected by the GA in each generation were tested and their
performance recorded as above. For these simulations, three
organism genome-scale reconstructions (B. subtilis, E. coli and
S. coelicolor (electronic supplementary material, table S1)) from
our list of 13 were used and inoculated into our environments
at initial amounts of 1� 10�6 gDW each [47]. Additionally,
each carbon source was provided at an initial amount of
5� 10�4 mmol in order to limit the length of the growth phase.
As the goal of this optimization was to allow the three organisms
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to reach specific relative abundances (as opposed to a longer
term test of community stability), we did not integrate a death
rate into these simulations (electronic supplementary material,
table S5).

4.2. Design and parametrization of genetic algorithm
A GA is a search heuristic based on the principle of evolution by
natural selection, which optimizes a particular objective function
via the modification of a population of individual solutions [56].
Our selection of a GAwas based on its applicability to the optim-
ization of nonlinear problems, which reflect the nature of complex
environment–phenotype relationships in microbial communities.
In our implementation, the individual solutions being modified
are unique environmental compositions expressed as vectors
denoting the presence of a particular nutrient. The objective func-
tion varied according to the phenotype being optimized. In this
work, we selected a number of different objective functions to
maximize, namely: (i) the overall Shannon entropyof a community
as a reflection of taxonomic balance, (ii) the relative abundances of
each of the 13 in silico organisms, (iii) the total number ofmetabolic
exchanges, (iv) the total metabolic flux directed at each of the 13
in silico organisms, (v) the total secretion flux of 24 different meta-
bolic byproducts and (vi) the approximation of target relative
abundances. The modifications of different solutions take place
over the course of multiple ‘generations’, in which each solution
is scored according to the phenotype being optimized, and the
best solutions are used to seed a new generation of candidate sol-
utions. This process continues with the intent of converging on a
set of optimal solutions.

Our implementation of the GA begins with a randomly gen-
erated population made up of P environmental compositions. In
order to demonstrate its extensibility to be used in parallel to an
in vitro experimental system, we sought to minimize the number
of environmental compositions P tested in each generation.
Therefore, we limited the number of compositions to an exper-
imentally tractable P ¼ 10 in each generation. Beginning with
this number of environments, the algorithm is initialized and
carried out as follows:

1. The P environments are initialized with random assortments
of up to N nutrients (N ¼ 4 for our initial benchmarking
study, and N ¼ 3 for the second exploratory example).

2. The community phenotypes resulting from each environment
in the population (pre-generated dFBA data in our bench-
marking study, dFBA data generated as needed in our
exploratory example, and, in principle, experimental data if
being used alongside an in vitro system) are recorded and
used to assign fitness values to each environment.

3. Each environment is ranked according to the objective func-
tion being optimized, and the algorithm selects the top s

environments to serve as ‘parents’ to the next generation
of solutions.

4. Having selected a set of s parent environments, the algorithm
uses them to populate a new generation of P candidate sol-
utions. This step takes place through processes of crossover
(the individual nutrients making up the parent environ-
mental compositions are combined) and mutation (existing
nutrients are replaced with new randomly sampled ones).
In our implementation, the parent nutrient vectors are linear-
ized, and the remaining P� s environments are populated
with random assortments of the nutrients contained in the
parent vector. Mutation then occurs, in which the individual
nutrients of all but the top-ranked environment are subject to
being randomly replaced by a nutrient yet unused in the cur-
rent set. The number of environments subject to crossover, as
well as the probability of any individual nutrient being sub-
ject to mutation, are defined by crossover and mutation
probabilities pC and pM, respectively (described below).
5. Steps 2–4 are repeated for the new environmental compo-
sitions until convergence criteria are met, or for a
predetermined number of generations.

We determined optimal values for the crossover and
mutation probabilities pC and pM via a parameter grid search.
To do this, we selected three representative objective functions:
(i) maximization of community Shannon entropy, (ii) maximiza-
tion of the relative abundance of B. subtilis and (iii) maximization
of the total number of metabolic exchanges. We then varied the
values of pC from 0 to 1 in intervals of 0.1, and the values of
pM from 0 to 0.45 in intervals of 0.05. The values of pM were
maintained under 0.5 in order to ensure the GA process would
not diverge from optimal solutions via excessive mutation. For
each pairing of pC and pM, we ran our GA 50 times, each with
a random seed set of P ¼ 10 different environments. We then
evaluated the performance of the GA for each objective using a
performance score S. This score is based on a combination of
two metrics: (i) the number of generations required for a set of
solutions to surpass the 99th percentile of a given objective
(G99) and (ii) the percentile reached at the final generation
of the algorithm Prend. Since a lower G99 denotes better
performance, the performance score S is defined as follows:

S ¼ (1�gG99)þ ( gPrend),
where gG99 and gPrend are normalized from 0 to 1, such that S can
range from 0 to 2. We found that the best [ pC,pM] values were
[0.7, 0.25] for our first objective, [1, 0.45] for our second, and
[1, 0.4] for our third (electronic supplementary material, figure
S2). Interestingly, while our pC values were consistent with com-
monly used crossover parameter values [92], our calculations
revealed low sensitivity of performance scores S to changing
mutation probabilities pM. We thus used an average of the best
[ pC,pM] values ([0.9, 0.35]) for all of our GA objectives.

To determine whether the algorithm has converged to an
optimum, we implemented a set of three criteria based on the fit-
ness values of each tested environmental composition. All three
of these criteria, based on those previously implemented in evol-
utionary algorithms [93,94], must be fulfilled in order for the GA
to have converged:

1. Populations are internally consistent: the difference between
the best fitness and the average fitness within a generation
is less than 10% of the average fitness of that generation.

2. Solutions have reached a maximum: the scaled difference in
fitness between the best individual in the current generation
and the best individual ever discovered is less than 0.01.

3. No further improvement: the fitness scores of the individuals
in a generation have not shown a statistically significant
increase from those of the preceding generation for at least
10 generations, as determined using a one-tailed t-test.

Data accessibility. All data for our environment–phenotype mapping,
as well as scripts for running the GA are available at github.com/
segrelab/EvolutionaryAlgorithms. The data are provided in
electronic supplementary material.
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