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Abstract

Objective—To investigate whether adiposity influences endothelial progenitor cell (EPC) 

number and colony-forming capacity.

Design—Cross-sectional study of normal weight, overweight and obese adult humans.

Subjects—Sixty-seven sedentary adults (age 45–65y): 25 normal weight (BMI ≤ 25 kg/m2; 12 

males/13 females); 18 overweight (BMI = 25–29.9 kg/m2; 12 males/6 females); and 24 obese 

(BMI ≥ 30 kg/m2; 18 males/6 females). All subjects were non-smokers and free of overt 

cardiometabolic disease.

Measurements—Peripheral blood samples were collected and circulating EPC number was 

assessed by flow cytometry. Putative EPCs were defined as CD45−/CD34+/VEGFR-2+/CD133+ or 

CD45−/CD34+ cells. EPC colony-forming capacity was measured in vitro using a colony-forming 

unit assay.

Results—Number of circulating putative EPCs (either CD45−/CD34+/VEGFR-2+/CD133+ or 

CD45−/CD34+ cells) was lower (P<0.05) in obese (0.0007±0.0001%; 0.050±0.006%) compared 

with overweight (0.0016±0.0004%; 0.089±0.019%) and normal weight (0.0015±0.0003%; 

0.082±0.008%) adults. There were no differences in EPC number between the overweight and 

normal weight groups. EPC colony-formation was significantly less in the obese (6±1) and 

overweight (4±1) compared with normal weight (9±2) adults.

Conclusion—These results indicate that: 1) the number of circulating EPCs is lower in obese 

compared with overweight and normal weight adults; and 2) EPC colony-forming capacity is 

blunted in overweight and obese adults compared with normal weight adults. Impairments in EPC 

number and function may contribute to adiposity-related cardiovascular risk.
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INTRODUCTION

Overweight and obesity are associated with increased rates of cardiovascular morbidity 
and mortality (1;2)

Endothelial damage and dysfunction is considered to be a major underlying mechanism for 

the heightened cardiovascular burden with increased adiposity. For example, alterations in 

endothelial function associated with overweight and obesity that precede and predispose to 

atherosclerosis and thrombosis include diminished endothelial vasodilator and fibrinolytic 

function (3;4). Although much attention has focused on factors that contribute to adiposity-

related endothelial damage, such as inflammation and oxidative stress, recent studies 

indicate that endogenous endothelial repair and neovascularization processes also play an 

important role in vascular health and function.

It is now recognized that endothelial repair/regeneration is not only dependent upon the 

migration and proliferation of surrounding mature endothelial cells resident in the vascular 

wall, but also on the availability of circulating endothelial progenitor cells (EPCs) (5). 

Characterized in 1997 by Asahara and colleagues (6), EPCs possess the ability to proliferate, 

migrate, differentiate into mature endothelial cells and incorporate into preexisting and 

newly-forming blood vessels (6–9). Circulating EPCs have also generated interest as a novel 

biomarker of endothelial function and a prognostic indicator of cardiovascular morbidity and 

mortality. Two recent clinical studies reported that reduced levels of circulating EPCs 

independently predict atherosclerotic disease progression and death from cardiovascular 

causes in patients with established coronary artery disease (CAD) (10;11). Moreover, after 

adjusting for disease activity and risk factors, low numbers of circulating EPCs were 

associated with a four-fold increased risk of a future cardiovascular event (10). In addition, 

Kunz et al. (12) reported a strong inverse relation between EPC colony-forming capacity 

and CAD severity in individuals undergoing diagnostic cardiac catheterization, independent 

of traditional risk factors. Interestingly, the investigators noted that for every 10 EPC 

colony-forming unit increase, the likelihood of multivessel CAD declined by 20%. 

Numerical and functional deficits in circulating EPCs have also been linked to restenosis 

rates and impaired neovascularization after ischemic events (5;13).

Although reduced number and impaired function of EPCs have been linked to a number of 

pathologies associated with overweight/obesity, such as hypertension, hypercholesterolemia, 

diabetes and CAD (14–16), the influence of increased adiposity per se on circulating EPCs 

remains unclear. Accordingly, we tested the hypotheses that: 1) the number of circulating 

EPCs is lower in otherwise healthy overweight and obese compared with normal weight 

adults; and 2) EPC colony-forming capacity is also diminished in overweight and obese 

adults.
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METHODS

Subjects

Sixty seven sedentary adults aged 45–65 years participated in the study: 25 normal weight 

(BMI >18.5 kg/m2 and <25 kg/m2; 12 male/13 female); 18 overweight (BMI ≥ 25 kg/m2 

and ≤ 30 kg/m2; 12 M/6 F); and 24 obese (BMI ≥ 30 kg/m2; 18 M/6 F). All subjects were 

normotensive (arterial blood pressure ≤ 140/90 mmHg), non-smokers, non-medicated 

(including vitamins), and free of overt cardiovascular, metabolic, renal and hematologic 

disease, as assessed by medical history, resting and exercise electrocardiograms, and fasting 

blood chemistries. Subjects were excluded from the study if they exhibited plasma glucose 

>7.0 mmol/L; total cholesterol ≥ 6.0 mmol/L, LDL-cholesterol ≥ 4.5 mmol/L, triglycerides 

≥ 2.5 mmol/L. All subjects were sedentary and had not performed regular physical exercise 

for at least 1 year before the beginning of the study. Female subjects were at least 1 year 

postmenopausal and had never taken or had discontinued use of hormone replacement 

therapy at least 1 year before the start of the study. Prior to participation, all of the subjects 

had the research study and its potential risks and benefits explained fully before providing 

written informed consent according to the guidelines of the University of Colorado at 

Boulder. We certify that all applicable institutional and governmental regulations concerning 

the ethical use of human volunteers were followed during this research.

Body Composition

Body mass was measured to the nearest 0.1 kg using a medical beam balance. Percent body 

fat was determined by dual energy X-ray absorptiometry (Lunar Corp., Madison, WI, USA). 

Body mass index (BMI) was calculated as weight (kilograms) divided by height (meters) 

squared. Minimal waist circumference was measured according to published guidelines (17).

Maximal Oxygen Consumption (V̇ O2 max)

To assess aerobic fitness, subjects performed incremental treadmill exercise using a 

modified Balke protocol. Maximal oxygen consumption (V̇O2 max) was measured using on-

line computer-assisted open circuit spirometry, as reported previously (18).

Metabolic Measurements

Fasting plasma lipid, lipoprotein, glucose, and insulin concentrations were determined using 

standard techniques, as reported previously (3). Insulin resistance (HOMA-IR) was 

calculated according to the HOMA calculation: fasting insulin (μU/mL) × fasting glucose 

(mmol/L)/22.5 (19).

EPC Isolation and Characterization

Circulating mononuclear cells were isolated from peripheral blood sample by Ficoll density-

gradient centrifugation (Histopaque 1077, Sigma Aldrich, St. Louis, MO, USA), washed and 

resuspended in growth medium (Medium 199, Gibco, Grand Island, NY, USA) 

supplemented with 20% fetal calf serum (Gibco), penicillin (100 U/mL, Gibco), and 

streptomycin (100 mg/mL, Gibco). Endothelial phenotype of these cells was confirmed by 

immunofluorescent staining for the uptake of DiI-ac-LDL (Biomedical Technologies Inc., 
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Stoughton, MA, USA) and expression of von Willebrand factor (Dako, Glostrup, Denmark), 

VE-cadherin, CD31, and VEGFR-2 (Invitrogen, Carlsbad, CA, USA).

EPC Number

Circulating putative EPC number was determined by fluorescence-activated cell sorting 

(FACS) analysis following guidelines recommended by the International Society for 

Hematotherapy and Graft Engineering (20). Briefly, 2 × 106 cells were incubated at 4 °C for 

30 minutes with monoclonal antibodies for PC7-conjugated CD45 (Beckman Coulter, 

Fullerton, CA, USA), FITC-conjugated CD34 (Beckman Coulter), PE-conjugated VEGFR-2 

(R&D Systems, Minneapolis, MN, USA) and APC-conjugated CD133 (Miltenyi Biotech, 

Auburn, CA, USA). Non-viable cells were excluded with propidium iodide (Sigma-Aldrich, 

St. Louis, MO, USA) and appropriate compensation controls were analyzed. Cells were 

gated for low expression of CD45, then CD34+ cells were analyzed for events double-

positive for VEGFR-2 and CD133 and presented as a percent of total viable mononuclear 

cells. All samples were analyzed using a FC500 flow cytometer (Beckman Coulter) and the 

data analyzed by CXP software.

EPC Colony-Forming Assay

EPC colony-forming capacity was determined as described previously by our laboratory and 

others (16;21). Briefly, freshly isolated mononuclear cells were plated on 6-well plates 

coated with human fibronectin (BD Biosciences, San Jose, CA, USA) for 48 hours at 37 °C. 

Thereafter, 5 × 105 non-adherent cells from each subject were seeded onto 24-well 

fibronectin-coated plates (BD Biosciences). Growth medium was changed every 3 days, and 

the colony-forming units (CFUs) were counted in 4 random wells on day 7 by two 

independent investigators blinded to sample identification. Only CFUs consisting of 

multiple thin, flat cells emanating from a central cluster of rounded cells were counted.

Statistical Analysis

Group differences were determined by analysis of variance. Where indicated by a significant 

F value, Duncan’s post hoc test was performed to compare specific group means. 

Importantly, no main effects of gender, nor interactions of gender with BMI group, were 

found in any of the key outcome variables. Therefore, the data were combined and presented 

together. Relations between variables of interest were assessed by Pearson’s correlation 

coefficient and linear regression analysis. All data are expressed as means ± SE. Statistical 

significance was set a priori at P < 0.05.

RESULTS

Selected subject characteristics are presented in Table 1. All subjects were normotensive, 

normolipidemic, and normoglycemic. By design, body mass and body composition values 

were significantly higher (P<0.05) in the overweight and obese groups compared with the 

normal weight group. Although within clinically normal ranges, obese subjects 

demonstrated higher (P<0.05) resting systolic and diastolic blood pressure, and lower 

(P<0.05) HDL-cholesterol, than the normal weight controls. Obese subjects also had 

significantly higher plasma insulin concentrations and HOMA insulin resistance values 
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compared with both the normal weight and overweight subjects. There were no differences 

amongst the groups in plasma concentrations of total cholesterol, LDL-cholesterol, 

triglycerides, and glucose.

The number of CD45−/CD34+/VEGFR-2+/CD133+ cells was ~50% lower (P<0.05) in the 

obese (0.0007 ± 0.0001 %) compared with the overweight (0.0016 ± 0.0004 %) and normal 

weight groups (0.0015 ± 0.0003 %) (Figure 1). Similarly, the number of CD45−/CD34+ cells 

was lower (P<0.05) in the obese (0.050±0.006%) compared with overweight 

(0.089±0.019%) and normal weight subjects (0.082±0.008%). There were no significant 

differences in either CD45−/CD34+/VEGFR-2+/CD133+ or CD45−/CD34+ cells between the 

overweight and normal-weight subjects. The capacity of EPCs to form colonies was lower 

(~40%; P<0.05) in both the overweight (4 ± 1) and obese (6 ± 1) groups versus the normal 

weight controls (9 ± 2) (Figure 2). There was no significant difference in EPC CFU number 

between the overweight and obese subjects.

In the overall study population, there were significant inverse relations between BMI and the 

number of CD45−/CD34+/VEGFR-2+/CD133+ cells (r = −0.25), CD45−/CD34+ cells (r = 

−0.26) and EPC colony forming units (r = −0.24). Percent body fat was also negatively 

associated with the number of CD45−/CD34+ cells (r = −0.25, P<0.05). No other significant 

correlations were observed between either EPC number or colony-forming capacity and any 

other anthropometric, metabolic or hemodynamic variable.

DISCUSSION

The new findings of the present study are that: 1) the number of circulating EPCs is lower in 

obese compared with overweight and normal weight adults; and 2) EPC colony-forming 

capacity is blunted in overweight and obese adults compared with normal weight adults. To 

our knowledge, this is the first study to demonstrate adiposity-related impairments in EPC 

number and function in overweight and obese adults free of other cardiometabolic 

abnormalities.

Many of the cardiovascular complications associated with obesity are due, at least in part, to 

endothelial damage and/or dysfunction (22;23). Circulating EPCs are considered to be an 

important hemostatic mechanism for counteracting endothelial injury and the accelerated 

development of atherosclerosis associated with many cardiovascular risk factors, including 

obesity (24). For example, circulating EPC number is inversely related to the extent of 

carotid stenosis and lower extremity atherosclerosis in obese diabetic patients (25). 

Moreover, in patients with CAD, higher numbers of circulating EPCs have been linked to 

greater myocardial perfusion and vascularization (26;27) as well as overall better prognosis 

(10). To date, previous investigations evaluating the influence of adiposity on progenitor cell 

number have been hampered by design limitations involving the presence of multiple 

cardiovascular risk factors, overt disease and/or medication use, making it difficult to 

discern the impact of obesity per se on EPC number (28;29). In the present study, we 

demonstrate that the number of circulating putative EPCs, presented as CD45−/CD34+/

VEGFR-2+/CD133+ cells as well as CD45−/CD34+ cells, is close to 50% lower in obese 

compared with overweight and normal weight adults. The absence of other established 
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cardiometabolic risk factors in our study population suggests a primary negative influence of 

obesity on EPC number. From a clinical perspective, it is plausible that reduced EPC 

bioavailability may contribute to the increased incidence of endothelium-related vascular 

complications and reduced neovascularization with obesity (30–32). Interestingly, EPC 

number was not lower in the overweight compared with normal weight group. The number 

of CD45−/CD34+/VEGFR-2+/CD133+ and CD45−/CD34+ cells in the overweight adults was 

almost identical to that of the normal weight controls and, in turn, significantly higher than 

the obese adults. This finding was unexpected considering we have previously reported no 

differences in the degree of endothelial vasodilator and fibrinolytic dysfunction between 

overweight and obese adults similar to those studied herein (3;33). Nevertheless, greater 

number of EPCs in overweight adults may play a role in their lower risk of recurrent 

coronary events following acute myocardial infarction compared with obese adults of 

similar age (34).

The mechanisms responsible for the obesity-related reduction in circulating putative EPC 

number are not clear. Although we employed strict inclusion criteria in the present study, the 

obese adults did demonstrate higher, albeit in clinically normal ranges, levels of blood 

pressure, plasma insulin and insulin resistance. Thus, it is possible that the cumulative 

effects of these factors, along with other secondary consequences of excess body fatness, 

such as oxidative stress and inflammation, creates an environment resulting in higher 

consumption and/or exhaustion of EPC production. For example, the inflammatory cytokine 

C-reactive protein, although not measured in the present study, is often higher in obese 

compared with overweight and normal weight adults (35). C-reactive protein has been 

shown to promote apoptosis in EPCs in vitro (36), which could negatively impact circulating 

EPC number. Differences in body fat distribution between the overweight and obese 

subjects may also have contributed to our findings. Future studies are needed to determine 

whether differences in visceral and subcutaneous body fat depots influence EPC number.

There are conflicting reports in the literature regarding the appropriate defining criteria for 

the quantification of EPCs. Circulating EPCs are thought to be primarily derived from 

hematopoietic stem cells, however, non-hematopoietic mesenchymal stem cells and other 

monocytic cells from peripheral blood have also been shown to cross-differentiate into 

functionally active endothelial progenitors, or assume an endothelial-like phenotype (37;38). 

It has been suggested that the best strategy for enumeration is to isolate cells positive for 

both a hematopoietic stem cell surface membrane protein, such as CD34, and a marker of 

endothelial lineage, such as VEGFR-2, by flow cytometry (39). However, the antigen CD34 

can also be weakly expressed in mature endothelial cells (40), that are also present in the 

circulation (41). As a result, it has been proposed that the immature hematopoietic stem cell 

marker CD133 also be used for enumeration (42;43). Peichev et al. demonstrated that 

circulating CD34+/VEGFR-2+/CD133+ cells differentiate into endothelial cell clusters in 

vitro and may also contribute to neoangiogenesis (40). In contrast, Case et al. (44) recently 

reported that CD34+/VEGFR-2+/CD133+ cells do not differentiate into endothelial cells, 

raising some doubt regarding their EPC designation. However, because the cells were 

cultured in isolation, devoid of interaction with other cell lines (a situation never 

encountered in vivo), it is possible that the culture conditions influenced the results. Of note, 
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the same study also reported that CD34+ cells with low expression of the common leukocyte 

antigen CD45 do, give rise to proliferative endothelial cells even under the same restrictive 

culture conditions, demonstrating the endothelial potential of the CD45−/CD34+ cell 

populations. Recently, a statement from the EULAR Scleroderma Trials and Research 

Group recommended the use of CD34, VEGFR-2 and CD133 antigens to quantify 

circulating EPCs (45). In the present study, we believe, we employed antigenic profiles to 

identify putative EPCs (i.e. CD45−/CD34+ and CD45−/CD34+/VEGFR-2+/CD133+ cells) 

that encompass a cellular phenotype with confirmed endothelial differentiation capacity 

(44;46) and that, importantly, have been linked to cardiovascular disease risk and outcome 

(47–49). Given the lack of consensus in enumerating EPCs, our results must be viewed 

within the context of our antigenic profile. Other enumerating criteria, such as quantifying 

cells double positive for CD34 and VEGFR-2, may yield different results.

In contrast to circulating EPC number, the number of EPC colony-forming units was ~40% 

lower in both obese and overweight compared with normal weight adults. To our 

knowledge, this is the first study to demonstrate an adiposity-related reduction in EPC 

colony-forming capacity. Previous studies that have failed to find a relation between 

adiposity and EPC colony-forming units were either underpowered to detect a difference 

(16), or included a study population that was compromised by statin-use and documented 

CAD (50), factors which have been shown to influence EPC function (12;51). Once thought 

to be a surrogate marker of circulating EPC number, it is now generally accepted that the 

number of EPC colony-forming units does not correspond to the number of circulating EPCs 

measured by flow cytometry (52;53). The discrepancy in our results between EPC number 

(determined by FACS) and the number of colony-forming units further confirm the lack of 

association between these two measures. Nevertheless, clinical interest in EPC colony-

forming units has increased due to the consistently observed relation between colony 

number and both endothelial function (16) and cardiovascular risk in healthy and diseased 

populations (12;21;54). These findings have prompted its use as a novel cardiovascular 

biomarker (11;55). Whether the number of EPC colony-forming units in overweight and 

obese adults is associated with endothelial dysfunction and adverse cardiovascular events 

remains to be determined.

The reasons for the reduced EPC colony-formation in overweight and obese compared with 

normal weight adults are not clear. Recent data indicate that the central clusters of cells that 

make up these colonies are comprised mainly of CD3+/CD31+/CXCR4+ T cells (56;57). 

Thus, it is possible that reduction in this subpopulation of T cells with adiposity is the 

underlying cause. However, in a currently ongoing study focused on these so-called 

“angiogenic T cells,” we have not observed a decline in their number in either overweight or 

obese adults compared with normal weight controls (unpublished observations). It is 

important to emphasize that the defining characteristic of an EPC colony-forming unit is the 

presence of spindle-shaped cells emanating from a central cluster of cells (16). These 

spindle-shaped cells, more so than the central colony clusters, have been shown to 

demonstrate immunologic and morphologic characteristics consistent with the identification 

of putative EPCs (58). It is possible that the same milieu of factors that negatively affect 

circulating EPC number in vivo may also impair their ability to contribute to cluster 
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formation in vitro. Indeed, inflammatory and oxidative substances, such as CRP and 

oxidized LDL-cholesterol, have been shown to impair EPC function in vitro (59;60).

In conclusion, the results of the present study indicate that increased body fatness, 

independent of other traditional cardiovascular risk factors, adversely affects EPC biology. 

Obesity, but not overweight, is associated with lower levels of circulating EPCs compared 

with normal weight adults; whereas, both overweight and obesity are associated with 

blunted EPC colony-forming capacity. While the differential effects of overweight and 

obesity on circulating EPCs require more attention, diminished EPC bioavailability and 

impaired function may contribute to adiposity-related cardiovascular morbidity and 

mortality.
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Figure 1. 
Circulating levels of CD45−/CD34+/VEGFR-2+/CD133+ and CD45−/CD34+ cells in normal 

weight, overweight, and obese adults.

Values are mean ± SE. *P< 0.05 vs. normal weight and overweight.
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Figure 2. 
Endothelial progenitor cell colony forming units for normal weight, overweight, and obese 

adults.

Values are mean ± SE. *P< 0.05 vs. normal weight
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Table 1

Selected subject characteristics

Variable Normal Weight (N=25) Overweight (N=18) Obese (N=24)

Age (years) 56±1 58±1 56±1

Body mass (kg) 70.3±2.1 80.1±2.4* 97.5±2.8*†

BMI (kg/m2) 23.4±0.4 27.6±0.2* 32.9±0.5*†

Body fat (%) 28.8±1.6 31.2±2.1 37.4±1.4*†

Waist circumference (cm) 81.9±2.0 93.0±1.7* 107.8±1.5*†

Systolic BP (mmHg) 118±2 125±2 126±2*

Diastolic BP (mmHg) 72±1 78±1* 81±1*

V̇O2 max (L/min) 2.2±0.1 2.7±0.2 2.6±0.1

V̇O2 max (mL/kg/min) 31.5±1.3 32.4±1.9 27.9±1.4

Maximum heart rate (bpm) 172±3 173±2 171±2

RER at V̇O2 max 1.19±0.01 1.14±0.01 1.16±0.02

Treadmill Time (min) 10.6±0.2 10.5±0.4 9.6±0.3

Total Cholesterol (mmol/L) 5.1±0.1 5.4±0.1 5.3±0.1

HDL-Cholesterol (mmol/L) 1.5±0.1 1.3±0.1 1.2±0.1*

LDL-Cholesterol (mmol/L) 3.1±0.1 3.5±0.1 3.4±0.1

Triglycerides (mmol/L) 1.1±0.1 1.3±0.1 1.4±0.1

Glucose (mmol/L) 4.6±0.1 5.2±0.1 5.1±0.1

Insulin (pmol/L) 32.0±3.5 43.9±3.9 57.0±5.0*

HOMA IR 1.2±0.1 1.7±0.2 2.2±0.2*

BMI, Body Mass Index; BP, blood pressure; V̇O2 max, maximal oxygen consumption; RER, respiratory exchange ratio; LDL, low-density 

lipoprotein; HDL, high-density lipoprotein; HOMA-IR, homeostasis model assessment-insulin resistance.

Values are mean ± SEM.

*
P<0.05 vs. Normal Weight.

†
P<0.05 vs. Overweight.
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