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Introduction

Cryopreservation is a technology employed in long-term storage of biologics

achieved by cooling to cryogenic temperatures (1, 2). This preservation technique has

become increasingly relevant especially in the development and commercialization of

cellular therapeutic products (3, 4). Conventional cryopreservation protocols involve the

application of the permeating cryoprotectant; dimethyl sulfoxide (DMSO) due its ability

to restrict ice nucleation and promote post-thaw viability (4). Although DMSO effectively

preserves biologics, it can impair functional recovery (5–7) and induce a variety of mild

to severe toxic effects in patients which must be avoided at all cost when administering

immunotherapeutic products (8, 9).

The situation is considerably more critical during vitrification; a freezing method that

has attracted heightened recognition as a faster and economic substitute to slow freezing

as the unorganized liquid state of water is rapidly transformed to a glassy solid state

without ice crystallization (10). In vitrification, high cooling rates and high

concentrations (4–8 M) of cryoprotectants are usually required (11); enforcing on the

exigency of using non-toxic cryoprotectants because increasing DMSO concentration is

not advisable.

Efficacious cryopreservation and biobanking requires the development of safe and

consistent storage protocols (12, 13). Favorably, such procedures should be devoid of

xenogeneic or toxic components and to this effect, many scientists have put forward for

the replacement of DMSO. Several groups have discovered/developed safer alternative

cryoprotectants with a range of potential cryoprotection mechanisms like ice
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recrystallization inhibition, osmolality control, cell membrane

stabilization and vitrification (14).

Numerous methods have since emerged to lessen the

quantity of DMSO used (mostly by supplementation with

other cryoprotectants) (15–20) or to completely eliminate

DMSO application and these methods may also require special

adjunct treatments, reagents or freezing protocols as would be

discussed here in specifics. Attempts have also been made at

preserving cellular products at non-freezing temperatures (21–

25), advanceable by hypoxia and hypercapnia induced

cytoprotection (26–28). Although highly beneficial to low-

income countries where biobanking facilities are not

obtainable, hypothermic storage is however limited to a few

days thus fueling the need for safer freezing protocols.

But for the review by Weng et al. (29), studies on replacing

DMSO are yet to be critically analyzed; a process that would

track research accomplishments, expose novel supplementary

techniques applied and encourage further research aimed at

improving DMSO-free cryopreservation protocols for different

biologicals. Through this article, we wish to draw the attention of

researchers to possibility of a DMSO-free preservation era which

is achievable in the nearest future. We provide prove of total

exclusion of DMSO from cryopreservation solutions and

summarize some of the supplementary techniques that have

been applied to improve post-thaw viability and function. Our

survey has also revealed the commercial availability of DMSO-

free cryoprotectant solutions especially those used for cellular

therapeutics, but there are limited studies to scrutinize or

validate the potency of these products; which might be why

most researchers are yet to largely patronizing products without

DMSO as there is little to no evidence to back up these product

claims. We therefore urge researchers to extend the application

of these products to a wider range of biotherapeutics so as to

speed up the availability of clinically approved products

especially immunotherapeutics which is the answer to many

complicated diseases like cancers.
Challenges in cryopreservation
with DMSO

Cryopreservation is an important determinant of the

stability and activity of biopharmaceutical formulations.

Several studies have proven the hypothesis that the application

of DMSO can induce temperature-, time-, and concentration-

dependent toxicities (7, 30). DMSO causes mitochondrial

damage to astrocytes (31), and impacts negatively on cellular

membrane/cytoskeleton structure and integrity by interacting

with proteins and dehydrating lipids (32) as evident in the

increased membrane permeability of erythrocytes (33) and

altered chromatin conformation in fibroblasts (30). Also, the
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presence of DMSO in culture medium can induce unwanted

stem cell differentiation (34).

Furthermore, repeated DMSO use even at sub-toxic levels

can affect cellular epigenetic profile resulting in undesirable

phenotypic disturbances (35). For instance, DMSO interferes

with DNAmethyltransferases and histone modification enzymes

of human pluripotent stem cells causing epigenetic variations

and reduction in their pluripotency (36, 37). Similarly, murine

embryonic stem cells display disrupted mRNA expression levels

of several markers following DMSO treatment (38).

Adverse reactions from cardiac, neurological, and

gastrointestinal systems have been reported in patients

receiving DMSO-containing cellular products (39, 40). These

discoveries have led to the design of several washing procedures

to ensure complete DMSO removal. However, the washing

protocol usually involves agitation and osmotic/mechanical

stresses which are to be avoided due to the fragile and

sensitive nature of biologics post-thaw (40). The washing step

can also be time consuming, expensive and resource wasting

since a significant number of cells are loss in the process.
Strategies in DMSO-free
cryopreservation of biotherapeutics

Potent and safe alternative cryoprotectants to DMSO are

highly desirable in order to meet the demands in the

development and manufacturing of cellular and genetic

therapies. In numerous instances, the observed cryoprotective

effect is derived from a combination of two or more strategies as

discussed below. These strategies and their outcome are also

summarized in Table 1.
Alternative cryoprotectants to DMSO

Replacing DMSO with other cryoprotectants is the typical

approach in eradicating the use of DMSO in cryopreservation.

Kuleshova et al. vitrified neural stem cells using a combination of

ethylene glycol (EG) and sucrose. Post-storage evaluations

revealed no substantial differences between fresh and vitrified

cells in cell markers expression, proliferation or multipotent

differentiation (51).

Osmolyte-based freezing solutions containing varying blends of

sucrose, glycerol, creatine, isoleucine and mannitol have supported

the recovery and survival of mesenchymal stromal cells when

compared to conventional preservation with DMSO. These

solutions conferred cryoprotection, retained cell differentiation

capacity and modulated the cytosine-phosphate-guanine

epigenome (54). StemCell Keep™ has been proven effective for

the cryopreservation of human induced pluripotent stem cells
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TABLE 1 Methods/Techniques used in DMSO-free cryopreservation of biotherapeutics.

Material Cryoprotectant Additional strategy Outcome/Conclusion Ref

Human
umbilical cord
matrix MSCs

1,2-propanediol and 1.0 M EG Thawing via magnetic induction
heating of magnetic extracellular
Fe3O4 nanoparticles

Suppressed devitrification and recrystallization with
improved cell survival

(41)

Mesenchymal
stromal cells

100–300 mM sucrose Addition of using 10% platelet lysate
to expansion medium

Improved cryopreservation (42)

Human dermal
MSCs

Mannitol, lactose, sucrose, trehalose or raffinose 24-hour sugar pretreatment prior to
cryopreservation

Cryopreserved MSCs has retained attachment,
proliferation and multilineage differentiation

(43)

Human
umbilical cord
MSCs

Sucrose, trehalose and raffinose Electroporation-assisted pre-freeze
delivery of cryoprotectants

Improved cryopreservation of MSCs (44)

HiPSCs StemCell Keep™ Nano-warming Improved cryopreservation of HiPSCs (45)

HESCs StemCell Keep™ N/A Higher recovery rates and cell attachment (46)

Human bone
marrow-
derived MSCs

Polyampholyte cryoprotectant N/A High viability and do not affect the biological properties
of the cells even after 24 months of cryopreservation at
80°C.

(47)

HiPSCs EG -Dissociation of iPSCs with Accutase
in the presence of a ROCK inhibitor
-Programmed freezing

Up to 6-fold improvement in comparison to the
standard freezing in clumps without ROCK inhibitor.

(48)

Wharton’ s
Jelly Tissue

0.05 M glucose, 0.05 M sucrose, and 1.5 M EG
in PBS

Programmed freezing Higher post-thaw cell survivability (49)

PDL cells and
dental pulp
tissues.

N/A Programmed freezing using
alternating magnetic field; “Cells
Alive System”

Acceptable immediate autotransplantation results (50)

Neural stem
and progenitor
cells

40% v/v EG and 0.6 M sucrose N/A Preserved expression of cell markers, proliferation and
multipotent differentiation

(51)

HiPSCs Sucrose, glycerol, isoleucine, and poloxamer 188 Controlled-rate freezing in a liquid
nitrogen-based controlled-rate
freezer

Improved cryopreservation of hiPSCs (52)

Erythrocytes 0.1 wt% PVA N/A Significantly high post-thaw cell recovery (53)

Mesenchymal
Stromal Cells

Osmolyte-based freezing solutions N/A Comparable post-thaw recovery and improved post-
thaw attachment

(54,
55)

MSCs Amphiphilic Block Copolymer N/A Excellent MSC proliferation and multilineage
differentiation properties

(56)

Human bone
marrow-
derived MSCs

2 M 1,2-EG, 2 M 1,2- propyl alcohol, and 0.5
M trehalose

Nano-warming with synthetic
Pluronic F127-liquid metal
nanoparticles (PLM NPs)

Threefold increase in viability, and maintained
attachment, proliferation, surface marker expression,
and multilineage differentiation

(57)

Human MSC
monolayers

6.5 M EG, 0.5 M sucrose, and 10% w/w
COOH-PLL

Slow vitrification at rates of 4.9 and
10.8°C/min

Significantly improved viability with less apoptosis (58)

Natural killer
cells

Poly-L-lysine, Ectoine, dextran and sucrose N/A Maintained cells viability, morphology and cytotoxic
activity following long-term cryopreservation up to 2
months.

(59)

Erythrocytes Biomimetic Block Copolymer Worms with
PVA

N/A Improved cell recovery with no evidence of
hemagglutination or abnormal cell morphologies.

(60)

Human ADSCs 1.0 M Trehalose and 20% glycerol N/A High preservation efficiency with acceptable outcomes (12)

Human ADSCs Trehalose Nanoparticle-mediated intracellular
delivery of trehalose

Eliminates multistep washing of the cryopreserved cells
to remove toxic/penetrating cryoprotectants

(61)

HiPSCs Trehalose-based cryosolutions containing EG or
glycerol

N/A High cell viability and high stability with retained their
morphology, self-renewal, pluripotency and
differentiation.

(36)

HSCs HP01 (Macopharma) N/A Conserved full short- and long-term post-thaw cellular
activity

(62)

HiPSCs Sucrose, glycerol, L-isoleucine, poloxamer 188
(P188)

N/A Highly viable and functional HiPSCs (5,
63)

(Continued)
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(hiPSCs) (68), human embryonic stem cells (hESCs) (46) and

mesenchymal stem cells (MSCs) (47). Further investigation on

the mechanism of cryoprotection showed that the polyampholyte

is adsorbed on to the cell membrane suggesting that it can confer

protection on cell surface and eliminate the use of proteins and

DMSO (47). Other polyampholytes have also shown great potential

as DMSO substitutes in storage of murine L929 cells and rat MSCs

(69), natural killer cells (59) and other mammalian cell types (70).

A cocktail of non-toxic and Food and Drug Administration

(US-FDA)-approved infusible substances including sucrose,

glycerol, isoleucine, human serum albumin, and poloxamer

188, have been applied for preservation of hiPSCs (52). In a

recent study by Park et al., a block copolymer; PEG−PA (5000

−500) has been presented as an excellent cryoprotectant where

the recovered stem cells exhibited acceptable survival,

proliferation and multilineage differentiation post-thaw (56).

These studies and more presented in Table 1 portray the

synergistic activity of several biocompatible cryoprotectants and

suggests that this approach may be an innovative paradigm for safe

cryopreservation. Presently, commercially manufactured DMSO-

free cryosolutions like Pentaisomaltose™, CryoScarless™,

CryoNovo P24™, StemCell Keep™, CryoSOfree™ and XT-

Thrive™ are available but their quality and capacity to protect a

wide range of therapeutics is under-investigated. Further research

would involve testing the compatibility of these cryoprotectants

with other biotherapeutics. In addition to substituting

cryoprotectants, supporting techniques used to improve on

solvent-free cryopreservation are discussed below.
Pre-cryopreservation treatment

The pretreatment of biotherapeutics with cryoprotective and

stabilizing agents prior to cryopreservation is largely becoming a

viable approach to ensuring safe storage. Sugar pretreatment,

supplementation of expansion medium with 10% platelet lysate

and slow freezing is reportedly an effective protocol in DMSO-less

cryopreservation of adipose-derived stromal cells (42). Similarly,

sugar pretreatment increased survival, metabolic activity,

attachment, proliferation and multilineage differentiation after

recultivation of dermal MSCs (43). Improved results are also
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obtained when the sugars are positioned intracellularly as

performed by Mutsenko and coworkers who explored

electroporation-aided delivery of cryoprotective sugars in human

umbilical cord MSCs (44). Also, pre-incubation of MSCs with

osmolyte-based freezing solutions could foster effective

cryopreservation (54). These results corroborate the potential

advantages of pre-cryopreservation treatment(s).
Programmed freezing methods

Programmed freezing offers improved control over ice

nucleation parameters. A technique involving a magnetic field

driven freezer termed “Cells Alive System” has been used to

prevent formation of intracellular ice for up to three months.

The magnetic field vibration function prohibits water molecules

from creating clusters during freezing. Although the optimal

conditions needed for survival and viability of isolated human

periodontal ligament cells (PDL), pulp tissue and tooth using

CAS freezers were determined previously (71) (72) with DMSO,

the technique proved equally effective without DMSO,

promoting greater survival rates over that obtained with

conventional freezers (50). Programmed freezing has also been

used for cryopreservation of human Wharton’s Jelly Tissue,

showing higher post-thaw cell survivability when used in

conjunction with a freezing solution consisting of 0.05 M

glucose, 0.05 M sucrose and 1.5 M EG in PBS (49).

Matsumura et al. reports a simple, novel slow vitrification

method at 4.9 and 10.8°C/min for the cryopreservation of MSC

monolayers using a polyampholyte based vitrification solution.

Thermal analysis confirmed stable vitrification and post-thaw

assessment revealed significantly improved viability and retained

differentiation capacity (58).
Thawing protocol

Due to the low thermal conductivity of biological samples,

the conventional approach of rewarming large-volume

cryopreserved samples in a water bath heated at 37°C is

associated with non-uniform distribution of temperature,
TABLE 1 Continued

Material Cryoprotectant Additional strategy Outcome/Conclusion Ref

HSCs Antifreeze protein mimetics produced by X-

Therma Inc. (Richmond, CA), XT-Thrive A™

and XT-Thrive B™

N/A X-Therma formulations may offer clinically safer
alternative to DMSO-based solutions.

(64)

HSCs, T-cells,
CD34+ cells

Pentaisomaltose™, CryoScarless™, CryoNovo

P24™, CryoProtectPureSTEM™
N/A Comparable results to those cryopreserved with DMSO (9,

65–
67)
frontiersin
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which can induce thermal stress (41). Preferably, a high heating

rate is desirable during thawing, because devitrification and

recrystallization may occur if the temperature cannot be

elevated rapidly above the sample’s melting point (73).

Therefore, both the heating rate and uniformity of heating

during rewarming are important to cryopreservation especially

vitrification. Nevertheless, attaining the optimal rewarming rate

remains a major factor complicating effective vitrification.

Wang et al. proposes magnetic induction heating (MIH) of

extracellular Fe3O4 magnetic nanoparticles also called nano-

warming technology as a method to amplify rewarming. This

technique was successfully applied to rewarming vitrified MSCs

where the sample was thawed by plunging the straw into a 0.2 M

trehalose supplemented culture medium heated to 37°C. Then,

the system was subjected to MIH under alternating magnetic

field at a medium frequency for a duration of 10 s. Results

obtained reveals the prospective benefits this technique holds as

it significantly hindered ice recrystallization/devitrification

during rewarming and improved cell viability (41). More

recently, Ito et al. also employed the nano-warming

technology for thawing of hiPSC using StemCell Keep as

cryoprotectant. Similarly, nano-warming showed more

uniform and rapid rewarming of vitrified samples, prevented

devitrification/recrystallization and improved viability (45).

Another nanotechnology assisted thawing approach involves

the utilization of soft liquid metal nanoparticles possessing

reproducible photothermal stability, high photothermal

conversion efficiency, low cytotoxicity and the ability to

suppress ice formation. This technique promotes less ice

nucleation during freezing and ultrarapid rewarming while

thawing. Human bone marrow stromal cells have been

successfully rewarmed with this technique (57).

These studies reveal that the advantages of nanotechnology can

be capitalized on to promote safe rewarming post-cryopreservation

after verifying the biocompatibility of the nanoparticles.
Conclusion

A critical step prior to the clinical application of biotherapeutics

is the optimization of cryopreservation protocols that minimize

post-thaw alterations in the stability and potency of preserved

materials. Cryosolutions containing 10% of DMSO is a widely

used cryopreservative but there is an increasing amount of evidence
Frontiers in Immunology 05
showing inconsistent results on its impact on post-cryopreservation

performance of biologicals. This drawback forms the basis for the

development of safer preservation protocols. DMSO-free strategies

have the potential to alleviate the aforementioned obstacles as

demonstrated by studies discussed in this article. The application

of other cryoprotectants, combined with other techniques like

programmed freezing, pretreatments and modified thawing

protocols have shown good prospects.

In conclusion, the development of effective DMSO-free

cryopreservation techniques that will provide high post-thaw

viability and preserve original morphology and functioning

remains key because this is essential to hastening the

industrialization and clinical application of biotherapeutics.

We are of the opinion that more research efforts should be put

into the development and performance validation of

trademarked DMSO-free products. In cases where DMSO

elimination is unavoidable, only confirmed safe concentrations

should be applied preferably in combination with non-toxic

cryoprotectants and other potent strategies.
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