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Introduction: Several computer-aided diagnosis systems for depression are suggested for use 
by clinicians to authorize the diagnosis. EEG may be used as an objective analysis tool for 
identifying depression in the initial stage to avoid it from reaching a severe and permanent 
state. However, artifact contamination reduces the accuracy in EEG signal processing systems.

Methods: This work proposes a novel denoising method based on Empirical Mode Decomposition 
(EMD) ( with Detrended Fluctuation Analysis (DFA) and wavelet packet transform. Initially, 
real EEG recordings corresponding to depression patients are decomposed into various mode 
functions by applying EMD. Then, DFA is used as the mode selection criteria. Further Wavelet 
Packets Decomposition (WPD)-based evaluation is applied to extract the cleaner signal. 

Results: Simulations were conducted on real EEG databases for depression to demonstrate the 
effects of the proposed techniques. To conclude the efficacy of the proposed technique, SNR 
and MAE were identified. The obtained results indicated improved signal-to-noise ratio and 
lower values of MAE for the combined EMD-DFA-WPD technique. Additionally, Random 
Forest and SVM (Support Vector Machine)-based classification revealed the improved 
accuracy of 98.51% and 98.10% for the proposed denoising technique. Whereas the accuracy 
of the EMD- DFA is 98.01% and 95.81% and EMD combined with DWT technique equaled 
98.0% and 97.21% for the EMD- DFA technique for RF and SVM, respectively, compared 
to the proposed method. Furthermore, the classification performance for both classifiers was 
compared with and without denoising to highlight the effects of the proposed technique.

Conclusion: Proposed denoising system results in better classification of depressed and healthy 
individuals resulting in a better diagnosing system. These results can be further analyzed using 
other approaches as a solution to the mode mixing problem of the EMD approach. 
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1. Introduction

epression is a major global burden among 
societies worldwide. EEG-based comput-
er-aided systems were a powerful tool for 
detecting numerous neurological disorders. 
Such systems have presented technical 

investigates concerning the neuroscience industry for 
exploring the neuronal mechanics underlying various 
symptoms of Depression (Acharya et al., 2015; Acha-
rya et al., 2015; Cai et al., 2018; Sharma, Achuth, Deb, 
Puthankattil, & Acharya, 2018). Advanced healthcare 
facilities need to be designed using computational and 
mathematical methodologies based on EEG for identify-
ing depression in the early stage to avoid a severe and ir-
reversible state. Preprocessing is an exclusively required 
step in EEG signal analysis. The tentative measured sig-
nal can be represented as a linear combination of mul-
tiple brain events. EEG is sensitive to certain irrelevant 
sources as well as artifacts, like EOG (ocular artifacts), 
Electromyography (EMG) due to movement artifacts, 
and various other technical sources that interfere with the 
signal at particular scalp electrodeposition; thus, making 
control over the signal confused. Therefore, there is a ne-
cessity for preserving an adequate signal over the noise 
in biomedical applications (Kaur & Singh, 2015, 2016; 
Vaid, Singh, & Kaur, 2015). 

Denoising describes the procedure of removing noise 
present in the signal. To challenge this problem, various 
algorithms were proposed, as shown in Figure 1. These 
include regression techniques (Awal, Mostafa, Ahmad, 
& Rashid, 2014; Wallstrom, Kass, Miller, Cohn, & Fox, 
2004), autoregressive models (Hoffmann & Falkenstein, 

2008), bandpass, and adaptive filtering, singular value 
decomposition, Kalman filtering, PCA, ICA and EMD 
(Barua & Begum, 2014; Cluitmans & Van De Velde, 
2000; Molla, Tanaka, & Rutkowski, 2012). 

In the initial years, a linear digital filter-based reduc-
tion of superimposed noise on the tracings of the EEG 
was proposed. Kalman filter was used as the optimal 
filter for removing the EMG noise. The performance 
of the filters is satisfactory; also from the clinical stand-
point, obtaining a marked reduction of noise without 
distorting the useful information contained in the signal 
(Bartoli & Cerutti, 1983). Then, the efficiency of the re-
gression analysis was demonstrated for single trials of 
ERP (Event-Related Potentials) signals and the average 
potentials (Semlitsch, Anderer, Schuster, & Presslich, 
1986). In addition to providing the regression factors, it 
offers reduced coherence among the eye blink activity 
and ongoing EEG activity (Semlitsch et al., 1986). 

The Blind Source Separation (BSS) algorithms, such as 
Principal Component Analysis (PCA) and Independent 
Component Analysis (ICA) were apparent as influential 
artifact removal methodologies. However, PCA and ICA 
have certain disadvantages, e.g., these fail to cope with 
high order statistical dependence. Moreover, these are 
inefficient for the removal of artifacts in case artifacts 
have the corresponding magnitude, like brain signals 
(Makeig, Bell, Jung, & Sejnowski, 1996). In ar study, a 
BSS-SVM-based artifact removal method for removing 
the ocular and ECG artifacts was presented (Shoker, Sa-
nei, & Chambers, 2005). Here, SOBI-based components 
were identified from the raw EEG, and SVM was used to 

Highlights 

● Several computer-aided systems are suggested for diagnosing depression.

● EEG may be used as an objective analysis tool for identifying depression.

● Denoising system proposed in this study results in better classification of depressed and healthy individuals.

Plain Language Summary 

Depression is a major global burden. For years, EEG-based computer-aided systems were a powerful tool for detecting 
neurological disorders. However, advanced healthcare facilities based on EEG for identifying depression in the early 
stage are required to avoid a severe and irreversible state. Thus, preprocessing is an exclusively required step in EEG 
signal analysis. EEG is sensitive to certain irrelevant sources as well as artifacts, like EOG and EMG. Denoising de-
scribes the procedure of removing noise present in the signal. At first, a linear digital filter-based reduction of superim-
posed noise on the tracings of the EEG was proposed. Then, the efficiency of the regression analysis was demonstrated 
for single trials of ERP signals and the average potentials. Denoising system proposed in this study results in better 
classification of depressed and healthy individuals and the results can be further analyzed using other approaches.

D

Kaur, C. H., et al. (2021). EEG Artifact Removal System for Depression. BCN, 12(4), 465-476.

http://bcn.iums.ac.ir/


Basic and Clinical

467

July, August 2021, Volume 12, Number 4

extract the features from these Independent Components 
(ICs). Then, a series of experiments on simulated EEG 
recordings for 5 different configurations of EEG elec-
trodes found that SOBI is more effective than the other 
BSS-based algorithms for denoising (Kierkels, Van Box-
tel, & Vogten, 2006; Kaur & Singh, 2016).

There is another technique of Wavelet Transform 
(WT)-based thresholding that provides more efficient 
multi-resolution exploration. It has been concluded to 
perform superior, compared to standard Low Pass Fil-
ters (LPF), median filters, and moving average filters 
(Lahmiri & Boukadoum, 2015). However, the limitation 
of Gibbs phenomena exists in WT. Additionally, other 
limitations of the wavelets include the manual setting of 
the level of decomposition and wavelet basis is needed 
that may add false harmonics as signals are nonlinear 
and non-stationary. The distortions might be introduced 
in the reconstructed signal that may be because of un-
suitable breakdown, leading to less efficient denois-
ing (Zeng, Song, Yan, & Qin, 2013). Discrete Wavelet 
Transform (DWT) was explored for ECG denoising for 
power line interference, the EMG, and the baseline drift 
(Alfoouri & Daqrouq, 2008). 

The limitations in wavelet are overlapping spectrum and 
ICA are lacking redundancy in the number of signals, com-
pared to sources. A large body of literature was conducted 
taking a combination of various techniques using wave-
lets and ICA methods; accordingly, they reported the best 
performance for removing artifacts along with preserving 
the nominal data loss (Alfoouri & Daqrouq, 2008; Ghan-
deharion & Erfanian, 2010). Wavelet-Based thresholding is 
applied to demixed ICs rather than on the raw EEG data 
(Nazarpour, Wongsawat, Sanei, Chambers, & Oraintara, 
2008). A more robust technique was offered to combine 
Wavelet and ICA without the need to identify the thresholds 
(Ghandeharion & Erfanian, 2010). 

Another transform was growing for the applications 
of denoising, Empirical Mode Decomposition (EMD). 
The main advantage of EMD is no need to postulate the 
mother wavelet and the level of decomposition, com-
pared to WT. EMD was successful for the removal of 
fractional and white Gaussian noise. However, it has the 
limitation of mode- mixing. Another restriction of EMD 
is in defining the stopping conditions of the sifting pro-
cedure (Mert & Akan, 2014; Zeng, Song, Yan, & Qin 
2013). As a result, hybrid techniques, like EMD with 
wavelet thresholding and EMD- ICA, etc. were reported 
in the literature. For example, a study discovered a new 
technique where a noisy signal was decomposed using 
EMD then DWT thresholding was followed (Kabir & 

Shahnaz, 2012). Noise-Free Intrinsic Mode Functions 
(IMFs) and the residue were added to regenerate the 
signal. This leaves scope for additional upgrading. Like 
EMD, an unweighted summation of IMFs filtered after 
DWT thresholding may overlook the capability of car-
rying different structural information (Kabir & Shahnaz, 
2012). The frequency and the effect of the decomposed 
signal decrease with an increase in the mode of IMF. Be-
sides, residue contains a little bit of signal information; 
thus, adding it in the reconstructive step adds slight to the 
process of artifact removal. 

Another finding proposed BSS-EMD based method to 
recover the loss of information. However, again, such per-
formance is limited by dependence on the quality of ICA-
separated ICs. Therefore, another study that used SSSA as 
a BSS algorithm along with EMD provided better results 
(Zeng et al., 2013). Mert et al. introduced Detrended Fluc-
tuation Analysis (DFA) as stopping criteria for determin-
ing noisy IMFs obtained by EMD (Mert & Akan, 2014). 
Safieddine et al. proposed a comparison between determin-
istic (EMD & wavelet approaches) and stochastic (ICA & 
cross-correlation analysis, i.e., CCA) approaches which 
concluded that 2T- EMD should be preferred for denoising 
for lower SNR data (Safieddine et al., 2012). 

Bono, Jamal, Das, and Maharatna (2014) introduced 
two-hybrid techniques of Wavelet Packet Transform 
(WPT)-ICA and WPT-EMD. Another study provided 
the comparison of EMD, WT, and Kalman filters (Salis 
et al., 2013). 

A critical review of some of the existing systems for 
NFT is provided in Table 1. Several artifact removal tech-
niques were presented. Regression-Based techniques 
were supported for denoising; however, they are limited 
by the disadvantage of bidirectional contamination. As a 
solution to the problem of bidirectional contamination, 
low pass filtering and adaptive filters were offered before 
applying the regression (Croft & Barry, 2000; Munia, 
Haider, Schneider, Romanick, & Fazel-Rezai, 2017; Sa-
lis et al., 2013; Suchetha & Kumaravel, 2013) our scope 
was a comparative analysis of the performance of three 
standard denoising methods like continuous Empirical 
Mode Decomposition (EMD. However, adaptive fil-
ters require defining reference techniques for modeling. 
Then, PCA found a growing attraction concerning de-
noising; however, in the case of approximately, the same 
magnitude with the brain signal of interest, more reliable 
algorithms of ICA were recognized as providing major 
contribution compared to PCA. Artifactual ICs identifi-
cation in the case of ICA was considered in numerous in-
vestigations. To cover up these issues of artifactual ICs, 
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Table 1. A comparative analysis of existing EEG denoising methods

References Method Physiological 
Signals Outcome

DiMatteo, Genovese and Kass 
(2001)

B- splines before applying 
regression and subspace 

projection
fMRI Image

Provides better results 
The problem of defining a reference proto-

type

Wallstrom et al. (2004)
Regression-based and 
PCA, ICA component-

based methods
EEG

Using the adaptive filter, the performance 
of regression-based artifact correction 

improves.
PCA proved to be effective in denoising the 

EEG signal with minimum spectral distortion 
Limitation of spectral distortion from ICA- 
based correction procedures and bidirec-

tional contamination

Shoker et al. (2005) BSS- SVM EEG Efficient Denoising

Kierkels et al. (2006) BSS algorithms EEG SOBI effective than other BSS algorithms

Castellanos and Makarov (2006) wICA EEG

Conserves both spectral as well as coherence 
characteristics unlike ICA leading to overesti-
mation of power spectrum and underestima-

tion of coherence property 

Phlypo et al. (2007) JSSE EEG

Reducing the distortion and interference of 
the artifacts than FastICA, SOBI, and JADE 

algorithms 
The problem of spectral distortion by ICA

Alfoouri and Daqrouq (2008) DWT ECG
Better SNR and MSE 

The limitations of Gibbs phenomena, adding 
false harmonics and less efficient denoising

Nazarpour et al. (2008) Robust minimum variance 
beamformer (RMVB) EEG Low cost and more effective

Wu and Huang (2009) EEMD Noise assisted 
Data

More accurate 
Lack of mathematical formulation

Ghandeharion and Erfanian 
(2010)

Mutual information with 
ICA and wavelet denoising EEG

No need to define the threshold values or 
offline training

Suchetha and Kumaravel (2013) EMD ECG Beter than adaptive filtering 
Mode- mixing problem

Bono et al. (2014) WPT- ICA &
WPT- EMD EEG Suitable for artifact removal without any 

proper information about the artifacts

Mert and Akan (2014) EMD- DFA - Efficient at low SNR values

Aneesh et al. (2015) VMD Power quality 
signal

Efficient denoising
More accurate

Kærgaard et al. (2016) EEMD-BLMS and DWT-NN ECG Efficient denoising

Liu et al. (2017) VMD Seismic Data

More robust and well- defined time- domain 
analysis 

The problem of defining the procedure of 
selection of modes 
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wavelet transforms were offered. Another recent denois-
ing methodology of EMD has been proposed afterward. 
In previous studies, using EMD inspired by wavelet 
transforms, ignoring various IMFs after wavelet-based 
thresholding could lead to ignoring information carry-
ing the capacity of IMFs leading to inefficient denoising 
results. This work focuses on the performance compari-
son of EMD using DFA followed by WPD to denoise 
the EEG data with the conventional approaches; it was 
found more efficient than conventional approaches. A 
new classification method based on EMD and WPT was 
implemented. To assess the performance of the proposed 
algorithm, depression patients and normal individuals 
were classified using SVM and Random Forest.

Empirical mode decomposition

EMD is a recursive process of breaking down a signal 
into the sum of various finite intrinsic oscillatory func-
tions called IMFs (Intrinsic Mode Functions), i.e., em-
pirically identified based on their feature time scales in 

the signal. A signal S (t) can be represented as a finite 
sum of IMFs as in Equation (1).

(1) S(t)=∑N
k=0sk (t)

We define IMF as an AM-FM (amplitude modulation- 
frequency modulation) function written as Equation (2)

(2) sk(t)=Sk(t)cosØk(t) Sk(t),Øk' (t)>0 Ɐ t

It is assumed here that Øk' (t) and Sk(t) are varying low-
er than. The sk IMF executes as a harmonic component. 
The algorithm is easily adjustable and the original func-
tion’s nonstationary part can be extracted. The stopping 
criteria are defined by a process called sifting that is car-
ried out in the following steps (Kabir & Shahnaz, 2012; 
Kiamini, Alirezaee, Perseh, & Ahmadi, 2009; Krupa, 
Mohd Ali, & Zahedi, 2009).

• Local maxima and local minima are defined from the 
input signal. Then, using the cubic spline line method, 
upper and lower envelopes were identified.
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• Take the average of an envelope to mean denoted as 
h(t). Subtract the input signal and the envelope mean and 
denote it as the first IMF if it satisfies the two conditions 
defined above to be met by IMFs. Else, take it as the next 
input for carrying the next iteration process to find the 
next IMF.

• Repeat the above steps until a stopping criterion is 
met.

Wavelet packet decomposition 

It has lately come into view in different field applica-
tions as a new helpful means for signal processing. WPT 
is the comprehensive structure of DWT. The standard 
wavelet transform is limited to wavelet bases that move 
towards the lower frequencies by a power of 2. Thus, 
it might not be able to give the finest results. However, 
some other combination of bases might give better desir-
able results. Discrete wavelet transform gives approxi-
mate transformation to the sampled or discrete signals. 
In the case of WPD, the sampling of low pass and high 

pass coefficients is conducted to attain d[n[ and an [n] 
as detail and approximate coefficients. This recursive 
process is performed with approximate coefficients till 
a preferred level of decomposition is attained. Wavelet 
packet decomposition was used in various applications 
related to emotion recognition in Brain-Computer Inter-
face (BCI) applications. The technique of wavelet packet 
decomposition provided better results, compared to oth-
er existing methods in the terms of accuracy in the space 
time-frequency domain. 

2. Methods

The main aim of this work was to perform decomposi-
tion of EEG signal into IMFs by using DFA-based stop-
ping criteria. Then, these IMFs are further analyzed us-
ing wavelet packet decomposition. Finally reconstructed 
signal is analyzed for performance (Figure 2). For the 
present study, a real EEG dataset prepared by Hospital 
Universiti Sains Malaysia (HUSM), Kelantan, Malay-
sia was analyzed. It contains EEG signals of 34 MDD 
(Major Depressive Disorder) patients and 30 healthy 

Table 2. Comparing the proposed denoising techniques with the conventional respecting SNR and MAE corresponding to 
different levels of white Gaussian noise

Vari-
ables Denoising Method σ= 0 dB σ= 5 dB σ= 10 dB σ= 15 dB σ=20 dB

SN
R

DWT 4.20 5.1492 10.18 15.82 20.12

EMD only 4.21 5.03 12.32 15.34 21.29

EMD- DWT 1.23 5.944 12.04 16.582 22.583

EMD-DFA- WPD 20.24 18.54 18.04 16.29 17.06

M
AE

DWT 13.7209 45.492 101.18 115.82 202.12

EMD only 13.6731 45.03 101.32 115.34 202.29

EMD- DWT 13.23 44.944 101.04 116.582 202.583

EMD-DFA- WPD 12.24 44.04 100.04 115.89 203.06

Table 3. The statistical analysis of SNR, MAE between the reconstructed and original signal between different approaches 

EEG Spectral Measure
ANOVA t-test

P P1 P2 P3

SNR 0.03 <0.001 <0.001 <0.001

MAE 0.01 <0.001 <0.001 <0.001
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subjects. The sampling rate of data is 256 Hz (Mumtaz, 
Xia, Yasin, Ali, & Malik, 2017).

For performing the analysis, various values of signal-
to-noise ratio are considered by adding the white Gauss-
ian noise to the recorded signal. The additive white 
Gaussian noise is a basic prototype to present the be-
havior of naturally occurring random processes having 
the same intensity at various frequencies. First of all, the 
decomposed IMFs were selected according to scores de-
fined by DFA. Then. the thresholded IMFs are further 
decomposed using WPD. Next, these wavelet denoised 
components are combined with selected IMFs to give 
the final output signal. To conclude the efficacy of the 
proposed technique, Signal to Noise Ratio (SNR) and 
Mean Absolute Error (MAE) were identified at different 
levels of added white Gaussian noise. If y(t) is the origi-
nal input signal and is the denoised signal with sampling 
number represented as T.

SNR, a term encountered in signal processing, is an 
essential element in describing the quality of the neu-
ral information processed from the raw EEG signals. It 
is frequently used to assess the performance of various 
physiological systems, to compare and estimate denois-

ing protocols, and to monitor the overall performance of 
the system. It is defined as the ratio of the related signal 
divided by the level of the noise. Here, the signal is the 
amplitude of the EEG signal and the noise is the residual 
unwanted background activity in the EEG signal that 
distorts the signal. Thus, SNR in decibels is defined by 
Equation (3): 

(3) SNROut=10log10{
∑T

t=1[y(t)]2

∑T
t=1[y(t)- y ̂(t)]2 }

MAE is used similar to MSE to evaluate the denoising 
algorithm. MAE is the maximum value of the absolute 
error signal. It is also defined by using the aforemen-
tioned symbols as the Equation (4): 

(4) MAE= T
∑T

t=1y(t)- y ̂(t)

Feature Extraction and Classification: For validation 
purposes, three features namely, Mean, Shannon entro-
py, and Hjorth parameter widely used in studies related 
to depression detection (Castellanos & Makarov, 2006; 
Phlypo, Boon, D’Asseler, & Lemahieu, 2007) followed 
by rejection of those deemed artificial. We show that a 
\”leak\” of cerebral activity of interest into components 
marked as artificial means that one is going to lost that 
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activity. To overcome this problem we propose a novel 
wavelet enhanced ICA method (wICA were measured 
from the denoised signals. These features are briefly de-
scribed as follows:

Mean

This time-domain feature is represented as the central 
point corresponding to a set of data points. If x(t) rep-
resents the data with T samples, the mean is defined as 
Equation (5): 

(5) µ= 1
T  ∑+∞

-∞|x(t)|2

 Another time-domain feature termed as Hjorth Param-
eters is defined using statistical calculations It consists 
of three parameters namely, activity, mobility, and com-
plexity.

Activity (A): It is defined as Equation (6):

(6) 
(∑T

t=1((x(t)-µ)2

A= T

Mobilit y (M): If the derivative of x(t) is X(t), then mo-
bility is given by Equation (7)

(7) M= √(X(t)
√(x(t)

 Complexity(C): It is defined as Equation (8)

(8) C= M(X(t)
M(x(t)

Shannon Entropy: It is the measurement of uncertainty 
or probability p of the signal value and is defined by 
Equation (9) as

(9) E= -∑T
t=1p log(p)

Classification: In this research work, Random Forest 
(RF) and Support Vector Machine (SVM) classifiers 
were used for classifying signals into depressed and 
healthy individuals.

The RF classifier is more accurate in generating the 
classification results even in the presence of noise. Other 
advantages of using this algorithm are higher operational 
efficiency which makes it more efficient for training on 
the EEG data. The RF classifier being the ensembled 
algorithm selects a random subset of a training set and 
generates a set of decision trees. Then, these decision 
trees are used to create the final test class.

SVM makes use of an assumed space in the form of 
linear functions based on optimization theory. It acts as a 
learning system that provides the best hyperplane acting 
as a separator between two classes of the input space. 
This system defines margin as the distance among hy-
perplane and adjoining array (known as support vector) 

Table 4. Accuracy evaluation of different denoising techniques using random forest and SVM based classification

Techniques
Random Forest SVM 

F1 Score Accuracy (%) F1 Score Accuracy (%)

DWT 94.29 97.8 93.9 94.09

WPT 92.7 96.7 90.1 94.7

EMD- DFA 91.07 98.0 90.83 97.21

EMD-DWT 96.83 98.01 93.89 95.81

EMD-DFA-WPD 97.81 98.51 94.37 98.07

Table 5. Classification performance, compared with and without Denoising using Random Forest and SVM-based classification

Classifier Performance Without Denoising (%) Denoising Using Proposed Technique (%)

RF 96.98 98.51

SVM 94.83 98.07
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of each class. The learning in SVM involves the power 
to trace the hyperplane. 

To evaluate the performance of the denoising system 
for EEG signals of depression patients, the classification 
results are analyzed for these two classifiers. The results 
using various classifiers and the output are classified as 
depressed and normal. The parametric evaluation is con-
ducted by calculating the classification accuracy and F1 
score. Classification accuracy is defined as the number 
of accurate estimates made divided by the overall esti-
mates made. More is the classification accuracy; more 
precise is the proposed system. Accuracy is measured 
by another metric known as the F1 score, i.e., calculated 
from precision and recall. A single value is assigned by 
calculating the harmonic mean from these two attributes. 
The F1 score was calculated along with the accuracy for 
this unbalanced class.

To better correlate the results, and to assess the per-
formance of the proposed algorithm, statistical analysis 
using Repeated-Measures Analysis of Variance (RM-
ANOVA) and a t-test analysis was performed on the de-
noising results. This statistical analysis was performed to 
check whether the proposed method outperforms other 
methods with the value of significance set at α=0.05. The 
significant differences among the techniques were evalu-
ated using SNR and MAE as the dependent variable. The 
statistics were calculated for these two variables among 
the artifactual signals and the denoised signals.

3. Results

EEG signals with varying values of SNRs present that 
higher values of SNR and lower values of MAE are ob-
served for the presented work. It indicates EMD-DFA-
WPD is a better denoising algorithm. Table 2 concludes 
the SNR and MAE values of the techniques for different 
SNR levels of white Gaussian noise denoted as σ. 

The obtained results indicated improved signal-to-
noise ratio and lower values of MAE for the combined 
EMD-DFA-WPD technique, compared to EMD, DWT, 
and EMD with DWT technique (Figures 3 & 4). EMD 
performs better than wavelet technique for lower SNR 
levels; however, EMD-DFA-WPD is providing higher 
SNR and lowest MAE than all the conventional tech-
niques although its performance is better for lower levels 
of white Gaussian noise. 

Furthermore, EMD is applied along with DFA with 
a value of Hurst exponent H for white Gaussian noise. 
The value of the Hurst exponent is defined accordingly 
and adjusted for analysis. The parameter α known as the 
scaling exponent represents the roughness of the series. 
Higher values of α represent smooth time series i.e., slow 
fluctuations (Mert & Akan, 2014). EMD based denois-
ing requires a reliable threshold to determine which os-
cillations called intrinsic mode functions (IMFs. DFA 
slope α=0.5, α=1.0, and α=1.5 depending upon the type 
of noise to be white Gaussian noise, pink or Brown-
ian noise respectively. To cope-up with the problem of 
mode-mixing, the value of the scaling exponent was set 
to be 0.75. The value of the Hurst exponent varies as 
10.5, 1.0, and 1.5 for white Gaussian noise, pink, and 
Brownian noise. Figure 5 plots the performance of the 
proposed algorithm for different values of H demonstrat-
ing better performance at 0.37.

Table 3 lists the statistical analysis data to assess the 
performance of the proposed algorithm. The RM-ANO-
VA results revealed that the proposed algorithm outper-
forms at P<0.001. Additionally, t-test analysis provided 
the comparison of parameters where p1 represents EMD-
DFA-WPD vs. DWT, p2 represents EMD-DFA-WPD vs. 
EMD, p3 represents EMD-DFA-WPD vs. EMD-DWT. It 
concludes that the algorithm performs best compared to 
other algorithms. Better classification results are obtained 
for the proposed methodology. RF and SVM classifiers 
were used to assess the accuracy (Table 4). The best accu-
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racy of 98.51% is achieved for RF and 98.07% for SVM 
for EMD-DFA-WPD than other approaches. EMD-DWT 
gives 98.01% and 95.81% accuracy values for RF and 
SVM. Additionally, the best F1 score values were ob-
served for the proposed technique compared to the other 
conventional approaches. Moreover, the classification 
performance for both the classifiers was compared with 
and without denoising to highlight the effectiveness of 
the proposed technique (Table 5).

Although the proposed method yields better suppression 
of artifacts respecting the evaluation parameters of SNR 
for different values of white Gaussian noise added at dif-
ferent values of noise along with better classification re-
sults. Besides, more efficient algorithms can be developed 
by increasing the levels of decompositions. Furthermore, 
EMD lacks mathematical formulation and the mode-
mixing problem. As a solution, various newer techniques 
were offered. Therefore, this analysis can be extended 
for analyzing other levels of decompositions. Moreover, 
more efficient algorithms than EMD, such as MEMD, 
EEMD, and VMD (Aneesh, Kumar, Hisham, & Soman, 
2015; Kærgaard, Jensen, & Puthusserypady, 2016; Liu, 
Cao, & Wang, 2017; Molla et al., 2012). We propose to 
utilize recently developed a multivariate extension of 
Empirical Mode Decomposition (EMD can be used for 
further analysis to eliminate the mode mixing problem.

4. Discussion

There is a need to separate raw EEG signals from vari-
ous noise sources using an appropriate artifact removal 
algorithm, leading to minimal neural information loss. 
Furthermore, there is insufficient evidence of denoising 
systems for EEG signals of depression patients. We ad-
dressed an approach for suppressing artifacts that impos-
es a challenge to the common preprocessing techniques 
in EEG processing systems corresponding to depression 
patients. The present study aimed to develop a reliable 
EEG preprocessing phase of removing the noise pres-
ent in EEG signals of depression patients. The removal 
of these most common noise sources is critical to im-
proving the performance of the EEG-based diagnosing 
systems for depression. EMD is gaining great success 
in the field of signal processing. In previous studies us-
ing EMD inspired by wavelet transforms, ignoring vari-
ous IMFs after wavelet-based thresholding could lead 
to ignoring information carrying the capacity of IMFs 
leading to inefficient denoising results. In this paper, a 
denoising model was proposed for EEG signals using 
hybrid technique EMD and WPD, where the IMF selec-
tion criteria in EMD are identified by the DFA algorithm. 
Unlike the conventional EMD-based EEG denoising ap-

proaches that neglect multiple IMFs containing noise 
as well as neural information, we proposed to perform 
a windowing in the EMD domain to reduce the noise 
from a few IMFs, yielding a comparatively cleaner EEG 
signal. Compared to other conventional methodologies, 
the proposed method provides better SNR. 

5. Conclusion 

A new classification method based on EMD and wave-
let packet transform was used. To assess the performance 
of the proposed algorithm, depression patients and 
healthy individuals were classified using SVM and Ran-
dom Forest. Better accuracy is observed for the observed 
technique than the other approaches. In the future, more 
efficient algorithms can be developed by increasing the 
levels of decompositions and considering other partially 
variational algorithms to decrease the problem of mode 
mixing by EMD. 
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