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Abstract

Background: Natural selection eliminates detrimental and favors advantageous phenotypes. This process leaves
characteristic signatures in underlying genomic segments that can be recognized through deviations in allelic or
haplotypic frequency spectra. To provide an identifiable signature of recent positive selection that can be detected
by comparison with the background distribution, we introduced a new way of looking at genomic polymorphisms:
haplotype allelic classes.

Results: The model combines segregating sites and haplotypic information in order to reveal useful data
characteristics. We developed a summary statistic, Svd, to compare the distribution of the haplotypes carrying the
selected allele with the distribution of the remaining ones. Coalescence simulations are used to study the
distributions under standard population models assuming neutrality, demographic scenarios and selection models.
To test, in practice, haplotype allelic class performance and the derived statistic in capturing deviation from
neutrality due to positive selection, we analyzed haplotypic variation in detail in the locus of lactase persistence in
the three HapMap Phase II populations.

Conclusions: We showed that the Svd statistic is less sensitive than other tests to confounding factors such as
demography or recombination. Our approach succeeds in identifying candidate loci, such as the lactase-
persistence locus, as targets of strong positive selection and provides a new tool complementary to other tests to
study natural selection in genomic data.

Background
The role of positive selection in the evolution and local
adaptation of modern humans has been extensively stu-
died using DNA variation data [1-6]. The increasing
availability of such data led to the development of new
statistical methods to detect signatures of natural selec-
tion along DNA sequences. As these techniques use and
analyze DNA diversity in different ways, the overlap
between the reported candidate loci under selection is
relatively low [6]. Indeed, different summary statistics
may capture different types of selection events. In addi-
tion, signatures may differ depending on the sequence
context, time and strength of selection [4]. In the con-
text of human evolution, it is particularly interesting to
look for recent selection events resulting from local
adaptations. These should have left signatures of incom-
plete selective sweeps in the human genome, where the

selected allele dominates but is not yet fixed in a popu-
lation. Loci affected by such selective events are likely to
be of functional importance and responsible for inter-
individual differences in genetic susceptibility to disease
and/or to therapeutic outcome. Most of the early tech-
niques to detect selection from DNA variation analyze
allelic frequency spectra of individual polymorphic sites
[7-10]. Newer methods look at haplotypes, their fre-
quencies and length to capture those with extended
linkage disequilibrium (LD), suggestive of a rapid and
recent rise in population frequency and thus plausibly
due to selection [1-3]. Other tests, such as that of Fu
[11] or Depaulis and Veuille [12] propose to integrate
information on haplotypes and their underlying sites.
However, these tests are inadequate in the presence of
recombination.
In order to combine information on alleles of single

nucleotide polymorphisms (SNPs) with that of the
resulting haplotypes, we propose to plot haplotype allelic
classes (HACs) that group haplotypes of the same

* Correspondence: damian.labuda@umontreal.ca
1Bioinformatics Program, Department of Biochemistry, Université de
Montréal, Montréal, Québec, Canada

Hussin et al. BMC Bioinformatics 2010, 11:65
http://www.biomedcentral.com/1471-2105/11/65

© 2010 Hussin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:damian.labuda@umontreal.ca
http://creativecommons.org/licenses/by/2.0


mutational distance from a predefined reference haplo-
type [13]. This distance, also called HAC, is calculated
as the count of allelic differences between the reference
and the individual haplotypes in the sample. The HAC
distribution (i.e. the number of haplotypes belonging to
each class) expected under neutrality can be evaluated
by computer simulations. If one finds, in a sample, a sig-
nificant deviation from the neutral HAC distribution, it
may be concluded that the genetic variation observed in
the sample is not neutral.
A critical point is the choice of the reference haplo-

type defining the classes. This haplotype does not have
to exist in the sample and can be chosen to suit a parti-
cular application. If we aim to study patterns of genetic
variation and haplotype diversity in a population sample,
the ancestral haplotype would be an appropriate refer-
ence haplotype [13]. The HAC of a given haplotype
would thus correspond to the number of non-ancestral
(derived) alleles it carries, ranging from zero to the total
number of SNPs within the analyzed DNA sequences.
Under an incomplete selective sweep model, haplotypes
carrying a positively selected allele on its way to fixation
are very likely to also carry a large proportion of major
frequency alleles of the accompanying SNPs [5]. It is,
therefore, practical to define as a reference a haplotype
carrying only major frequency alleles of its constituting
SNPs. This major-allele-reference haplotype (MARH) is
expected to be structurally close to haplotypes carrying
a positively selected allele. Using the MARH, the HAC
of a given haplotype corresponds to the number of
minor alleles it carries. A selective sweep is expected to
favor haplotypes similar to the MARH and narrow HAC
distribution with respect to neutral distribution. There-
fore, we propose that HAC-derived statistics should be
helpful in identifying selection events using genetic
diversity data.
In this paper, we present Svd, the first summary statis-

tic based on HAC distribution intended to detect
ongoing selective sweeps. The resulting test can be used
on a specific DNA region or to scan larger sequences
using a sliding window approach. It appears less sensi-
tive than other tests to confounding factors such as
changes in population size or recombination. We suc-
cessfully tested our approach using the lactase persis-
tence locus on human chromosome 2, known to be
under recent positive selection in a range of human
populations [14-17].

Methods
Statistical Framework
Model
To evaluate the likelihood that a given SNP is affected
by an ongoing selective sweep, we considered separately
each of its two alleles. This SNP is referred to as the

evaluated segregating site. We compared the HAC dis-
tribution of all haplotypes carrying the major allele of
the evaluated site to the distribution of the remaining
haplotypes carrying the minor allele. In order to com-
pare these distributions, we considered their variances.
For a neutrally evolving sequence, the spread of both
distributions is expected to be a function of the fre-
quency of the evaluated allele, the extent of the asso-
ciated haplotypes and the recombination rate. When a
sequence evolves under a positive selection, the selected
allele rises in frequency. It drags behind all alleles of
adjacent SNPs that are carried on the same haplotype, a
process known as genetic hitchhiking [18]. Hence, the
HAC distribution of haplotypes carrying the selected
allele (or a linked hitch-hiked allele) will be tight and
characterized by low variance. At the same time, the
other allele would be expected to occur on a number of
haplotypes with a broader HAC distribution, i.e., greater
variance.
Variance Estimator
Since a probability distribution for HACs has not been
theoretically derived, the variance V(HAC) has to be
estimated. Let n be the number of sequences in the
sample, hi (for i = 1..n) be the HAC of sequence i, and

h be the empirical mean of the hi, then
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is a consistent and asymptotically normal sample esti-
mator for V(HAC).
Svd - a Statistic based on the HAC Variance Difference
We present a summary statistic developed to be com-
puted independently at each SNP. For any evaluated
SNP k, the n sampled sequences are divided into two
sub-samples: the sub-sample Rk, containing the haplo-
types carrying the major allele (present on the MARH at
SNP k) and the sub-sample rk, containing the remaining
haplotypes. We can then compute

vd v vk r Rk k
 ˆ ˆ

where v̂ Rk
and v̂ rk

are the variance estimators for the
sub-samples Rk and rk, respectively. Under neutrality,
vdk is expected to be close to zero, when Rk and rk con-
tain a similar number of sequences, or negative, when
Rk contains significantly more sequences than rk.
When the selected allele reaches major frequency due

to positive selection, the speed of this frequency rise
leaves little time for the carrier haplotype to diversify by
mutation or recombination. The HAC distribution for
Rk is then expected to be tight and close to 0, making

v̂ Rk
particularly small. Hence, vdk is expected to be
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positive when computed for a selected SNP and/or its
linked sites.
The vdk values should be normalized, in order to be

independent of haplotype length, to the number of the
contributing SNPs S. We can demonstrate (see Addi-
tional File 1) that the HAC variance is in O(S). We thus
obtain a normalized difference of variance estimators by
dividing vdk by S. Furthermore, because we only con-
sider cases when selection drives new alleles to major
frequencies, whereas high frequency ancestral alleles are
of little interest, the normalized vdk values are weighted
by the derived allele frequency of SNP k, fd, k, to obtain
the following summary statistic:

Svd
vrk vRk

S
fk d k




ˆ ˆ
,

Statistical Test of Neutrality using Svd
Svd can be used as a decision variable for a test that
could statistically distinguish a site evolving under neu-
trality from one subjected to ongoing positive selection.
Neutrality is rejected when Svd is superior to a critical
value. For all subsequent analyses, the critical value c of
the test is defined as Pr(Svd >c|neutrality) = p, with p =
0.05. The detection power represents the sensitivity of
the test, i.e., the probability of having Svd >c when a
selective sweep is in progress.

Test Validation Using Simulations
Simulated data under various scenarios is used to com-
pute the distribution of Svd and evaluate its detection
power to find signatures of ongoing positive selection.
We simulated DNA sequences under a wide range of
neutral and selection models. Each simulated data set
contained 1,000 sample replicates of n = 50 sequences
obtained with a population mutation rate Θ = 223,
which on average leads to ~1,000 SNPs per sample of
50 sequences, under selective neutrality with constant
population size [19]. The simulated datasets were evalu-
ated using Svd and three other statistics: the unstandar-
dized version of LD-based statistic iHS [2] and two site-
frequency-spectrum statistics, Tajima’s D [8] and the
normalized version of Fay and Wu’s H [7,10]. All statis-
tics were calculated for haplotypes of fixed length S =
51, with the evaluated site located at their central posi-
tion. For Svd, additional lengths were examined (S = 26,
51, 201, see Table 1).
Coalescence simulations under selective neutrality

were carried out using the ms program [20]. In a stan-
dard scenario, population evolves for 4,000 generations
without recombination. In a population bottleneck sce-
nario, the same population evolves for 3,660 generations,
experiences a 95% reduction in size during 80

generations and recovers for subsequent 260 generations
(see Additional File 1). At demographic expansion, a
population of Ne = 500 grows to Ne = 1,000 in the last
300 generations (see Additional File 1). Recombination
was tested under the standard scenario with a popula-
tion recombination rate r = Θ/2, kept constant along
the sequence.
SelSim [21] was used to simulate sets of replicates

under an ongoing selective sweep. In a default selection
scenario, a population evolves under the standard sce-
nario with the evaluated SNP brought to a frequency of
f = 0.75 by the ongoing positive selection with a selec-
tion coefficient of s = 0.15. Small and large population
selection scenarios were tested, where a population of
Ne = 500 and Ne = 2000, respectively, evolved under the
default selection scenario. Recombination was tested
under the default selection scenario with a population
recombination rate r = Θ/2 kept constant along the
sequence and in the presence of hotspots. In the latter
case, the background rate is again rb = Θ/2 with hot-
spots rate rHS corresponding to 10 rb (weak hotspot)
and 100 rb (strong hotspot). Hotspots are located 2 Kb
downstream of the evaluated site. In addition, samples
for a range of values of f = 0.6, 0.7, 0.75, 0.8, 0.9 and s =
0.05, 0.15, 0.5 were also simulated.

Ascertainment Bias and Haplotype Phasing
In some ascertainment protocols, SNPs are reported
only if they have some minimum frequency in the sam-
ple. Since sites with a minor allele frequency (MAF)
below 0.05 are considered more likely to reflect sequen-
cing errors and less useful in genome-wide mapping,
they were typically excluded from genotyping chips. To
approximate such situations, singletons and doubletons
were removed from the simulated replicates (with n =
50, these SNPs have a MAF below 0.05). In addition, we
recreated an ascertainment scheme involving the identi-
fication of SNPs in a smaller sequencing panel consist-
ing of m chromosomes and genotyping them in a larger
panel of size n. To evaluate the impact of the sequen-
cing panel size, different values of m were considered:

Table 1 Svd power to detect selection in the context of
various population scenarios.

Population model parameters Window size (S) Detection Power

Default 25 0.74

50 0.81

200 0.84
1
2 × population size 50 0.8

2 x population size 0.91

Constant recombination rate 50 0.68

Weak recombination hotspot 0.67

Strong recombination hotspot 0.65
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m = 4, 8, 12, 16, 20, 26, 32, 38, 44 and 50 (at m = 50,
there is no ascertainment bias). The ascertainment pro-
cedures are applied to each replicate simulated under
the default selection scenario. To recreate the effect of
haplotype phasing, for each replicate of a simulated
dataset, we randomly assigned n = 50 sequences to 25
individuals. We then resolved the resulting genotypes
back to haplotypes using the fastphase program [22].
The Svd statistic was then computed on haplotypes of
length S = 50, 200, 400, 600 and 800, centered on the
evaluated site. This procedure was applied to the set of
replicates simulated under the default selection scenario.

Detection Power
To assess the detection power of Svd, iHS, D and H
under different selection scenarios, we needed to deter-
mine critical values at p = 0.05 for each set of para-
meters. These critical values were obtained by
computing the statistics on datasets simulated under the
same scenarios, with identical ascertainment and haplo-
type reconstruction procedures and with identical para-
meters except for the selection coefficient, which was
set to s = 0. The critical Svd value c was determined for
each scenario so that the proportion of Svd values
greater than or equal to c, at s = 0, was exactly 0.05.

Application to Data
Genotypes
Experimental data were from the HapMap project,
Phase II Release 21a [23]. The Japanese (JPT) and Chi-
nese (CHB) samples were considered together as the
East-Asian (ASI) sample of 89 unrelated individuals.
The West European (CEU) sample and the Yoruba from
Nigeria (YRI) sample contain 60 unrelated individuals
each. The phased haplotype data were taken directly
from the BioMart HapMap browser http://hapmart.hap-
map.org/BioMart/martview, which no longer gives
access to the Phase II Release 21a dataset. This dataset
is currently available from the HapMap ftp site ftp://ftp.
ncbi.nlm.nih.gov/hapmap/. The chimp allele, or the
macaque allele when the chimp allele was unavailable,
was used as a proxy of the ancestral allele of a human
SNP, found through the UCSC table browser http://gen-
ome.ucsc.edu/cgi-bin/hgTables?command=start. When
both the chimp and macaque orthologous alleles were
unavailable in the UCSC database, such SNPs were
discarded.
Scan and Candidate Approach
We used a sliding window approach with different win-
dow lengths to analyze the entire chromosome 2 in ASI,
CEU and YRI. The number of SNPs analyzed was
221,956, 206,665 and 252,249, respectively. The window
of fixed length S slides one SNP at a time. We assigned
p-values to each SNP according to the empirical

distribution of Svd values, computed for all SNPs of
chromosome 2.
In addition, we analyzed the lactase persistence locus

in CEU, where we considered 26 polymorphic sites (rs
IDs are listed in Additional File 2, Table S1) from the
MCM6 gene in the genomic region
Chr2:136424478..136459810. To measure confidence in
inference of selection in this genomic region, for each
SNP we evaluated its associated p-value based on a
simulated distribution of Svd values (see below).
Replicates Matching the MCM6 Locus
To assign p-values to the observed CEU data, we simu-
lated a set of 1000 replicates, with 120 chromosomes, at
the population mutation rate Θ = 223. The evaluated
SNP in all replicates was under positive selection at s =
0.15, assuming current f = 0.78, which corresponds to
the frequency of the MCM6 T variant (rs4988235) in
CEU. To model SNP ascertainment, we used a rejection
sampling, as described by Voight and collaborators [2],
to modify the simulated frequency spectrum to corre-
spond to the observed frequency spectrum of SNPs in
chromosome 2. To match the MCM6 locus in CEU,
haplotypes of 26 SNPs were chosen in such a way that
the 8th SNP of each replicate is the one under positive
selection. P-values were estimated by comparing the Svd
values computed from experimental data to the Svd dis-
tribution obtained by simulation.

Results
Distribution of Svd Values
The distribution of Svd values obtained under the
default selection scenario is sharply different from distri-
butions observed under a range of neutral scenarios,
which are almost identical to each other (Figure 1A).
This difference is less dramatic in the case of iHS, D
and H, indicating relatively poorer discrimination of
selection by these three statistics. Figure 1 shows only a
small overlap between Svd values computed under selec-
tion and under other scenarios, supporting further the
relative robustness of Svd.

Svd Power to Detect Ongoing Positive Selection
Under the default selection scenario, the detection
power of Svd at p = 0.05 is 0.81 (Table 1). Its detection
power at different false discovery rates (FDR) outper-
forms the three compared statistics at FDR > 0.05
(Additional File 2, Figure S1). On the other hand, Svd is
less efficient than iHS at FDR < 0.05 and its perfor-
mance becomes comparable to D at even lower FDRs.
Overall, iHS appears to have the highest specificity,
whereas Svd has the highest sensitivity with the detec-
tion power reaching 0.95 at FDR = 0.1.
The detection power of Svd increases with haplotype

length (i.e. window size) and when the population size is
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greater (Table 1). It decreases when the analyzed seg-
ment undergoes recombination and in presence of
recombination hotspots. The power of the test increases
with the increasing strength of selection s and/or the
increasing frequency of the selected allele f (Figure 2).
We observed a small effect of the ascertainment bias
introduced by genotyping SNPs, which were found in
the sequencing panel consisting of a smaller number of
individuals than the genotyped sample (Figure 3A).
Ascertaining SNPs in less than 5 out of 25 genotyped
individuals decreased the detection power. It remained
practically constant when half or more of the genotyped
individuals were used in the ascertainment. A slight
decrease in the detection power following 6 individuals
(Figure 3A) can be explained by an increased number of
rare SNPs that are eventually genotyped due to an
increasing number of individuals in the sequencing
panel. As a result, the compared HAC distributions
became noisier. Greater proportion of practically non-

informative SNPs in the analyzed haplotypes effectively
lowers the window size and thus affects the detection
power. Consistently, the removal of the singleton and
doubleton SNPs from the analyzed replicates increases
the detection power from 0.81 to 0.88. The determina-
tion of haplotype phase experimentally is prohibitively
expensive, whereas it is done relatively efficiently using
statistical methods such as the PHASE and fastphase
algorithms [22,24]. However, as these algorithms tend to
cluster the sampled sequences together into groups of
similar haplotypes, the phasing procedure is expected to
narrow the HAC distribution. This may reduce Svd
values and decrease the detection power of the test. An
important drop in detection power, from 0.81 to 0.56,
was observed following phasing by fastphase (Figure 3B).
Because of the nature of our test, where only mutational
distance from the MARH matters, using longer haplo-
types can compensate the decrease in power due to
phasing (Figure 3B).

Figure 1 Simulated distribution of Svd, iHS, D and H in neutrally evolving populations and under an ongoing selective sweep.
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Application to the Data
Using HapMap data, we analyzed Svd distribution along
chromosome 2. Figure 4 presents results of this analysis
for a 50- to 200-Mb segment of chromosome 2 in the
ASI sample. For clarity, it only shows the top 1% of the
positive Svd values. When these top SNPs occur in clus-
ters, it suggests that an ongoing selective sweep can be
taking place in the underlying genomic regions. Interest-
ingly, the clusters we observed include six loci (ALMS1,
SUCLG1, EDAR, MGAT5, DIRC1 and GTF3C3) that
were earlier proposed as positively selected by others
[25-27]. In most instances, both the intensity and reso-
lution of these clusters increase in relation to the win-
dow size from S = 50 to S = 200 and even above. We
note, however, that some signals fade with the increas-
ing window size in the range of the examined window

sizes. This is the case of the LOC375295 adjacent clus-
ter located at 177 Mb. This behavior is likely a function
of the extent of LD surrounding the selected site,
reflecting either the age of a selective sweep or the local
intensity of recombination, or both (Figure 4 and Addi-
tional File 2, Figure S2). Another clustered signal, seen
at all window sizes, suggests positive selection in the
124- to 125-Mb region. Interestingly, this region con-
tains the CNTNAP5 gene of the neurexin family
involved in cell contacts and communication in the ner-
vous system. Table 2 summarizes loci previously identi-
fied by other studies that also display strong signals of
ongoing positive selection in the Svd scan of chromo-
some 2. We also reported the p-values of the iHS statis-
tic, which successfully identified 4 of the 10 loci
reported.
Comparing signals between populations can help vali-

date targets of selection. Figure 5 compares positive Svd
plots for the three HapMap population samples in the
130- to 140-Mb region of chromosome 2. Its smaller
segment which contains two neighbouring genes, lactase
(LCT) and MCM6, is highlighted in red. As shown, no
single SNP reaches the top 1% of positive Svd values in
ASI and YRI. In contrast, a strong Svd signal, consistent
with the ongoing positive selection is observed in the
CEU population. A transition from C to T (rs 4988235)
located in the MCM6 gene 13910 bp upstream of the
LCT initiation codon, is known to be responsible for the
lactase persistence phenotype in Europeans [28]. Our
results above as well as those obtained using LD-based
methods all indicate the effect of ongoing positive selec-
tion in this region [1,17]. We computed Svd for each of
the 26 SNPs found in the MCM6 locus as shown in Fig-
ure 6. Svd values were computed for each evaluated site

Figure 2 Power of Svd to detect ongoing selective sweeps.

Figure 3 Impact of experimental bias on the detection power of Svd.
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in the context of the haplotype consisting of the 25
remaining SNPs. The reported p-values were obtained
from simulations separately for each of the observed Svd
values (see Methods). The 13910T lactase persistence
variant is found on a haplotype carrying 18 ancestral
and 8 derived alleles and this particular haplotype turns
out to be the reference haplotype, because all its alleles
are major. A p-value of 0.026 obtained for the C ® T-

13910 polymorphism is consistent with the role of its T
allele in lactase persistence in Europeans.

Discussion
The neutral theory of molecular evolution [29] recog-
nizes genetic drift as the main force shaping genetic var-
iation. However, many recent studies suggest that
substantial portions of the human genome have evolved

Figure 4 Top Svd values in the 50- to 200-Mb region of the human chromosome 2, based on the sliding window scan in the ASI
population sample, using different haplotype length (window size). For clarity, only the values in the 99th percentile of the computed Svd
> 0 are plotted. Bottom plot shows variation in the fine-scale recombination rate r estimated using InfRec [35]. The colored boxes indicate the
location of six loci previously identified as targets of selection [25-27]. The gray shading boxes indicate the location of two new loci, where
clustered signals found by our approach suggest positive selection as well.
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under positive selection [30]. Selected loci can cause
changes in the frequency of genetically linked sites
remarkably similar to fluctuations caused by genetic
drift, as Gillespie’s model of genetic draft suggests [31].
This means that if there are many genes undergoing
partial selective sweeps in the human genome, genetic
variation might be shaped by selective forces acting on
adaptive mutations and not mainly by genetic drift. To
test whether genetic variation should be interpreted in
the light of models of draft rather than drift, it seemed

that a good strategy would be to develop a statistical
test specific for detection of incomplete selective sweeps.
In this paper, we have presented a novel intuitive and

computationally efficient statistical test based on Svd, a
statistic specifically created to look for genomic signa-
tures of strong incomplete selective sweeps. When
developing this statistic, we found it useful to start by
displaying genomic diversity data in histograms of hap-
lotype allelic classes that capture information on haplo-
type diversity combined with that on the contributing

Table 2 Results of Svd scan in ten chromosome 2 genes under positive selection according to previous reports

CEU ASI YRI

Genes
(chr2)

Ref
studies

Most significant
SNP

pvalue
(S)

iHS
pvalue

Most significant
SNP

pvalue
(S)

iHS
pvalue

Most significant
SNP

pvalue
(S)

iHS
pvalue

ALMS1 [25] - - - rs11126402 5.13·10-4

(400)
0.755 - - -

EDAR [25-27] - - - rs17036146 1.45·10-5

(800)
1.05·10-3 - - -

DIRC1 [26] - - - rs7578063 9.68·10-6

(400)
0.608 - - -

GTF3C3 [25] rs10163352 1.85·10-3

(400)
6.15·10-3 rs12989157 1.88·10-4

(200)
9.74·10-3 - - -

MCM6 [2] rs4988235 7.88·10-4

(800)
3.61·10-4 - - - - - -

LRP1B* [26] - - - - - - rs10194564 1.67·10-4

(600)
0.209

MGAT5 [25] rs1561277 3.15·10-5

(200)
6.72·10-2 rs7608637 1.46·10-3

(200)
0.753 - - -

SLC3A1 [27] - - - - - - rs1067321 5.55·10-5

(600)
0.149

ADCY3 [2] - - - - - - rs713587 1.11·10-4

(800)
5.98·10-3

SUCLG1* [25] rs10210248 3.60·10-5

(400)
0.787 rs6721249 6.44·10-4

(800)
3.82·10-2 - - -

Table reports rs ID of SNPs showing the most significant signal as indicated by its p-value at window size indicated in parenthesis (* the signal appears in the
upstream region of the gene). For each significant signal, the p-value computed for iHS in the gene and population by the Haplotter web tool is reported
(significant values at p < 0.01 are written in bold).

Figure 5 Positive Svd values in a 10-Mb region of chromosome 2. Plots of Svd > 0 for the three HapMap populations using a window size
of 800 SNPs. Svd values plotted above the dashed blue lines are in the 99th percentile of all positive values computed for the whole
chromosome 2 in each of the population samples. The 1-Mb segment containing the LCT and MCM6 genes is plotted in red. A strong and clear
signal of positive selection is found in this region in CEU, while no signal is detected in the two other populations.
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SNPs. In this way, HACs provide an interesting frame-
work to developing summary statistics as convenient
substrates to develop new neutrality tests.
The Svd statistic is based on the allelic variability of

SNPs and the resulting haplotypes and on the expected
different apportionment of these between the selected
allele and its complementary allele for the site under
sweep. It is thus likely that it behaves differently when
compared with other statistics such as iHS, D or H and
tends to be less sensitive to demographic changes. While
our simulation experiments were based on a restricted
set of parameters, they illustrate the fact that the Svd test
has good detection power and should perform well on a
variety of population models. We demonstrated the
potential of the Svd test, applicable to genomic data
when using a sliding window approach, as shown by our
analysis of the human chromosome 2 (Figures 4 and 5).
To evaluate the statistical significance of the outcome of
the test, we first used an empirical approach. We
assigned p-values to concrete Svd values based on the
empirical distribution of all Svd values obtained by scan-
ning the whole chromosome 2 in the analyzed population
sample. Subsequently, to validate a candidate locus, such
as MCM6, we evaluated p-values of each of its SNPs by
simulations taking into account any prior information we
may have had on the locus itself and on the population in
which the signal was found (recombination rates, allelic
frequencies, demography, SNP-ascertainment protocol).
A strong signal of ongoing positive selection in the lac-
tase persistence locus is found only in the European-
derived population. This result was expected. In Europe,
cattle were domesticated 10,000 years ago and cultural
habits associated with milk consumption may have been
advantageous for individuals (nutritional benefit,

improved calcium absorption [14]). Although the SNP
with the strongest Svd signal, based on the p-value
obtained by simulation, was already identified as asso-
ciated with lactase persistence in European populations,
our analysis demonstrates the great potential of the pro-
posed method in detecting new candidate polymorph-
isms for association studies.
The majority of available genotyping datasets are

biased in the choice of the genetic markers typed,
because they were collected for use in linkage and asso-
ciation studies and the analysis of this data should focus
on tests of overall diversity [4]. Svd can thus be applied
to such datasets because computing HAC distribution
provides a summary of overall haplotype diversity. In
addition, the removal of rare SNPs from simulated data
increases detection power, which suggests that the Svd
test may perform even better on data with common
SNPs than on data with rare and common variants. This
can be explained by greater informativeness of common
SNPs. Removal of rare SNPs increases the effective win-
dow size, thus increasing the detection power (Table 1,
Figure 3A). In the case where a site under selection is
not among SNPs that are genotyped, selection would
still be detected by an Svd test through the surrounding
linked SNPs, although the detection power may be
decreased (data not shown).
Inaccuracy in haplotype inference is known to hamper

the detection of signature of positive selection in genetic
data and strategies to accurately infer haplotypes (e.g.
using trio data) must be applied prior to using selection
detection methods [32]. We observed, with simulation
data, a loss of power of Svd selection test due to haplo-
type phasing, but the test remains conservative in the
sense that phasing errors won’t create false positive

Figure 6 Using the Svd test at the MCM6 locus. Plot of the negative log p-values for the 26 SNPs in the MCM6 locus in CEU. The reference
major allele frequency haplotype is shown on top. Stars indicate derived alleles and the red star corresponds to the T-13910 mutation
(rs4988235), believed to be responsible for the trait in Europeans [28]. P-values were obtained as described in Methods and the dotted and
dashed line delimit p = 0.1 and p = 0.05 cutoff, respectively.
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results. Using longer, and thus potentially more informa-
tive haplotypes can compensate this effect. Therefore, the
use of large windows, in the range of hundreds of SNPs,
could be recommended to increase the signal. If this
works, it suggests that the selective sweep is relatively
young or that its signature persists longer because of a
relatively low local recombination rate. In other words,
longer haplotypes appear to be more robust, but at the
same time, are more sensitive to recombination and to the
age of a genetic sweep. This explains why certain signifi-
cant Svd signals may fade with the increasing window size.
Different haplotype lengths are thus to be explored to scan
the genome or a specific region of interest. Given the data
and the recombination rates, we used a pre-treatment
method to determine the “pseudo-optimal” haplotype
length around each SNP to consider as a starting point
and guide the practical analysis (see Additional File 1).
The idea behind the Svd statistic is very similar to the

approach used to compute the iHS statistic [2]. The
advantageous alleles favored by positive selection are
generally found within large shared haplotypes where
the level of diversity is reduced. These haplotypes con-
trast with the more variable haplotypes, which do not
carry alleles under selection. With iHS, one can look at
the decay of identity of haplotypes that carry a specific
allele. With Svd, rather than looking at haplotype homo-
zygosity, we contrast haplotypes carrying one or the
other allele of the evaluated site. For haplotypes of 50
SNPs, at FDR = 0.05, iHS and Svd have the same detec-
tion power when the selected allele frequency is over 0.5
(Figure 1). When the selected allele frequency is under
0.5, Svd is not expected to find the signal whereas iHS
can detect low frequency sweeps.
Furthermore, iHS outperforms Svd when FDR < 0.05.

On the other hand, Svd power increases with haplotype
length. Even if the edges of the selected haplotype are
broken by recombination, the portion of originally
selected haplotype still remain within the analyzed pool,
portioned among different sequences. Using simulated
data where the selected site is surrounded by one or
two hotspots of recombination, we showed that Svd had
a better detection power to identify signals of selection
(Additional File 2, Table S2), because long range haplo-
type tests require intact haplotypes to remain in the
population. Yet, recombination hotspots are expected
every 50 Kb [33]. Svd can therefore be considered as a
useful complement to long-range haplotype statistics in
detecting signatures of recent positive selection.

Conclusions
Different steps in the analysis of selection signatures
proposed in this study can be modified, depending on
the data and specific questions. Here, our reference hap-
lotype was composed of predominant alleles in the

population, but other reference haplotypes can be con-
sidered [13]. Other applications are also possible, such
as the use of Svd to compare groups of haplotypes in
case-control studies. Furthermore, because the HAC dis-
tribution is also sensitive to a complete selective sweep,
an approach similar to the one proposed by Kimura and
collaborators [34] to identify fixed loci under positive
selection could be developed using HAC distribution
instead of haplotype homozygosity.

Additional file 1: Supplementary details. Svd normalization, simulation
parameter choices, procedure to determine the haplotype lengths and
method availability.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
65-S1.PDF ]

Additional file 2: Supplementary Figures and Tables. Figures S1, S2
and Tables S1, S2.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
65-S2.PDF ]
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