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There are three clinically used sources of hematopoietic stem
cells (HSC) and hematopoietic progenitor cells (HPC) for
hematopoietic cell transplantation (HCT): bone marrow (BM),
umbilical cord blood (CB), and cytokine-induced mobilized
peripheral blood (mPB) cells.1–5 Each source of clinically used
cells has its advantages and disadvantages. Of these, mPB cells
make up the majority of autologous and allogeneic HCT efforts
worldwide. The advantage of mPB is that one can, in many cases,
usually collect more than enough cells to ensure a rapid and long-
lasting donor graft, be it for autologous or allogeneic HCT. The
“gold” standard for collection of mPB has been, and continues to
be, the cells mobilized from the BM to peripheral blood by
multiple additions of the cytokine granulocyte colony-stimulat-
ing factor (G-CSF) each day over a number of days. However, G-
CSF-induced mPB does not always yield enough cells for a graft,
takes 4–5 days for optimal yield of HSC and HPC, and can entail
leukocytapheresis efforts to obtain enough cells for a transplant.
This requires the donor to be ready and willing for multiple days
of G-CSF treatment. Moreover, there are patients who do not
mobilize HSC and HPC well for a number of reasons, including
low numbers of these cells inherent in the BM of the patient
undergoing an autologous transplant—an example being
patients with Fanconi anemia, under such conditions, one might
attempt to use gene therapy on the mobilized cells to correct the
Fanconi anemia gene defect. New, simple, and less time-
consuming efforts to mobilize HSC and HPC for clinical use
would be advantageous. In this context, a recent article by
Hoggatt et al.6 describes a new regimen combining two small
molecules (GRO-beta and AMD3100) to quickly mobilize HSC
and HPC in mice.
As a background to the article by Hoggatt et al.,6 a number of

small molecules have been used in mice and/or man, alone or in
combination with G-CSF, to enhance collection of HSC andHPC
with an optimized mobilization procedure. This includes the
chemokine, macrophage inflammatory protein (MIP)-1 alpha
(also referred to as CCL3),7–10 which, although active as a
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mobilizer in mice, did not show much, if any, efficacy in humans
when its analog BB10010 was used.7–10 Among a number of
small molecules that have been used to mobilize HSC and HPC,
one that stands out and has been used for good advantage is
AMD3100 (Plerixafor).3–16 AMD3100 has been used alone but
synergizes with G-CSF to greatly enhance mobilization of HSC
and HPC in both mice and humans.11–14 The combination of the
two usually entails 4 days or more of G-CSF given twice a day
with AMD3100 given on the last day of G-CSF administration,
and the cells are collected hours later. Another small molecule,
the chemokine growth-regulated protein (GRO)-beta (also
referred to as CXCL2), has shown some efficacy in mice and
rhesus monkeys17 and now in humans6 as a mobilizer of HSC
and HPC, although the GRO-beta by itself in humans had only
modest effects.6 In contrast to G-CSF, which takes days to
mobilize sufficient HSC and HPC, AMD3100 and GRO-beta,
each when given alone, act quickly in mice within 15minutes to a
few hours.
In an effort tomore quickly and simplymobilize HSC andHPC,

groups from the Indiana University and the Harvard University
collaborated to assess the combined mobilizing effects of GRO-
beta and AMD3100 in mice.6 Take-home messages from their
article were several fold: A single injection of both GRO-beta,
which acts as an agonist through the C-X-C chemokine receptor
type 2 (CXCR2) on neutrophils resulting in release of metal-
loproteinase (MMP) 9,6 and AMD3100, which can act as an
antagonist of the stromal cell-derived factor (SDF) 1/C-X-C
chemokine ligand 12 (CXCL12)-CXCR4 receptor axis interac-
tion11–14 but which also manifests agonistic effects on this latter
interaction,18 results in mobilizing the same numbers of HSC and
HPC inmicewithin 15minutes,which takes days tomobilize using
G-CSF.Of significance and high biological interest, they noted that
the combination of GRO-beta and AMD3100 mobilized a higher
engrafting and competitive HSC population than that of G-CSF.6

This may not be too surprising a find, because there was some
evidence that AMD3100 alone and in combination with G-CSF
also seems to mobilize a high engrafting HSC population.11

As exciting as their mouse data6 is, the combination of MIP-1-
alpha plus AMD3100 plus G-CSF was amore potent mobilizer in
mice than either combination of two alone,9 and whether or not
such an efficaciousmobilization procedure using the combination
of GRObeta and AMD3100 will work in humans remains to be
seen. It may take a while to sort out the best mobilization timing
in humans. While GRO-beta seems to work within 15minutes in
mice and humans as amobilizer,6 AMD3100 takes amuch longer
time to mobilize in humans than in mice (e.g., AMD3100 in mice
peaks at about 1 hour but takes 9–12hours in humans for
maximal effectiveness).11–14 However, sorting this window of
timing out for the combined use of GRO-beta and AMD3100 in
humans should not be too difficult.
113

mailto:hbroxmey@iupui�.�edu
http://dx.doi.org/10.1097/BS9.0000000000000003
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
http://www.blood-science.org


6

Broxmeyer
A most intriguing aspect of the work by Hoggatt et al. is the
characteristics of the cells mobilized by the combination of GRO-
beta plus AMD3100. What exactly is this higher engrafting and
competing HSC population? RNA sequencing found that these
highly engrafting and competitive mouse cells have a distinct
transcriptome different from that of G-CSF mobilized mouse
cells,6 but it is not yet clear if these differences can be defined with
regard to the surface phenotype of HSC to separate out these
highly engrafting from lesser engrafting HSC. Cluster density
(CD)166 is a type 1 cell surface transmembrane glycoprotein that
is a member of the immunoglobulin superfamily of mole-
cules.19,20 CD166 is present on the surface of mouse and human
HSC as well as on the regulatory cells in the microenvironment
niche. Perhaps CD166 may be a usable surface marker candidate
when added to the most rigorously defined phenotypic HSC
populations to distinguish differentially engrafting cells. Can
adding CD166 as a marker further define this highly functional
HSC population in mice and man, and what about other cell
surface functional markers such as CXCR4, the homing and
survival receptor for SDF-1/CXCL12,21–26 and dipeptidyl
peptidase (DPP) 4 that can truncate and change the activities
of a number of biologically active proteins including SDF-1/
CXCL12?27–31 How well these additional markers work for
human cells to define themore efficacious engrafting cells remains
to be determined and may well depend on the expression levels of
these surface proteins.
Once the characteristics of these highly engrafting cells are

known, the question becomes if this engrafting ability can be
further enhanced or are these cells already maximally fit for
engraftment? A number of different measures have been used to
enhance engraftment of CB HSC, in part through enhancing the
expression of CXCR4 on the cells and increasing the homing
capacity of these cells. This includes using short-term ex vivo
pulsing periods (e.g., hours) with inhibitors of DPP427,30 or of the
enzyme histone deacetylase (HDAC)532 and/or use of prosta-
glandin E (PGE),33,34 glucocorticosteroids (e.g., dexamethosone
or Flonase),35 or hyperthermia treatment36 of the donor cells, as
well as short-term DPP4 inhibitor administration to the recipient
before administration of the donor cells.30,37–39 Combined PGE
pulsing of mouse BM donor cells into DPP4-inhibitor-treated
recipients has already been shown to enhance engraftment of
mouse BM cells into lethally irradiated mice.40

Efforts to enhance the collection and engrafting capability of
donor cells are ongoing in numerous laboratories worldwide.
We have found that collecting mouse BM and human CB cells
under hypoxic conditions (e.g., at 3% oxygen) or in ambient air
in the presence of cyclosporine A mitigates the effects of extra
physiological oxygen shock/stress (EPHOSS) that acts through
a cyclophilin D–P53–mitochondrial permeability transition
pore axis, which involves the release of reactive oxygen
species, hypoxia-inducing factor, and the hypoximer,
miR210.41 EPHOSS, upon collection of cells in ambient air,
causes rapid loss of HSC through a differentiation, rather than
cell death, phenomenon. Would such collections of the mPB in
hypoxia or in air in the presence of cyclosporine A or
combinations of inhibitors of antioxidants and/or epigenetic
enzymes42 enhance numbers of GRO-beta and AMD3100 mPB
HSC?
It is only through rigorous experimentation that we will

enhance the efficiency of HCT using not only mPB but also BM
and CB. However, a note of caution is necessary when trying to
move frommouse studies to human trials. Some efforts that work
in humans do not seem to work in mice.32,35 For example,
114
glucocorticosteroids and HDAC5 inhibitors worked with
human, but not mouse, cells and it is possible that certain
efforts that work in mice will not work with humans, or the
timing differences for optimal efficacy may vary. The only way to
know for sure is to do the experiments and then test them to
determine if they work in humans.
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