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Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mito-
chondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we
have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate
with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only
drug tested that activated AMPK. Salicylate also reducedmTOR signalling, but this property was observedwidely
among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key
gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production inmouse primary hepa-
tocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic
knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previ-
ous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither
NF-κB normTOR signalling suppressed glucose production, suggesting that other factors besides these cell signal-
ling pathways may need to be considered to account for this response to salicylate. We found, for example, that
H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar
time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible
effect at all of two salicylate analogueswhich are not anti-hyperglycaemic. This finding supports much earlier lit-
erature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Our recent work has investigated the mechanism of action of the
biguanide metformin [1–3] using chemical analogues of the drug. We
have become interested in widening this approach to study other anti-
hyperglycaemic agents, particularly those that share responses with
biguanides. For the current study, we have focused on the anti-
hyperglycaemic effects of the hydroxybenzoic acid (HBA) salicylate
(SA), which require much higher concentrations than are required to
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. This is an open access article under
inhibit prostaglandin production, suggesting that other mechanisms
contribute to their antidiabetic effects [4]. AMP-activated protein kinase
(AMPK) is an important focus of research, due to the discovery that
salicylates and other anti-hyperglycaemic agents including biguanides
and glitazones share in common an ability to activate AMPK [5–9].
This enzyme, which is activated by energy stress (for example, elevated
[AMP]), acts as a cellular energy checkpoint, suppressing ATP-
consuming processes and promoting ATP-generation [10,11]. Before re-
cent studies on salicylate and AMPK [12], work on salicylate and related
drugs in the 1950s suggested that anti-hyperglycaemic efficacy might
be related to uncoupling effects [13–16]. One study in the 1970s found
that SA suppressed hepatic gluconeogenesis [17], but in recent years, in-
flammatory signallingmechanisms, particularly inhibition of TNF-α-in-
duced NF-κB signalling [9,18–20], have becomemore prominent. Other
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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workers have found that TNF-α-dependent activation of NF-κB sup-
presses gluconeogenesis [21], suggesting that effects of SA on the mito-
chondria and NF-κB could even oppose each other at the level of
gluconeogenesis.

It is very difficult to distinguish the relative contribution of these re-
sponses by geneticmodification, not least because the uncoupling effect
is unlikely to require interactionwith any specific gene product. Genetic
knockout of IKKβ [20] improves glucose tolerance akin to treatment
with SA; however, it has not yet been possible to demonstrate genetic
blockade of anti-hyperglycaemic effects of SA. For example, SA signifi-
cantly improves glucose tolerance in AMPK-knockout mice [12], and
other gene-targeting studies with metformin indicate that repression
of hepatic gluconeogenesis with this agent can proceed in an AMPK-
independent manner [2,22]. In the current study, exploitation of the
chemical analogue approach, involving comparison of SA with other
HBAs, has afforded an excellent opportunity to investigate which of
these cell responses correspond best with known anti-hyperglycaemic
responses to the drugs.

2. Materials and methods

2.1. Materials

The compounds used in this study were dissolved directly in DMEM
and the pH corrected to pH7.4. The phospho-acetyl-CoA carboxylase
(ACC) Ser 79 antibody was from the Division of Signal Transduction
Therapy at the University of Dundee. The total ACC, total AMPKα,
phospho-AMPKα Thr 172, total S6, phospho-S6 Ser 240/244,
phospho-p70S6K Thr 389, total IκB, pNF-κB, total IKKα, and total IKKβ
antibodies for immunoblotting were from Cell Signaling Technology.
Actin antibody was from Merck. Antibodies used in the AMPK activity
assays were a generous gift from Prof D. Grahame Hardie at the Univer-
sity of Dundee. Chemical structures were drawn using ChemSketch.
BI605906 was a generous gift from Prof Sir Philip Cohen (MRC Protein
Phosphorylation and Ubiquitylation Unit, Dundee).

2.2. Cell culture and lysis for immunoblotting

H4IIE cells were maintained essentially as described previously [1,
23–25] grown in DMEM plus 5% Fetal calf serum (Seralab) and used
for nomore than 30 passages. Briefly, freshmediumwas added the eve-
ning before an experiment and cells were lysed on the fifth or sixth day
after seeding. Two hours prior to stimulation, cells were placed in
DMEM without serum. For lysis, cells were scraped into ice-cold buffer
A: (50 mM Tris acetate pH7.5, 1% (w/v) Triton X100, 1 mM EDTA,
1 mM EGTA, 0.27 M sucrose, 50 mMNaF, 1 mM sodium orthovanadate,
10 mM β glycerophosphate, 5 mM sodium pyrophosphate, 1 mM
benzamidine, 0.2 mM phenylmethylsulfonyl fluoride (PMSF), and 0.1%
(v/v)β-mercaptoethanol) and thenprepared for SDS-PAGE asdescribed
previously [26,27]. The protein concentration was measured using
Bradford reagent (Pierce). HT-29 cells were a generous gift from
Prof. Inke Nathke (Dundee). They were grown similarly to H4IIE cells
except that they were cultured in 4.5 g/l glucose-containing DMEM
Table 1
Comparison of effects of HBAs SA, 2,5-DHBA, and 2,6-DHBA.

Compound Reduced glucose production
(this study)

Activation of AMPK activity
(this study and [12])

SA Yes Yes
2,5-DHBA
(gentisate)

No No

2,6-DHBA
(γ-resorcylate)

No No
supplemented with 10% serum (PAA) and non-essential amino acids
(Sigma). Extraction of primary hepatocytes was carried out essentially
as described previously [1,22]. Immunoblot densitometry for each anti-
body was performed with Image Studio Lite version 5.2 (LI-COR).

2.3. Preparation of cell extracts, immunoprecipitation and assay of AMPK

This was carried out essentially as described previously [1]. Briefly,
cells were washed twice in ice-cold PBS then harvested in ice-cold
lysis buffer (50mM Tris–HCl, pH 7.4, 50 mM sodium fluoride, 5 mM so-
dium pyrophosphate, 1 mM EDTA, 1 mM EGTA, 150 mM sodium chlo-
ride, 1 mM dithiothreitol (DTT), 0.1 mM benzamidine, 0.1 mM PMSF,
1% Triton X-100, and 5 μg/ml soybean trypsin inhibitor). Lysates were
cleared of debris by centrifugation at 13,000g for 15 min at 4 °C, and
the protein concentration measured as in the previous section. AMPK
assay was carried out essentially as described previously [1]. Briefly,
cell extracts were incubated overnight with protein G sepharose conju-
gated to both anti-AMPKα1 and AMPKα2 antibodies [28]. Immunopre-
cipitates were pelleted and rinsed twice with 1 ml ice-cold buffer (as
above but with 0.5 M NaCl) and once with ice-cold HEPES buffer
(50 mM HEPES pH 7.4, 0.03% Brij-35, and 1 mM DTT). AMPK activity
was assayed at 30 °C, in the presence of 0.1 μCi of [γ-32P]ATP,
0.33 mM cold ATP, 8.3 mM MgCl2, 0.33 mM AMP, and 0.33 mM SAMS
peptide. Kinase activity is expressed as the amount of AMPK catalyzing
the phosphate incorporation of 1 nmol substrate in 1min permgof pro-
tein. Each bar of a graph consists of data fromat least six separate immu-
noprecipitations, each from a separate dish of cells. All animal care
protocols and procedures were performed in accordance with current
regulations.

2.4. Generation of LLHGglucose 6-phosphatase (G6Pase) promoter reporter
cell line

The human G6Pase promoter was cloned using genomic DNA ex-
tracted from HepG2 cells. Briefly, the promoter region stretching from
−2785 bp to +85 bp, relative to the transcriptional start site, was am-
plified using the following primers: Human G6Pase fwd 5′–GTCGACCC
TTTGAGAATCCACGGTGTC–3′ and Human G6Pase rev 5′–AAGCTTAGGT
GCCAAGGAAATGAGG−3′. The G6Pase promoter was first sub-cloned
into TOPO before further cloning into pGL4.17[luc2/neo] (Promega)
using KpnI and XhoI and confirmed correct by DNA sequencing. H4IIE
cells were transfected with the pGL4-Human G6Pase construct using
the calcium phosphate transfection methodology [29]. Cells that had
stably integrated the pGL4-human G6Pase-luciferase DNA were select-
ed by treating with 500 μg/ml G418 for 1 week. Surviving colonies
were expanded, in the presence of G418, until they could be screened
for luciferase expression.

Transfected cells were screened for hormonal regulation of the
G6Pase promoter. Conditions of fasting and feeding were mimicked
by the addition of dexamethasone (500 nM), 8-CPT-cAMP
(100 μM), and insulin (10 nM), respectively, and cells which showed
significant stimulation and repression of luciferase expression were
then further examined to verify that key components of the insulin
Uncoupling (this study) Blockade of TNFα-induced
NF-κB signalling in HT-29 cells
(this study and [18])

N50% inhibition of
G6Pase promoter
(this study)

Yes Yes Yes
No No No

No Yes No
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signalling pathway [30–32], including PI-3 kinase, PKB, and GSK3
were responsive (data not shown). The cell line LLHG was selected
for future use.

2.5. Luciferase reporter assay

LLHG cells were seeded onto 12-well plates and left overnight.
Cells were washed once in serum-free DMEM before serum starving
for 6 h and subsequent overnight treatment as indicated in figure
Fig. 1. Comparison of effects of SA and analogues on AMPK signalling. (a,b) H4IIE cells were incub
(10mM) shown.Densitometry of blots fromeach experimentwas carried out as described in the
⁎⁎⁎p b .001, n= 5. Cells were then lysed and prepared for immunoblotting as described in them
ACC1/2 (ACC) and one which detects phosphorylated ACC1/2 (pACC Ser 79). A third and four
housekeeping protein actin. (c) H4IIE cells were incubated in serum-free medium and then st
earlier, two S6 antibodies were used, one which detects total S6 protein (S6) and another one
prepared for immunoblotting with antibodies as already described in the methods; ⁎p b .05, n
Two further antibodies, to detect p70S6K regardless of phosphorylation (p70S6K) or when ph
legends. For lysis, cells were washed once in PBS before addition
of 1× Cell Culture Lysis Buffer (Promega). Wells were scraped and
lysates centrifuged for 2 min, 4 °C, 13,000 rpm. For luciferase
assay, 10 μl lysate was added to a 96-well, white walled, clear
bottom plate and 100 μl luciferase assay reagent (Promega) added
before mixing briefly and quantifying luminescence. Values were
normalized to lysate protein concentration by Bradford assay.
Each bar of a graph consists of data from at least six separate
measurements, each from a separate dish of cells.
ated in serum-free medium for 2 h, prior to stimulation for 3 h with or without the agents
Materials andmethods. Treatments significantlydifferent fromuntreated cells are shown;
ethods. Two acetyl-CoA carboxylase (ACC) antibodies were used, one which detects total
th antibody detects AMPK whether or not it is phosphorylated. A fifth antibody is to the
imulated as in (a) but with a dose–response of SA as shown. Besides the antibodies used
which detects phosphorylated S6 protein (pS6 Ser 240/244). Cells were then lysed and
= 3–4. (d) Lysates treated as in (a) were probed with the S6 antibodies just described.

osphorylated on residue Thr389 (pp70S6K Thr389), were also used, n = 4.

Image of Fig. 1


Fig. 1 (continued).
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Fig. 2. Effect of SA and analogues on AMPKactivation andNF-κB signalling. (a) H4IIE cells were grown in serum-freemedium for 2 h, followed by stimulationwith the agents shown (10mM)
for 3 h followed by AMPK assay as described in Materials and methods. Treatments significantly different from untreated cells are shown; ⁎⁎⁎p b .001, ⁎p b .05 with respect to untreated
cells. (b) HT-29 cells were serum starved overnight in 0.25% serum, prior to treatment for 1 h without or with 30mM each of the analogues shown. The effect of each agent on IκB levels
following 10 ng/ml TNF-α treatment (final 15min)was assessed by immunoblotting. Another antibody detected total IKKβ. Densitometry of blotswas carried out as described inMaterials
andmethods. Co-incubations of drugwith TNF-α significantly different fromTNF treatment alone are shown. For both antibodies, TNF-α plus salicylate n=7, TNF-α plus 2,6-DHBAn=4.
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2.6. Glucose assay

Treatment of cells for hepatocyte glucose production was carried out
essentially as described previously, using primary mouse hepatocytes
with modifications [1,22]. Glucose production was determined after a
12-h incubation period in glucose-free DMEM with or without HBAs,
other drugs or 2mMmetformin. At the end of the incubation period, me-
dium was collected and glucose concentration determined by fluores-
cence measurement in the Amplex Red glucose assay (Invitrogen) for
experiments including hydroxybenzoic acid or GAGO assay (Sigma) for
other experiments. Each bar of a graph consists of data from at least
three separate measurements, each from a separate dish of cells.
2.7. Measurement of whole-cell oxygen consumption rate

Using the Seahorse XF96 (Seahorse Bioscience), oxygen
consumption rate (OCR) was measured essentially as described
previously [12]. Briefly, H4IIE cells were plated at a density of
3 × 10 [4] cells/well in 80 μl serum-containing medium and incu-
bated overnight. For the assay, cells were washed twice and incu-
bated for 2 h in 200 μl serum-free medium (Phenol red free
DMEM [A14430 Gibco], 25 mM HEPES, 5.5 mM glucose, 2 mM
L-Glut, and 2.5 mM pyruvate). 180 μl fresh media was added and
the plate was degassed at 37 °C for a further 1 h. OCR was continu-
ously measured for a period of 50 min. 20 μl of 10X stock drugs
made up in the same SF media were added after the first baseline
reading.

2.8. Data analysis

Data are expressed as mean ± SEM. Statistical analyses were per-
formed using one-way ANOVA with Dunnett's or Tukey's post hoc test-
ing using GraphPad Prism 6 statistical software.

3. Results

3.1. Comparison of SA and related compounds on AMPK and mTOR
signalling

In a panel of drugs related to SA, we found that SA alone induced
phosphorylation of AMPK and its substrate ACC strongly, while other
compounds elicited less robust responses, if any (Fig. 1a). The structures
used are shown in Fig. 1b. In dose–response experiments, SA also re-
duced phosphorylation of S6 (Fig. 1c), which is a reporter of mTOR sig-
nalling that is regulated by metformin [1,33,34] and thiazolidinediones

Image of Fig. 2
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[1]. Next, we investigated further the mTOR signalling pathway re-
sponses to the various SA analogues (Fig. 1d). AMPK-dependent and in-
dependent mechanisms have been suggested to account for effects of
metformin on mTOR signalling [33,35]. Possibly consistent with more
than one mechanism, we found that mTOR pathway suppression is a
common property of almost all HBAs (Fig. 1d).

3.2. Investigation of NF-κB, AMPK, and gluconeogenic gene expression re-
sponses to hydroxybenzoic acids and their analogues

We continued to study more intensively SA analogues with better
characterised pharmacology. These were 2,5-DHBA (also known as
gentisate), 2,6-DHBA (also known as γ-resorcylate), both of which
have been reported to have anti-inflammatory properties by some but
not all investigators [36–39], but neither of which exhibit short-term
anti-hyperglycaemic properties in vivo [14,36,40]. In H4IIE cells, we
used AMPK assays to confirm our earlier immunoblotting data that SA
is the only AMPK activator in this focussed panel, with no other agent
having significant effects on AMPK activity compared with untreated
cells (Fig. 2a).

To investigate anti-inflammatory signalling effects of the panel, we
studied the effects of each drug on blockade of TNFα-dependent degra-
dation of IκB in HT-29 cells. We chose this cell line because it has been
used previously to study salicylate effects on inflammatory signalling
[18]. In the panel, 2,6-DHBA was capable of repressing IκB degradation
in a similar manner to SA, whereas 2,5-DHBA was unable to protect
IκB from degradation (Fig. 2b).

3.3. Effect of the selected agents on hepatic signalling

The results from HT-29 cells prompted us to study whether effects
on inflammatory signalling may be observed in primary hepatocytes,
which provide an excellent model to study glucose production in the
laboratory. In signalling experiments, we found that the compounds ex-
hibited similar effects to those in cell lines, with SA being the only
Fig. 3. Dose–response of SA and its analogues on signalling in wild type and AMPK double knockou
absence of 5–30 mM SA and the analogues shown for 3 h prior to treatment with 10 ng/ml
Figs 1 and 2. Densitometry of blots was carried out as described in Materials and methods. T
shown; ⁎⁎⁎p b .001, ⁎⁎p b 0.01, ⁎p b .05, n = 4–5. (c) Cells were treated with varying doses o
were compared side by side with those extracted from liver-specific AMPK double knockout
column (+/−TNFα, KO/wild-type) are shown, n = 3.
compound giving robust AMPK pathway activation (Fig. 3a) and as in
HT29 cells, both SA and 2,6-DHBA blocked TNF-induced IκB degradation
at 30mM (Fig. 3b). Since 2,6-DHBA is a very poor AMPK activator com-
pared with SA (Figs. 1a,3a), this raised the possibility that this series of
drugs might regulate IκB degradation independently of AMPK. Using
hepatocytes extracted from liver-specific double knockout AMPK mice
[22], we confirmed that the effect of SA on TNF-induced IκB degradation
did not require AMPK (Fig. 3c).

3.4. Effect of salicylate and its analogues on glucose production and glucose
6-phosphatase (G6Pase) promoter expression

Earlier studies had suggested that SA acts by inhibition of gluconeo-
genesis, [17] and consistent with this, we observed an effect of 10 mM
SA on promoter activity of the key gluconeogenic regulatory enzyme
G6Pase (Fig. 4a). In dose–response experiments and similar to effects
of metformin [1], we found that SA reduced expression of G6Pase pro-
moter activity but in contrast, the other agents in the panel were unable
tomatch this effect (Fig. 4b). Thus, G6Pase promoter activity, like AMPK
activity, is unique to SA and correlates well with anti-hyperglycaemic
properties in the drug series. Measuring effects on glucose, used at
10mM, SA reduced glucose production, but in contrast, therewas no re-
sponse to 2,5-DHBA and 2,6-DHBA (Fig. 4c).

3.5. Effect of individual signalling pathways on glucose production

Previous results suggested that AMPK activation is not sufficient to
inhibit glucose production in hepatocytes [22]. In order to determine
whether mTOR pathway or NF-κB inhibition might mediate effects of
SA on glucose production, we incubated hepatocytes in the presence
of a pharmacological agents to inhibit these pathways. We used
rapamycin as a very potent inhibitor of mTOR [25,26] and BI605906 to
inhibit IKKβ and hence NF-κB signalling [41]. In these experiments, de-
spite producing the expected effects on their respective pathways (we
included A769662 as a positive control to demonstrate activation of
t primary hepatocytes. (a, b) Primary mouse hepatocytes were treated in the presence or
TNFα (final 15 min). Signalling responses were measured using antibodies described in
reatments significantly different from the appropriate control column (+/−TNFα) are
f SA as in (a), except that hepatocytes extracted from wild-type (WT, black bars) mice
(KO, grey bars) animals. Treatments significantly different from the appropriate control

Image of Fig. 3
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AMPK signalling [42]) (Fig. 5a), neither of the agents were able to re-
duce hepatocyte glucose production (Fig. 5b).

3.6. Effect of selected agents on mitochondrial responses

Earlier work comparing SA and the compound 2,4-dinitrophenol
(DNP) attributed anti-hyperglycaemic effects to mitochondrial

Fig. 3 (
uncoupling induced by these agents [43,44]. DNP has previously been
shown to suppress glucose production, including experiments in hepa-
tocytes [45] and in liver perfusion experiments [44]. To testwhethermi-
tochondrial effects might contribute to the difference between SA and
2,5- or 2,6-DHBA, we compared them in H4IIE cells, side by side with
DNP in Seahorse experiments. Our experiments found that in H4IIE
cells SA, but not 2,5- or 2,6-DHBA rapidly increased oxygen

inued).

Image of Fig. 3
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consumption within minutes of application, on a time course very sim-
ilar to DNP (Fig. 6). The magnitude and potency of the two drugs were
Fig. 4. Effect of salicylate and analogues on glucose 6-phosphatase promoter activity and
glucose production. (a) LLHG cells stably expressing the G6Pase promoter with a
luciferase reporter were serum starved for 6 h and subsequent overnight treatment
without or with a dose–response of 10 mM SA or insulin (10 nM) followed by lysis and
measurement of luciferase as described in Materials and methods. (b) Dose–response of
G6Pase promoter to SA, 2,5-DHBA and 2,6-DHBA. Drug treatments significantly different
from Dex/cAMP are shown, ***p b .001, *p b .05 (c) Glucose production in response to
10 mM of each agent (except 2 mM metformin) was measured as described in the
methods. Treatments significantly different from untreated cells are shown.
different however, as 2 mM SA produced about half the increase in ox-
ygen consumption of cells treated with 100 μM DNP.

4. Discussion

Beginning our studies, we confirmed that salicylic acid (SA) acti-
vated AMPK and found that it repressed mTOR pathway signalling.
Previous work has shown that these pathways are regulated in com-
mon by clinically used type 2 diabetes (T2D) agents metformin [5,33,
34] and thiazolidinediones [1,8]. In addition, SA inhibited TNFα-
dependent NF-κB signalling as has been reported previously [20].
This raised the possibility that SA might exert some of its effects
through AMPK-dependent regulation of inflammatory signalling
[46]; however, in liver cells with both catalytic subunits of AMPK
knocked out, the effect of SA on TNFα-dependent IκB degradation
remained, indicating that effects of SA on NF-κB do not require
AMPK.

In further work on a subgroup of the structures (results for this
subgroup summarised in Table 1), we found that SA alone suppressed
G6Pase promoter activity and hepatic glucose production. The concen-
trations we used to study these last two readouts (10mM)were higher
than concentrations of SA typically achieved in the general circulation,
but earlier work has reported effects of aspirin, which is rapidly
metabolised to salicylate, on glucose production with plasma concen-
trations in the range of 1.8–2.5 mM [47]. Similar results have been ob-
tained in perfused liver, with effects of SA observed at 2 mM [17]. Due
to pharmacokinetic considerations, the notion of gluconeogenesis as
an important anti-hyperglycaemic target of SA might also help to
account for the high doses of drug required for anti-hyperglycaemic
effects. Radiolabelled salicylate and aspirin both distribute mainly to
the stomach mucosa at low doses, but at higher doses, each of the
main gluconeogenic tissues including liver, renal cortex, and the gastro-
intestinal tract are among the most strongly labelled tissues [48–50].
The side effects accompanying high doses of SA have greatly hindered
adoption of this drug and related substances in T2D. Better targeting
of gluconeogenic tissues may circumvent these difficulties.

Comparing signalling responses to SA and its analogues, we found
that effects on AMPK phosphorylation corresponded most closely
with effects on G6Pase promoter activity, hepatic glucose produc-
tion, and published anti-hyperglycaemic properties of the drugs
in vivo. Previous work has shown, however, that glucose production
can be suppressed [22] and SA can mediate anti-hyperglycaemic ef-
fects [12] in AMPK-deficient mice. In addition to these earlier find-
ings, we found that significant suppression of hepatocyte NF-κB
signalling with salicylate required concentrations (10–30 mM) that
are unlikely to be tolerably achieved in vivo. Furthermore, we
found that inhibition of either mTOR or NF-κB was insufficient to
suppress hepatic glucose production. Together, these results suggest
that models of salicylate's anti-hyperglycaemic action based purely
on signalling effects may be too simple and that other aspects need
to be considered. Besides AMPK signalling, which needed at least
5–10 mM SA to be significantly activated in dose-response experi-
ments, the only other action of hydroxybenzoic acids that we found
correlated well with published anti-hyperglycaemic properties was
mitochondrial uncoupling. SA but not its analogues was able to in-
duce uncoupling acutely at 2 mM, a concentration which is consis-
tent with ranges of plasma salicylate observed in humans following
anti-hyperglycaemic doses of prodrugs salsalate or aspirin [47,51].
Taken together with our data, this suggests that direct effects of SA on
hepaticmitochondria are likely to contribute to anti-hyperglycaemic ef-
fects of SA, through action on hepatic gluconeogenic gene expression
and hepatic glucose production. Mitochondrial inhibition has also pre-
viously been suggested as an anti-hyperglycaemic mechanism for
biguanides [22] and thiazolidinediones [52]. The differences between
SA and 2,5/2,6-DHBAwe have observedmight also account for previous
findings that SA but not 2,5- nor 2,6-DHBA reduces liver glycogen stores

Image of Fig. 4


Fig. 5. Effect of specific inhibitors of mTOR and NF-κB on signalling and hepatocyte glucose production. (a) Primary hepatocyteswere pre-treated as shownwith orwithout 10 μMBI605906 or
150 nM rapamycin prior to treatment with 10 ng/ml TNF-α (final 15min), prior to lysis and immunoblotting using antibodies described earlier. Densitometry of blots was carried out as
described in Materials and methods. Treatments significantly different from control cells (+/- TNF-α) cells are shown, n = 3. (b) Glucose production in response to each agent was
measured as described in Materials and methods. ⁎⁎⁎p b .001 of treated columns with respect to no treatment.
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[53]. In direct comparison, the SA effect on oxygen consumption was
at a magnitude that was about half that of DNP, even though twenty
times more SA was added than DNP. Further investigation of the
reason(s) underlying this difference will be critical to illuminate the
marked difference in the therapeutic window between these agents. It
has long been recognised that SA is not only more efficacious but also
much less toxic than DNP [43].

We do not exclude involvement of NF-κB, mTOR, or other signal-
ling in anti-hyperglycaemic effects through other tissues and/or
pathophysiological contexts in vivo. Protective effects of IKKβ knock-
out against insulin resistance, for example, are understood to be me-
diated mainly through effects that this has on alleviating systemic
inflammation in obesity [54,55]. To investigate this, it might be inter-
esting to compare long-term effects of 2,6-DHBA and SA in diet-
induced obese animals, as we found both drugs inhibit NF-κB
signalling. 2,6-DHBA tends to reduce glucose tolerance, at least in
short-term treatment [36], does not readily inhibit the mitochondria
(our work and [13,16]), and in our studies, it did not inhibit G6Pase
promoter activity, nor did it reduce glucose output from hepato-
cytes; however, in the context of obesity and long-term drug treat-
ment, beneficial effects of both drugs on inflammation may be
exhibited, allowing comparison with pharmacology restricted to
SA, such as the uncoupling effect that we have studied.

5. Conclusion

In this work, we have investigated responses to SA in hepatocytes.
Comparison with a panel of SA analogues suggests that mitochondrial
uncoupling and AMPK activation but not other signalling pathways
correlate well with published anti-hyperglycaemic effects.
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Fig. 6. Effect of salicylate, 2,5-DHBA, 2,6-DHBA and 2,4-dinitrophenol on mitochondrial
respiration. H4IIE cells were incubated in serum-free medium for 2 h followed by a
further 1 h degas. Using a Seahorse analyser (Seahorse Bioscience), oxygen consumption
rate (OCR) was measured. After the first reading, 2 mM salicylate (▲), 2 mM 2,5-DHBA
(▼), 2 mM 2,6-DHBA (♦), or 100 μM 2,4-dinitrophenol (■) was added. Untreated
samples are also shown (●). Data were normalised to untreated samples at zero
minutes. Data are from 5 to 10 wells in duplicate. ⁎⁎⁎p b .001, ⁎⁎p b .01, ⁎p b .05 of
treated time point with respect to no treatment at the same time point.
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