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Abstract

Human organic anion transporter-3 (hOAT3) is richly expressed in the kidney, where it plays 

critical roles in the secretion of clinically important drugs, including anti-viral therapeutics, anti-

cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. In the current study, we 

examined the role of AG490, a specific inhibitor of the Janus tyrosine kinase 2 (JAK2), in hOAT3 

transport activity in the kidney COS-7 cells. AG490 induced a time- and concentration-dependent 

inhibition of hOAT3-mediated uptake of estrone sulfate, a prototypical substrate for the 

transporter. The inhibitory effect of AG490 correlated with a reduced expression of hOAT3 at the 

cell surface. Our lab previously demonstrated that Nedd4-2, a ubiquitin ligase, down regulates 

OAT expression and transport activity by enhancing OAT ubiquitination, which leads to an 

internalization of OAT from cell surface to intracellular compartments and subsequent 

degradation. In the current study, we showed that treatment of hOAT3-expressing cells with 

AG490 resulted in an enhanced hOAT3 ubiquitination and degradation, which was accompanied 

by a strengthened association of Nedd4-2 with hOAT3 and a reduction in Nedd4-2 

phosphorylation. SiRNA knockdown of endogenous Nedd4-2 abrogated the effects of AG490 on 

hOAT3. In summary, our study demonstrated that AG490 regulates hOAT3 expression and 

transport activity through the modulation of Nedd4-2.
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Introduction

Organic anion transporter 3 (OAT3) belongs to a class of organic anion transporters (OATs) 

consisting of over 10 membrane proteins. OAT3 is expressed at the basolateral membrane of 

the kidney proximal tubule cells and plays a critical role in the renal secretion of numerous 
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clinical drugs, including anti-HIV therapeutics, anti-tumor drugs, antibiotics, 

antihypertension drugs, and anti-inflammatories.1–7

We previously established that OATs are subjected to the modulation by a ubiquitin ligase 

Nedd4-2. Nedd4-2 catalyzes the conjugation of ubiquitin to cell surface OATs, which leads 

to OAT internalization from the cell surface to intracellular compartment and subsequent 

degradation.8–10 We further demonstrated that Nedd4-2 serves as an important mediator for 

OAT regulation by several protein kinases. For example, activation of protein kinase C 

promotes the binding of Nedd4-2 to OATs, which results in an enhanced OAT ubiquitination 

and internalization from cell surface. Consequently, the amount of OATs at the cell surface 

is reduced and OAT transport activity is decreased. On the other hand, activation of the 

serum-, and glucocorticoid-inducible kinases demotes the binding of Nedd4-2 to OATs, 

which results in a reduced OAT ubiquitination and internalization from cell surface. 

Consequently, the amount of OATs at the cell surface is increased and OAT transport activity 

is augmented.

Cytokines and growth factors activate Janus tyrosine kinase 2 (JAK2) signaling 

physiologically, thus JAK2 signaling is involved in a variety of cellular processes including 

cell differentiation, growth and survival.11 In addition, JAK2 signaling is significantly and 

pathologically activated in various human cancers including Breast cancer, ovarian cancer, 

pancreatic cancer, renal carcinoma and so on.12–16 Other than human cancers, activation of 

JAK2 is also indicated in other disease conditions including diabetic vascular disease and 

myeloproliferative Diseases.17,18

Furthermore, JAK2 has been shown to regulate many cellular processes at renal proximal 

tubules16,19–21 where OATs are abundantly expressed. It was also shown that one of the 

pathways through which JAK2 exerts its effect is through Nedd4-222,23. However, the effects 

of JAK2 on OATs have never been investigated. In the current study, we examined the role 

of a JAK2-specific inhibitor AG490 in OAT expression and transport activity.

Materials and methods

Materials

The monkey kidney COS-7 cells were purchased from ATCC (Manassas, VA). [3H]-labeled 

estrone sulfate ([3H]-ES) was purchased from PerkinElmer (Waltham, MA). Membrane-

impermeable biotinylation reagent NHS-SS-biotin, streptavidin-agarose beads and protein 

G-agarose beads were purchased from Pierce (Rockford, IL). cDNA for human Nedd4-2 

was generously provided by Dr. Peter M. Snyder of the College of Medicine, University of 

Iowa (Iowa City, IA). Mouse anti-myc antibody (9E10) was purchased from Roche 

(Indianapolis, IN). Rabbit anti-Nedd4-2 and mouse anti-E-cadherin antibodies were 

purchased from Abcam (Cambridge, MA). Mouse anti-flag antibody was purchased from 

Sigma–Aldrich (St. Louis, MO). Mouse anti-ubiquitin, mouse anti-β-actin, and mouse anti-

phospho-tyrosine (anti-p-tyr) antibodies were purchased from Santa Cruz (Santa Cruz, CA). 

Nedd4-2 siRNA oligonucleotides (Silencer® Select, identification number S23570) were 

purchased from Ambion (Grand Island, NY). AG490 and all other reagents were purchased 

from Sigma–Aldrich (St. Louis, MO).
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Cell culture and transient transfection

Parental COS-7 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

(Corning, Corning, NY) supplemented with 10% fetal bovine serum (Gibco, Grand Island, 

NY) at 37 °C in 5% CO2. Cells stably expressing hOAT3 were established in our lab as 

previously described.24,25 Cells stably expressing hOAT3 were maintained in DMEM 

medium supplemented with 0.2 mg/ml G418 (Invitrogen, Carlsbad, CA),10% fetal bovine 

serum. Transfection with plasmids or siRNA was carried out using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions.

Transport measurement

The transport activity of hOAT3 was determined by measuring [3H]-ES uptake into hOAT3-

expressing cells. The uptake solution consists of phosphate-buffered saline (PBS) with 1 

mM CaCl2 and 1 mM MgCl2 (PBS/CM) (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 

1.4 mM KH2PO4, 0.1 mM CaCl2 and 1 mM MgCl2, pH 7.4) and [3H]-ES (300 nM). At the 

time points indicated, uptake was terminated by removing the uptake solution, followed by 

washing with ice-cold PBS twice. The cells were then lysed in 0.2 N NaOH, neutralized 

with 0.2 N HCl and transferred into scintillation vials for liquid scintillation counting.

Kinetics of ES transport

hOAT3-expressing cells were pretreated with or without AG490 (20 μM) for 1 h, and 4-min 

uptake of [3H]-ES was measured at0.05–20 μM ES. The uptake procedure was detailed in 

the section “Transport measurement”. The kinetic parameters of estrone sulfate transport by 

hOAT3 were calculated using non-linear least-squares regression analysis from the following 

Michaelis–Menten equation: V=Vmax × [S]/(Km+[S]). Transport kinetic values were 

calculated using the Eadie–Hofstee transformation.

Cell surface biotinylation

The expression level of hOAT3 at the cell surface was examined using a biotinylation 

strategy. The cells in monolayer culture were washed with ice-cold PBS and then incubated 

with 1 ml of membrane-impermeable NHS-SS-biotin (0.5 mg/ml in PBS pH8.0/CM) on ice 

for two consecutive 20 min periods under gentle shaking. Biotinylation was stopped by 

rinsing with 100 mM glycine in PBS/CM. Afterwards, the cell extracts were prepared in 

lysis buffer (10 mM Tris/HCl, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton X-100 

with 1/100 protease inhibitor cocktail) for 30 min at 4 °C and cleared by centrifugation at 

16,000 × g at 4 °C. The supernatant was mixed with streptavidin-agarose beads (Pierce, 

Rockford, IL) to isolate cell surface proteins. Membrane-expressed hOAT3 was detected by 

SDS-PAGE and immunoblotting with an anti-myc antibody (epitope myc was tagged to 

hOAT3 for immune-detection).

Degradation of cell surface hOAT3

hOAT3 expressing cells were plated in 35 mm dishes. Each dish of cells was incubated with 

1 ml of membrane-impermeable biotinylation reagent sulfo-NHS-SS-biotin (0.5 mg/ml in 

PBS pH8.0/CM) in two successive 20 min incubations under trafficking impermissive 

condition (4 °C) with very gentle shaking. The reagent was freshly prepared for each 
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incubation. After biotinylation, each dish was rinsed with 2 ml PBS pH8.0/CM containing 

100 mM glycine and then incubated with the same solution for 20 min on ice, to ensure 

complete quenching of the unreacted NHS-SS-biotin. The biotin-labeled cells were 

incubated in DMEM containing with or without 20 μM AG490 at 37 °C. Treated cells were 

collected at 0, 2, and 4 h and lysed in lysis buffer with protease inhibitor cocktail. The cell 

lysates were cleared by centrifugation at 16,000 × g at 4 °C. 40 μl of streptavidin-agarose 

beads were then added to the supernatant to isolate cell membrane proteins. Samples were 

loaded on 7.5% SDS-PAGE minigels and analyzed by immunoblotting with anti-myc 

antibody.

Electrophoresis and immunoblotting

The protein samples were separated on 7.5% SDS-PAGE minigels (Bio-Rad, Hercules, CA) 

and electroblotted on to polyvinylidene difluoride (PVDF) membranes (Bio-Rad, Hercules, 

CA). The blots were blocked with 5% nonfat dry milk for 1–2 h in PBS-Tween 20 (PBST; 

0.05% Tween-20 in PBS) at room temperature, washed and incubated overnight at 4 °C with 

appropriate primary antibodies. The primary antibodies included rabbit anti-Nedd4-2, mouse 

anti-E-cadherin (Abcam, Cambridge, MA), mouse anti-myc (Roche, Indianapolis, IN), 

mouse anti-flag (Sigma–Aldrich, St. Louis, MO), mouse anti-β-actin, mouse anti-ubiquitin, 

and mouse anti-phospho-tyrosine (anti-p-tyr) (Santa Cruz, Santa Cruz, CA). The blots were 

then incubated with horseradish peroxidase-conjugated secondary antibodies, followed by 

detection with a SuperSignal West Dura Extended Duration Substrate kit (Pierce, Rockford, 

IL). The FluorChem 8000 imaging system (Alpha Innotech Corp., San Leandro, CA) was 

applied to quantify the nonsaturating, immune-reactive protein bands.

Data analysis

Each experiment was repeated at least three times. Student’s paired t-tests were used to 

perform statistical analysis. A value of p < 0.05 was considered significant.

Results

AG490 inhibits hOAT3 transport activity

We pretreated hOAT3-expressing cells with AG490 for 0–4 h, followed by measuring 

hOAT3-mediated [3H]-ES uptake. Our results showed that AG490 inhibited hOAT3-

mediated ES uptake with ~40% inhibition after 4 h pretreatment (Fig. 1a). AG490 also 

induced a dose-dependent inhibition of hOAT3-mediated transport with ~50% inhibition at 

40 μM of AG490 (Fig. 1b). To examine the mechanism of AG490-induced inhibition of 

hOAT3 transport activity, we determined hOAT3-mediated [3H]-ES uptake at different 

substrate concentrations. An Eadie-Hofstee analysis of the derived data (Fig. 2) showed that 

treatment of hOAT3-expressing cells with AG490 resulted in a decreased maximal transport 

velocity Vmax of hOAT3 (245.9 ± 13.7 pmol·mg −1 ·4 min −1 with control cells and 102.6 ± 

7.2 pmol·mg −1 ·4 min −1 · with cells treated with AG490) with no significant change in the 

substrate-binding affinity Km of the transporter (8.85 ± 0.65 μM with control cells and 8.96 

± 0.67 μM with cells treated with AG490). The value of the Km in this study is similar to 

those obtained in other systems previously published by us and other labs.26,27
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AG490 decreases hOAT3 expression

A decreased maximal transport velocity Vmax (Fig. 2) could be a result from either a 

decreased amount of the transporter at the cell surface or a decreased transporter turnover 

number. We conducted experiments that differentiate between these possibilities by 

measuring transporter expression both at the cell surface and in the total cell lysates. We 

showed that treatment of hOAT3-expressing cells with AG490 for 1 h (20 μM) resulted in a 

decreased cell surface expression of hOAT3 without affecting the total cell expression of the 

transporter (Fig. 3).

AG490 enhances hOAT3 ubiquitination

We previously demonstrated that ubiquitination of cell surface OATs leads to OAT 

internalization from cell surface to intracellular compartment. As a result, the amount of 

OATs at the cell surface is reduced and OAT transport activity is decreased.8,28 In this 

experiment, we examined whether AG490-induced decrease in OAT transport activity was 

due to the ubiquitination of this transporter. hOAT3-expressing cells were treated with 

AG490 for 1 h (20 μM). Treated cells were then lysed, and hOAT3 was immunoprecipitated, 

followed by immunoblotting with anti-ubiquitin antibody. As shown in Fig. 4, AG490 

enhanced hOAT3 ubiquitination as compared to that of the control.

AG490 promotes the association between hOAT3 and Nedd4-2

Our lab previously established that OAT ubiquitination is catalyzed by a specific ubiquitin 

ligase Nedd4-2.8 In this experiment, we examined whether AG490 affected the association 

of Nedd4-2 with hOAT3 (Fig. 5). We treated hOAT3-expressing cells with AG490 for 1 h 

(20 μM). hOAT3 in treated cells was then immunoprecipitated, followed by immunoblotting 

with anti-Nedd4-2 antibody. We showed that in hOAT3 immunoprecipitates, there were 

more Nedd4-2 in AG490-treated sample than that in control sample, suggesting that more 

Nedd4-2 associated with hOAT3 after AG490 treatment.

AG490 decreases Nedd4-2 phosphorylation

Protein kinases exert the effects by phosphorylating their substrates. JAK2 is a tyrosine 

kinase. We therefore examined whether Nedd4-2 was a direct substrate for JAK2-induced 

tyrosine phosphorylation. hOAT3-expressing cells were transfected with Nedd4-2. Nedd4-2 

was then immunoprecipitated, followed by immunoblotting with anti-phospho-tyrosine 

antibody. As shown in Fig. 6a, top panel, the anti-phospho-tyrosine antibody detected a band 

at ~120 kDa, the molecular size of Nedd4-2, suggesting that Nedd4-2 was tyrosine-

phosphorylated under normal condition. Treatment of cells with AG490 resulted in a 

decrease in Nedd4-2 phosphorylation. The difference in Nedd4-2 phosphorylation was not 

due to the difference in the amount of Nedd4-2 immunoprecipitated because the amount of 

Nedd4-2 pulled down was similar between control and AG490-treated cells (Fig. 6a, bottom 

panel).

Nedd4-2 siRNA abrogates the effects of AG490 on OAT3

As an independent approach, we used a siRNA strategy to knockdown the endogenous 

Nedd4-2 and evaluated the role of Nedd4-2 in the effects of AG490 on hOAT3 function and 
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expression. Our lab has well-established that transfection of 50 pmol Nedd4-2- specific 

siRNA into COS-7 cells for 48 h knocked down the endogenous Nedd4-2 by ~80%.8,29 As 

shown in Fig. 7, AG490 significantly reduced hOAT3-mediated transport in control cells, 

whereas in Nedd4-2-specific siRNA-transfected cells, the effect of AG490 on hOAT3 

transport activity was abrogated (Fig. 7a). Similarly, AG490 significantly reduced hOAT3 

expression at the cell surface in control cells (Fig. 7b and c), whereas in Nedd4-2-specific 

siRNA-transfected cells, the effect of AG490 on hOAT3 expression was abrogated (Fig. 7d 

and e).

AG490 accelerates the rate of hOAT3 degradation

We previously established that ubiquitination of OAT leads to OAT internalization from cell 

surface to intracellular compartments and subsequent degradation.28 Since AG490 enhanced 

hOAT3 ubiquitination (Fig. 4), we reasoned that AG490 may be involved in hOAT3 stability. 

In this experiment, we examined such possibility. The biotin-labeled cells were incubated in 

DMEM medium with or without 20 μM AG490 at 37 °C. Treated cells were collected at 0, 

2, and 4 h. The degradation rates of plasma membrane hOAT3 in these cells were then 

determined using a biotinylation approach. As shown in Fig. 8, the degradation rate of 

hOAT3 was much faster in AG490 treated cells than that in control cells, suggesting that 

AG490 plays an important role in hOAT3 degradation.

Discussion

Organic anion transporters (OATs) are critical players in the efficacy and toxicity of 

therapeutic agents. Therefore, uncovering how OATs are regulated at the molecular and 

cellular levels is clinically and pharmacologically significant. The current investigation 

revealed that AG490, a JAK2-specific Inhibitor, has a significant role in modulating hOAT3 

expression and transport activity.

JAK2 is known to affect a variety of renal functions, such as renal fibrosis, diabetic 

nephropathy, reperfusion injury, etc.30,31 In addition, JAK2 has been shown to specifically 

regulate a set of transporters/exchangers such as Na+/H+ exchanger, as well as Na+/glucose 

cotransporters SGLT1 and SGLT2 in renal proximal tubules,32,33 where OATs are expressed.

We chose to carry out our investigation in monkey kidney COS-7 cells, a widely-used model 

cell system for mechanistic studies of many renal transport processes.33–35 Importantly, 

COS-7 cells have been shown to express endogenous JAK2.36,37 Therefore, our studies in 

these cells using a JAK2-specific inhibitor as a tool will pave the path for the future 

exploration in evaluating whether similar mechanisms are working in vivo.

From our investigation, we obtained several pieces of valuable information. AG490 inhibited 

hOAT3 transport activity by redistributing the transporter from cell surface to intracellular 

compartment (Fig. 3) and by enhancing the degradation of the transporter (Fig. 8). The 

effect of AG490 on hOAT3 seems to be mediated by a ubiquitin ligase Nedd4-2 (Figs. 5–7). 

Our lab previously demonstrated that serum- and glucocorticoid-inducible kinase (sgk) and 

protein kinase C (PKC) exert opposite effects on OAT expression and transport activity 

through a central switch molecule Nedd4-2. Activation of PKC inhibits OAT expression and 
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transport activity by strengthening the interaction of OAT with Nedd4-2, thereby, enhancing 

OAT ubiquitination and accelerating ubiquitination-dependent OAT internalization from the 

cell surface. As a result, the amount of OAT at the cell surface is reduced and OAT transport 

activity is decreased.9 In contrast to PKC, activation of sgk stimulates OAT expression and 

transport activity by weakening the interaction of OAT with Nedd4-2, thereby, decreasing 

OAT ubiquitination and decelerating ubiquitination-dependent OAT internalization from the 

cell surface. As a result, the amount of OAT at the cell surface is enhanced and OAT 

transport activity is increased.27,38 Both PKC and sgk are serine/threonine kinases and 

phosphorylate their substrates at serine or threonine residues. For example, we previous 

demonstrated that sgk phosphorylates Nedd4-2 at serine 327.27 JAK2 is a tyrosine kinase, 

and in the current study we provide first evidence that the inhibitory effect of AG490 on 

hOAT3 expression and transport activity was mediated by Nedd4-2 through a decrease in the 

tyrosine phosphorylation of Nedd4-2, and an enhanced interaction of hOAT3 with Nedd4-2, 

and an enhanced hOAT3 ubiquitination, which led to an accelerated ubiquitination-

dependent hOAT3 degradation. Consequently, hOAT3 expression at the cell surface is 

reduced and hOAT3 transport activity is decreased.

In addition to modulating the rate of hOAT3 degradation, AG490 may also affect other steps 

in hOAT3 trafficking process. We previously demonstrated10,28 that members of OAT family 

constitutively internalize from and recycle back to cell surface. Nedd4-2-catalyzed 

ubiquitination leads to a reduced OAT3 expression and activity in three distinct steps. First, 

ubiquitination increases the rate of OAT3 internalization from cell surface to intracellular 

endosomes. Second, once in the endosomes, OAT3 either recycles back to cell surface or 

targets to proteolytic system. This endosomal sorting decision is governed by ubiquitination. 

With prolonged Nedd4-2 binding, OAT3 may attain sufficient ubiquitination and targets to 

proteolytic system. Third, the proteases in the proteolytic system degrade OAT3. Since 

AG490 regulates the interaction between Nedd4-2 and hOAT3, it will likely affect multiple 

steps in hOAT3 trafficking.
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Fig. 1. AG490 inhibits hOAT3 transport activity.
(a). Time dependence. hOAT3-expressing cells were pretreated with AG490 (20 μM) for 0–4 

h. 4-min uptake of [3H]-estrone sulfate (ES, 300 nM) was then measured. Uptake activity 

was expressed as folds of the uptake measured in control cells. The data represent uptake 

into hOAT3-expressing cells minus uptake into mock cells (parental cells). Uptake value of 

mock cells (parental cells) is ~20% of that of hOAT3-expressing cells without treatment 

(mock cells: ~700 CPM and hOAT3-expressing cells without treatment: ~3500 CPM). 

Values are mean ± S.E. (n = 3). *P < 0.05. (b). Dose dependence. hOAT3-expressing cells 

were pretreated for 1 h with AG490 at various doses (0–40 μM). 4-min uptake of [3H]-ES 

(300 nM) was then measured. Uptake activity was expressed as folds of the uptake measured 

in control cells. The data represent uptake into hOAT3-expressing cells minus uptake into 

mock cells (parental cells). Values are mean ± S.E. (n = 3). *P < 0.05.
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Fig. 2. AG490 altered the kinetics of hOAT3-mediated ES transport.
hOAT3-expressing cells were pretreated with or without AG490 (20 μM) for 1 h, and 4-min 

uptake of [3H]-ES was measured at 0.05–20 μM ES. The data represent uptake into hOAT3-

transfected cells minus uptake into mock cells (parental COS-7 cells). Values are means ± 

S.D. (n = 3). V, velocity; S, substrate concentration. Transport kinetic values were calculated 

using the Eadie–Hofstee transformation.
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Fig. 3. AG490 decreases hOAT3 expression.
(a). Top panel: Cell surface expression of hOAT3. hOAT3-expressing cells were pretreated 

with AG490 (1 h, 20 μM). Cells were labeled with membrane impermeable biotin. 

Biotinylated cell surface proteins were separated with streptavidin beads, followed by 

immunoblotting (IB) with an anti-myc antibody (hOAT3 was tagged with epitope myc for 

immunodetection). Bottom panel: The expression of cell surface protein marker E-cadherin. 

The same blot from the top panel was re-probed with anti-E-cadherin antibody. (b). 

Densitometry plot of results from Fig. 3a, top panel as well as from other experiments. The 

values are mean ± S.E. (n = 3). *P < 0.05. (c). Top panel: Total cell expression of hOAT3. 

hOAT3-expressing cells were pretreated with AG490 (1 h, 20 μM). Cells were lysed, 

followed by immunoblotting (IB) with an anti-myc antibody. Bottom panel: Total cell 

expression of cellular protein marker β-actin. The same blot from top panel was re-probed 

with anti-β-actin antibody. (d). Densitometry plot of results from Fig. 3c, top panel as well 

as from other experiments. The values are mean ± S.E. (n = 3). *P < 0.05.
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Fig. 4. AG490 enhances hOAT3 ubiquitination.
(a) Top panel: hOAT3-expressing cells were pretreated with AG490 (1 h, 20 μM) in the 

presence of proteasomal inhibitor cocktail and deubiquitinase inhibitor N-Ethylmaleimide. 

Treated cells were then lysed and hOAT3 was immunoprecipitated with anti-myc antibody 

(hOAT3 was tagged with epitope myc), followed by immunoblotting with anti-ubiquitin 

antibody. Bottom panel: The same blot from top panel was re-probed with anti-myc 

antibody. (b). Densitometry plot of results from Fig. 4a, top panel as well as from other 

experiments. The values are mean ± S.E. (n = 3). *P < 0.05.
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Fig. 5. AG490 promotes the association of hOAT3 with Nedd4-2.
(a). Top panel: COS-7 cells were co-transfected with hOAT3 and Nedd4-2. Transfected cells 

were treated with or without AG490 (20 μM, 1 h). Treated cells were then lysed and hOAT3 

was immunoprecipitated by anti-myc antibody (epitope myc was tagged to hOAT3), 

followed by immunoblotting with anti-Nedd4-2 antibody. Bottom panel: The same 

immunoblot from Fig. 5a, top panel was reprobed by anti-myc antibody to determine the 

amount of hOAT3 immunoprecipitated. (b). Densitometry plot of results from Fig.5a, Top 
panel as well as from other experiments. The values are mean ± S.E. (n = 3). *P < 0.05.

Zhang et al. Page 14

J Pharmacol Sci. Author manuscript; available in PMC 2021 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. AG490 dephosphorylates Nedd4-2.
(a). Top panel: COS-7 cells were co-transfected with hOAT3 and Nedd4-2 (epitope flag-

tagged). Transfected cells were treated with or without AG490 (20 μM, 1 h) and then lysed. 

Nedd4-2 was immunoprecipitated (IP) with anti-flag M2 affinity gel or with control IgG-

agarose (as negative control), followed by immunoblotting (IB) with anti-phospho-tyrosine 

(anti-p-tyr) antibody. Bottom panel: The blot from the top panel was reprobed by anti-flag 

antibody to determine the amount of Nedd4-2 immunoprecipitated. (b). Densitometry plot of 

results from 6a, top panel, as well as from other repeat experiments. Values are means ± SE. 

(n = 3). *P < 0.05.
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Fig. 7. Nedd4-2 siRNA abrogates the effects of AG490 on OAT3.
(a) hOAT3 transport activity. hOAT3-expressing COS-7 cells transfected with or without 

Nedd4-2-specific siRNA, were treated with or without AG490 (20 μM, 1 h). Uptake of [3H] 

ES was then performed. Uptake activity was expressed as a fold of the uptake measured in 

cells without AG490 treatment. The data represent uptake into hOAT3-transfected cells 

minus uptake into mock cells (parental COS-7 cells). Values are mean ± S.E. (n = 3). *P < 

0.05. (b top panel) hOAT3 expression at the cell surface in control group cells. hOAT3-

expressing COS-7 cells in control group were treated with or without AG490 (20 μM, 1 h). 

Cell surface biotinylation was performed. Biotinylated (cell surface) proteins were separated 

with streptavidin beads and analyzed by immunoblotting (IB) with an anti-myc antibody. (b, 

bottom panel) The same blot as (b, top panel) was reprobed with antibody against cell 

surface protein marker E-cadherin. (c) Densitometry plot of results from (b, top panel) as 

well as from other experiments. The values are mean ± S.E. (n = 3). *P < 0.05. (d, top panel) 

hOAT3 expression at the cell surface in Nedd4-2-specific siRNA-transfected cells. hOAT3-

expressing COS-7 cells, transfected Nedd4-2-specific siRNA, were treated with or without 

AG490 (20 μM, 1 h). Cell surface biotinylation was performed. Biotinylated (cell surface) 

proteins were separated with streptavidin beads and analyzed by immunoblotting (IB) with 

an anti-myc antibody. (d, bottom panel) The same blot as (d, top panel) was reprobed with 

antibody against cell surface protein marker E-cadherin. (e) Densitometry plot of results 
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from (d, top panel) as well as from other experiments. The values are mean ± S.E. (n = 3). 

*P < 0.05.
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Fig. 8. AG490 destabilizes hOAT3.
(a). Biotinylation analysis of constitutive and JAK2-modulated degradation of cell surface 

hOAT3. The biotin-labeled cells were incubated in DMEM medium with or without 20 mM 

AG490 at 37 °C. Treated cells were collected at 0, 2, and 4 h. Treated cells were lysed in 

lysis buffer with protease inhibitor cocktail and then followed by immunoblotting (IB) with 

anti-myc antibody. (b). Densitometry plot of results from Fig. 8a as well as from other 

experiments. The values are mean ± S.E. (n = 3).
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