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Abstract
To investigate the diagnostic value of a computed tomography (CT) scan-based radiomics model for acute aortic dissection.
For the dissection group, we retrospectively selected 50 patients clinically diagnosedwith acute aortic dissection betweenOctober

2018 and November 2019, for whom non-contrast CT and CT angiography images were available. Fifty individuals with available
non-contrast CT and CT angiography images for other causes were selected for inclusion in the non-dissection group. Based on the
aortic dissection locations on the CT angiography images, we marked the corresponding regions-of-interest on the non-contrast CT
images of both groups. We collected 1203 characteristic parameters from these regions by extracting radiomics features.
Subsequently, we used a random number table to include 70 individuals in the training group and 30 in the validation group. Finally,
we used the Lasso regression for dimension reduction and predictive model construction. The diagnostic performance of the model
was evaluated by a receiver operating characteristic (ROC) curve.
Fourteen characteristic parameters with non-zero coefficients were selected after dimension reduction. The accuracy, sensitivity,

specificity, and area under the ROC curve of the prediction model for the training group were 94.3% (66/70), 91.2% (31/34), 97.2%
(35/36), and 0.988 (95% confidence interval [CI]: 0.970–0.998), respectively. The respective values for the validation group were
90.0% (27/30), 94.1% (16/17), 84.6% (11/13), and 0.952 (95% CI: 0.883–0.986).
Our non-contrast CT scan-based radiomics model accurately facilitated acute aortic dissection diagnosis.

Abbreviations: AAD = acute aortic dissection, AAO = ascending aorta, AOA = aortic arch, AUC = area under the curve, CI =
confidence interval, CT = computed tomography, DAO = descending aorta, ICC = intraclass correlation coefficient, ROC = receiver
operating characteristic, ROI = region-of-interest, SD = standard deviation.
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Key points

� Early diagnosis of acute aortic dissection (AAD) based on
clinical signs is challenging.

� Non-contrast-enhanced CT imaging is convenient, but its
sensitivity for AAD diagnosis is insufficient.
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� We extracted radiomics features from non-contrast-
enhanced CT images to construct a model that facilitated
AAD diagnosis.
1. Introduction

Acute aortic dissection (AAD) is a pathological change in the
aorta, characterized by the formation of true and false lumens in
local regions. Tears in the aortic intimal layer allow blood from
the aortic lumen to enter the intima-media space, forcing these
layers to separate along the principal aortic axis direction. Many
factors might cause aortic dissection, the most frequent of which
are hypertension and atherosclerosis.[1] AAD incidence is
approximately 2.9 to 3.5 per 100,000 persons, with a significant
increasing trend in recent years.[2] AAD mortality rate can reach
50% if the patients are not treated within 48hours.[3] Therefore,
early and accurate AAD diagnosis is crucial.
Previous studies have shown that less than half of AAD

patients presented typical AAD clinical signs during physical
examination,[4] resulting in delayed diagnosis or even misdiag-
nosis.[5] Currently, AAD diagnosis depends primarily on
contrast-enhanced CT angiography.[2] However, many patients
cannot be examined by contrast-enhanced CT angiography due
to their clinical condition or allergy to the contrast agents. Non-
contrast CT is more convenient and can provide a faster diagnosis
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than contrast-enhanced CT angiography. However, it is less
sensitive for differentiating between the AAD-associated true and
false lumens than contrast-enhanced CT angiography. Ultraso-
nography is currently the preferred screening method for AAD,
but it also has some limitations, including higher requirements of
the doctors’ diagnostic experience and operating techniques.[6]

Currently, radiomics receive the attention of an increasing
number of radiology scholars for its potential ability to help detect
lesions, improve diagnostic accuracy, predict disease risk, and
guide treatment strategies.[7] To make use of its advantages and
provide a reference for clinical diagnosis,wedevelopeda radiomics
model based on non-contrast CT images and evaluated its efficacy
in diagnosing AAD, an undertaking never reported before.
Figure 1. A 31-year-old male patient. The true and false lumens are revealed in
these contrast-enhanced CT angiography images. CT=computed tomogra-
phy.
2. Materials and methods

2.1. Patient data

The study was approved by the Ethics Committee of the First
AffiliatedHospital of Guangzhou University of ChineseMedicine,
and the batch number isNO.ZYYECK (2019) 157.We performed
a retrospective analysis of AAD patients diagnosed based on
different diagnostic criteria at the First Affiliated Hospital of
GuangzhouUniversity of ChineseMedicine fromOctober 2018 to
November 2019. The institutional review board approved the
study, and the need for informed consent was waived. All patients
assigned to the dissection group satisfied the following criteria: had
clinically diagnosed AAD; non-contrast CT and CT angiography
images were available; and were not treated by interventional
therapy or surgery before the CT examination. Patients satisfying
the following criteria were assigned to the non-dissection group:
admission to the hospital due to chest pain; and AAD and other
vascular lesions not detected on non-contrast CT and CT
angiography. Patients were excluded from both groups if at least
one of the following conditions was met: clinical or image/video
datawere insufficient; and the image could not be used for analysis
due topoor quality.We retrospectively selected 100 individuals for
this study using these criteria (50 for each group). The dissection
groupcomprised42male and8 female patients,whose ages ranged
from 25 to 92years (mean± standard deviation [SD], 56.7±15.3
years). The non-dissection group comprised 40male and 10 female
patients, whose ages ranged from 24 to 80years (mean±SD, 54.5
±12.7years). These 100 patients were divided into a training
group (70 patients) and a validation group (30 patients) by the
random number table method.
2.2. CT image collection

The CT images were acquired by Discovery CT 750 HD (GE
Healthcare, Chicago, IL). The average scanning range of the non-
contrast CT extended from the upper part of the aortic arch to the
vascular bifurcation. CT scanning was performed with the
following settings: field of view, 350�350mm; tube voltage, 120
kV; tube current, 35mAs; rotation speed, 0.6s; pitch, 0.984; slice
thickness, 1.25mm. Contrast-enhanced scanning was performed
after injecting 1mL/kg body weight of a contrast agent with a
high-pressure syringe at an injection rate of 1.5mL/s, followed by
injection of 30mL normal saline at the same injection rate.
Figure 2. No apparent abnormality is observed at the corresponding layer in
the non-enhanced CT image of the same patient as in Fig. 1. CT=computed
tomography.
2.3. Image analysis
2.3.1. Depicting the region of interest. CT images were
imported into the 3D Slicer software (https://www.slicer.org)
2

and processed by a radiologist with 3years of CT diagnosis
experience. Based on the locations of the aortic dissection shown
in the CT angiography images, the radiologist marked the
corresponding areas in the non-contrast CT images, generating
50 regions-of-interest (ROIs) for each study group. Representa-
tive images showing the ROI depiction are presented in Figs. 1–3.
One week later, CT images of 30 randomly selected patients were
processed by the same radiologist and a second radiologist with 4
years of CT diagnosis experience. Both radiologists depicted the
ROIs independently and extracted the characteristic features
from the images to evaluate intra- and inter-observer consistency.

2.3.2. Radiomic features extraction. All images were
resampled at a voxel size of 1�1�1mm. Voxel values were
aggregated into 25-HU wide bins to reduce image noise
interference and to normalize their intensities. PyRadiomics
(http://www.radiomics.io/pyradiomics.html),[8] an open-source
package in Python (https://www.python.org/), was used to
extract 3 types of characteristics: first-order statistics, geometric
descriptive features, and texture features. Texture features

https://www.slicer.org/
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Figure 3. A schematic of the region-of-interest (ROI) depicted in this layer.
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included the grey-level co-occurrence matrix, size-zone matrix,
run-length matrix, and difference matrix.[9,10]Figure 4 shows the
feature extraction schematic.

2.4. Statistical analysis

The Shapiro-Wilk test and Levene test were used to compare the
groups for clinical data (age, aortic diameter). Comparisons of
age and aortic diameter within each group were made by t test.
Pearson chi-squared test analyzed differences in sex, smoking
status, hypertension status, and aortic calcification between the
groups. Differences in intimal flap clarity in the non-contrast CT
images were examined using the Fisher exact test. Differences
with a P-value <.05 were considered statistically significant.
Consistency of the radiomics features extraction between

samples from the same and different groups was also evaluated.
Weused intra-group and inter-group correlation coefficients (ICC)
Figure 4. A schematic showing radiomic featu

3

to evaluate the consistency in the extracted image features from 30
randomly selected images between the first and second extraction
sessions by the first radiologist and between the first and second
radiologists in the second extraction session.[11] The feature
consistency was divided into poor reliability (ICC<0.5), medium
reliability (0.5� ICC�0.75), and high reliability (ICC>0.75).[12]

The radiomic features were first extracted from the CT images
on the PyRadiomics platform. Subsequently, the Lasso regres-
sion[13] was used to reduce the dimensions of characteristic
parameters with ICC>0.75. Next, characteristic parameters
with non-zero coefficients were selected to construct radiomic
tags. Finally, logistic regression analysis was used to perform a bi-
classification prediction of the radiomic tags and construct the
non-contrast CT scan-based radiomics model. The radiomics
model diagnostic performance was evaluated by a receiver
operating characteristic (ROC) curve.
Two different radiologists (both with over ≥3 years of CT

diagnostic experience) were blinded to the clinical and imaging
diagnoses and scored the 100 patients based on non-contrast-
enhanced CT images only. Scoring was on a scale from 1 to 5 (1,
normal; 2, probably normal; 3, uncertain; 4, probably aortic
dissection; 5, aortic dissection). Based on their aortic dissection
scores, the radiologists’ diagnostic performance was evaluated by
assessing the area under the ROC curve (AUC).
Statistical analysis was performed using R (Version 3.5.2,

https://www.r-project.org/). The ICC results were processed by
the “psych” package, Lasso regression by the “glmnet” package,
and ROC analysis by the “pROC” package. A flowchart of this
study is shown in Fig. 5.

3. Results

3.1. Clinical data

The 2 patient groups differed in hypertension, clarity of intimal
flap in the non-contrast CT images, and aortic diameter. The
res extraction by the PyRadiomics platform.

https://www.r-project.org/
http://www.md-journal.com


Figure 5. A flow chart showing the study design.
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groups were similar in age, sex, smoking status, and aortic
calcification (Table 1). A comparison between the training and
validation groups is shown in Table 2.
3.2. Inter- and intra-group consistency in the extracted
radiomic features

We extracted 1203 radiomic features using the PyRadiomics
platform. The imaging features extracted by the first radiologist
were highly consistent between the 2 trials (ICC=0.873–0.994).
There was also high consistency in the extracted imaging features
Table 1

Clinical data of the dissection group and non-dissection group.

Characteristic Dissection group (n=50) Non

Age 56.7±15.3
Sex
Male 42
Female 8

Hypertension
Yes 36
No 14

Smoking
Yes 18
No 32

Dekabey classification
Dekabey I 16
Dekabey II 3
Dekabey III 31

Intimal flap
Clear 29
Blurred 16
None 5

Aortic calcification
AAO 13
AOA 26
DAO 24

Aortic diameter, mm
AAO 40.8±7.5
AOA 36.9±9.2
DAO 34.6±9.6

AAO= ascending aorta, AOA= aortic arch, DAO=descending aorta.

4

between the two radiologists (ICC=0.763–0.960). The results
described below are therefore based on the features extracted by
the first physician during the first trial.
3.3. Construction of the radiomics model

Fourteen features with non-zero coefficients were selected from
the 1203 radiomic features using Lasso regression (Figs. 6 and 7).
The coefficient of the constant term was 13.05569. The linear
combination of the selected features, obtained by multiplying
them with the corresponding coefficients and then adding the
-dissection group (n=50) t/x2 P

54.5±12.7 –0.767 .445

40 0.271 .603
10

12 23.077 <.001
38

16 0.178 .673
34

/ / /
/ / /
/ / /

0 / <.001
0 / <.001
50 / <.001

6 0.793 .373
20 1.449 .229
17 2.026 .155

30.6±5.2 7.930 <.001
25.5±3.5 –8.194 <.001
24.3±3.7 –7.121 <.001



Table 2

Clinical data of the training and validation groups.

Characteristic Training group (n=70) Validation group (n=30) t/x2 P

Age 55.6±12.6 55.7±17.2 �0.047 .963
Sex
Male 58 24 0.116 .733
Female 12 6

Hypertension
Yes 41 7 10.447 .001
No 29 23

Smoking
Yes 24 10 0.008 .927
No 46 20

Dekabey classification
Dekabey I 11 5 0.014 .905
Dekabey II 3 0 / .552
Dekabey III 19 12 1.623 .203

Intimal flap
Clear 17 12 2.519 .113
Blurred 11 5 0.014 .905
None 42 13 2.357 .125

Aortic calcification
AAO 14 5 0.152 .697
AOA 31 15 0.276 .599
DAO 30 11 0.333 .564

Aortic diameter, mm
AAO 35.3±8.5 36.6±7.5 �0.723 .473
AOA 30.8±8.2 32.1±10.7 �0.603 .550
DAO 34.6±9.6 24.3±3.7 �0.493 .625

AAO=ascending aorta, AOA= aortic arch, DAO=descending aorta.
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constant term, were used as radiomic tags (Equation 1). Finally,
logistic regression was used to construct the radiomics model for
AAD diagnosis based on non-contrast CT images.
Figure 6. Leave-one-out cross-validation in Lasso regression yielded the
binomial deviation of the model and its relationship with the regularization
parameter log(l). The dotted line on the left represents the radiomics model
when using an optimum l of 0.030718. The dotted line on the right represents
the radiomics model using the smallest coefficient and l within one standard
deviation from its optimum value (the corresponding value of l is 0.077883).

5

Rad_score=13.05569
+(3.765755� log-sigma-1-0-mm-3D_glcm_JointEntropy)
�(0.002155� log-sigma-1-0-mm-3D_glrlm_LongRunEm-

phasis)
�(0.000025� log-sigma-2-0-mm-3D_fristorder_Energy)
Figure 7. The relationship between the feature coefficient and log(l) in Lasso
regression. This figure describes the converging process of the feature
coefficients. We obtained 14 characteristic features with non-zero coefficients
when l=0.077883.

http://www.md-journal.com
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�(0.004111� log-sigma-3-0-mm-3D_ fristorder_Range)
�(0.000060� log-sigma-3-0-mm-3D_glrlm_GrayLevelNonU-

niformity)
+(0.003138� log-sigma-4-0-mm-3D_glrlm _LongRunEm-

phasis)
�(0.012173� log-sigma-5-0-mm-3D_glcm_DifferenceVar-

iance)
�(0.014171�wavelet-HLL_fristorder_Kurtosis)
+(0.000233�wavelet-LLH _gldm_GrayLevelNonUniformity)
+(0.001100�wavelet-HLH_gldm_SmallDependenceEmpha-

sis)
�(0.016766�wavelet-HHH_firstorder_Kurtosis)
+(0.000077�wavelet-HHL_firstorder_TotalEnergy)
+(0.004168�wavelet-LLL_gldm_Imc1)
+(0.000362�original_firstorder_SmallDependenceEmphasis)

(Equation 1).
Figure 9. The area under the receiver operating characteristic (ROC) curve
(AUC) of the non-contrast CT scan-based radiomics model for the validation
group was 0.952. CT=computed tomography.
3.4. Identification and prediction performances of the
radiomics model and physician’s scores

The accuracy, sensitivity, specificity, and AUC of the radiomics
model for the training group were 94.3% (66/70), 91.2% (31/
34), 97.2% (35/36), and 0.988 (95% CI: 0.970–0.998),
respectively. The respective values for the validation group were
90.0% (27/30), 94.1% (16/17), 84.6% (11/13), and 0.952 (95%
CI: 0.883–0.986). The ROC curves of the training and validation
groups are shown in Figs. 8 and 9, respectively.

The AUCs obtained by the 2 radiologists based on the non-

contrast CT images alone were 0.879 (95% CI: 0.810–0.948)
and 0.894 (95% CI: 0.831–0.957), respectively.
4. Discussion

The concept of radiomics was first proposed by Lambin et al[14] in
2012. Using a high-throughput feature extraction algorithm,
Figure 8. The area under the receiver operating characteristic (ROC) curve
(AUC) of the non-contrast CT scan-based radiomics model for the training
group was 0.988. CT=computed tomography.

6

radiomics allows the extraction of many quantitative features by
data mining. Such an approach represents a breakthrough over
the traditional image diagnosis based on morphology. It also
provides a quantitative tool for accurate diagnosis based on
medical imaging. To date, radiomics has been applied to many
different fields, including molecular typing of tumors,[15,16]

staging classification,[15,17] differential diagnosis,[18] selection of
treatment options,[19] efficacy testing,[20] and prognosis evalua-
tion.[21,22] Non-contrast CT scanning sensitivity for differentiat-
ing between AAD-associated true and false lumens is still
insufficient. A clear intimal flap was visible on non-contrast CT
images in only 29 of the 50 patients in the dissection group.
Furthermore, the traditional imaging diagnostic accuracy was
greatly affected by subjective factors such as the physician
experience and fatigue level. Therefore, a transition from
morphology-based semi-quantitative imaging diagnosis to accu-
rate quantitative diagnosis would be an important future trend in
medical imaging. This study’s contribution to this trend is the
development of a non-contrast CT scan-based radiomics model
for diagnosing AAD.
4.1. Analysis of patient clinical data

Hypertension is an independent risk factor for AAD.[23,24] In this
study, the hypertension status differed significantly between the
dissection and non-dissection groups. A study by Januzzi et al[25]

showed that >67% of AAD patients were diagnosed with early-
stage hypertension. The dissection group was mostly comprised
of men (42/50 patients). The groups also differed in the diameter
of the ascending aorta, aortic arch, and descending aorta. AAD
patients usually have a larger aortic diameter than non-AAD
individuals. Of the dissection group patients, 31 were classified as
Dekabey III, 16 as Dekabey I, and only 3 as Dekabey II. This
result indicates that the tear in the aorta of most AAD patients
starts from the distal opening of the clavicular artery. The groups
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were similar in the calcification states of the ascending aorta,
aortic arch, and descending aorta. Thus, aortic calcification had
little diagnostic value for AAD. While there was a significant
difference between the groups in intimal flap occurrence in the
non-contrast CT images, the non-contrast CT images of a
significant number of AAD patients showed no or a very blurred
depiction of an intimal flap. This finding suggests that AAD
diagnosis based on the appearance of an intimal flap on non-
contrast CT images has some limitations. From a clinical
perspective, a more accurate method is required to diagnose AAD
based on non-contrast CT images.
4.2. Radiomics analysis

In this study, we constructed a radiomics model based on non-
contrast CT images. This model exhibited good performance and
high accuracy. The high-throughput feature extraction algorithm
used in radiomics essentially allows image digitalization.
Radiologists require the image and, more importantly, the
patients’ data.[26] These data are often difficult to identify by the
naked eye. In this study, the AUCs of AAD diagnosis based on
non-contrast CT images, performed by 2 radiologists with over 3
years of CT diagnosis experience, were 0.879 and 0.894,
respectively. These values were lower than the validation group
AUC of 0.952. This difference suggests that the non-contrast CT
scan-based radiomics model performed better at diagnosing AAD
than the 2 radiologists when only non-contrast CT scan images
were available. In terms of efficiency, it takes several minutes for a
radiologist to diagnose AAD in a patient. In contrast, the
radiomics model could evaluate the risk of AAD for hundreds of
patients in just a few seconds.
The non-invasive nature of the non-contrast CT scan-based

radiomics model for AAD makes it more advantageous and
convenient than biological marker diagnostic approaches such as
D-dimer diagnosis. Asha and Miers[27] reported that D-dimer
concentration, an indicator of fibrinolytic function, could be used
to diagnose AAD. When using a concentration of 500ng/mL as
cut-off value, the diagnostic sensitivity and specificity of D-dimer
were 95.7% and 61.3%, respectively. The hierarchical model
used by Watanabe et al[28] to evaluate D-dimer diagnostic
performance for AAD yielded an AUC of 0.950. The diagnostic
performances of the models developed by Asha andMiers[27] and
Watanabe et al[28] were both inferior to the non-contrast CT
scan-based radiomics model developed in this study. This finding
suggests that our radiomics model can achieve a more precise
diagnosis of AAD.
The radiomics model, comprised of 6 first-order statistical

features and 8 texture features, had very high sensitivity and
specificity for AAD diagnosis. Furthermore, the model demon-
strated very high accuracy in the training and validation groups.
These results indicated that the proposed algorithm had small
variance and deviation, making it suitable for solving the AAD
diagnosis problem. Besides, the use of Lasso regression to reduce
radiomics feature dimensions presented a leave-one-out cross-
validation for the proposed method. Such validation improves
the robustness of our radiomics model.
4.3. Limitations

This study had some limitations. Only the largest lesion layer was
selected for depicting the ROI; thus, the ROI failed to cover all the
layers in the lesion. Fifty patients were included in each group,
7

making the number of patients analyzed in this study relatively
small. In the future, we intend to depict a ROI covering all layers
in the lesion and increase the number of samples as part of a
multicenter study.

5. Conclusion

In summary, the non-contrast CT scan-based radiomics model
developed here could be of great value for AAD diagnosis.
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