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Abstract

Undesirable microbial infiltration into the female bovine reproductive tracts, for example during calving or mating,
is likely to disturb the commensal microflora. Persistent establishment and overgrowth of certain pathogens induce
reproductive diseases, render the female bovine reproductive tract unfavourable for pregnancy or can result in
transmission to the foetus, leading to death and abortion or birth abnormalities. This review of culture-independent
metagenomics studies revealed that normal microflora in the female bovine reproductive tract is reasonably
consistently dominated by bacteria from the phyla Bacteroidetes, Firmicutes, Proteobacteria, following by
Actinobacteria, Fusobacteria and Tenericutes. Reproductive disease development in the female bovine reproductive
tract was demonstrated across multiple studies to be associated with high relative abundances of bacteria from the
phyla Bacteroidetes and Fusobacteria. Reduced bacterial diversity in the reproductive tract microbiome in some
studies of cows diagnosed with reproductive diseases also indicated an association between dysbiosis and bovine
reproductive health. Nonetheless, the bovine genital tract microbiome remains underexplored, and this is especially
true for the male genital tract. Future research should focus on the functional aspects of the bovine reproductive
tract microbiomes, for example their contributions to cattle fertility and susceptibility towards reproductive diseases.
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Introduction
In general, cattle reproduction (with a maximum of one
pregnancy per year) is less efficient as compared to other
livestock species which give birth to a litter or are ovip-
arous [1–4].. On the herd level, the number of calves
born and raised per breeding cycle is inevitably vital for
economically sustainable dairy and beef production, as
well as heifer replacements [5, 6]. Therefore, maintaining
the bovine reproduction performance at an optimal level
is a priority in cattle industries. Bovine reproduction
performance is a multifactorial trait and can be affected

by both infectious and non-infectious factors. Examples
of non-infectious factors are genetic variation in fertility,
environmental factors and nutrition [7, 8]. Infectious
factors are primarily linked to persistent microbial
colonization, which can lead to inflammation and com-
promised reproductive performances in various forms,
including distorted reproductive cycle, reduced concep-
tion rate, increased risk of abortion, stillbirth and ex-
tended calving seasons [9–12].
During calving, microbes which are prevalent in live-

stock environments can gain access into the uterus of
the cow [13, 14]. Typically, cattle can restore their uterus
from postpartum microbial contamination within the
first 5 weeks after calving, by uterus involution and dis-
charge of the uterus and cervix content, as well as acti-
vation of host defence systems [15]. However, in some
cases, bacteria can persistently colonize the reproductive
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tract and lead to inflammation [1, 16]. Aside from bac-
terial contamination during calving, other pathogens can
gain access to the reproductive organs of the cow during
mating and artificial insemination via contaminated
sources [17–20]. Transmission of the causative agents
from close contact with the contaminated environmental
source or infected hosts potentially leads to bovine re-
productive diseases, such as leptospirosis, neosporosis,
brucellosis and bovine viral diarrhoea [21–24].
Establishment of opportunistic pathogens in the bo-

vine reproductive tract reduced the cattle reproductive
efficiency. Microbial infections in the cattle reproductive
organs perturb the regulation of reproductive hormones.
For example, in two separate studies using either cows
with endometritis or those challenged with bacterial
lipopolysaccharide (LPS), oestradiol levels were reduced
and led to delayed ovulation [14, 25, 26]. In addition, it
has been shown that bacterial LPS challenge disrupts the
regulation of luteinizing hormone and prostaglandin F2α,
lowering progesterone which negatively affects the via-
bility of embryos by changing the uterine environment
[27–29]. Another consequence of reduced levels of pros-
taglandin F2α is the incomplete regression of the corpus
luteum at the end of dioestrus, which led to low fertility
[30–33]. Additionally, invasion by pathogenic microbes
and their toxins induce inflammation, triggering host in-
flammatory responses and destruction of the endomet-
rial integrity in cattle reproductive organs, which are
unfavourable conditions for the transport of spermato-
zoa and embryonic development [34–36]. Infestation of
pathogens on the bovine gametes detriments the repro-
ductive efficiency by interfering the development of oo-
cytes [37, 38] and reducing the sperm functionality
including sperm viability, motility and DNA integrity
[39–42]. Overgrowth of opportunistic pathogens is also
not beneficial during early embryonic development as it
increases the risk of early embryonic death, abortion or
birth of an abnormal or persistently infected calf [43].
Bacterial species which were isolated from the bovine
endometrial tissues using standard culture techniques
include Escherichia coli, Fusobacterium spp., Prevotella
spp. and Trueperella pyogenes. These bacteria have been
hypothesized to be the causative pathogens responsible
for postpartum endometrial pathology [4, 44, 45]. How-
ever, this hypothesis has been questioned extensively in
recent years since the discovery of a previously underap-
preciated fraction of microbial composition using next
generation metagenomics approaches [46–49].
The term metagenome refers to the collection of ge-

nomes and genes of the microorganisms from an environ-
ment [50]. The advent of DNA sequencing techniques
allows decoding of both culturable and unculturable spe-
cies concurrently and reveals the actual microbial commu-
nity with high resolution [51–53]. In the area of host-

pathogen interactions, the amount of information har-
vested efficiently using DNA sequencing approaches has
been a breakthrough in deciphering the interplay between
hosts and microbes [54]. Instead of focusing on the patho-
genicity of a particular group of microbes, host-associated
metagenomics studies unveil the role of the entire meta-
genome in determining host susceptibility to infectious
diseases and the outcomes of infections [55]. Additionally,
the significant role of the maternal reproductive tract
microbiome associated with pregnancy outcomes and the
subsequent early life of the progeny has been documented
[56, 57]. To improve bovine reproductive performance, it
would be beneficial to identify bovine reproductive tract
microbiome biomarkers that can predict for high preg-
nancy chance or pregnancy risk.
Amplicon sequencing is a targeted sequencing approach

focusing on a specific genomic region which are ubiqui-
tous and discriminatory throughout the microbial popula-
tion of interest [58, 59]. The common target genes used in
amplicon sequencing are 16S rRNA genes for bacteria
[60], 18S rRNA genes for eukaryotes [61] and internal
transcribed spacer (ITS) genes for fungi [62]. The draw-
back of amplicon sequencing are the biases associated
with the usage of different variable regions of the target
genes as the amplicon primers [63]. The different binding
affinities and resolution of each variable region across the
taxa causes amplicon sequencing to selectively amplify
certain reads and thus results in a distorted taxonomic
prospect of the entire metagenome [64]. Additionally,
amplicon sequencing renders limited resolution in func-
tional profiling because it typically amplifies a small region
of the target gene [65, 66]. Shotgun sequencing is a non-
targeted approach in which all the genetic fragments in
the sampled microbiome are sequenced [67, 68]. The indi-
vidual sequence reads can be mapped directly to taxo-
nomic databases or be assembled into contigs to provide
more accurate information than is possible with other ap-
proaches. Reads and contigs generated from shotgun
metagenomic studies can also be mapped to the protein
and pathway databases for functional profiling or used for
putative protein sequence identification [54, 69]. Shotgun
sequencing provides a better resolution as compared to
amplicon sequencing but at a higher cost and a greater
data-processing effort. Hence, shotgun sequencing has
been less widely used than amplicon sequencing for com-
parative metagenomics studies, which generally involve
multiple samples [67, 68].
We have performed a systematic review to examine

and summarise the available research articles on metage-
nomic sequencing studies of bovine reproductive tracts.
The reported metagenome profiles of the bovine repro-
ductive tracts were consolidated considering the ration-
ale and study design in each study, in order to provide a
systematic review of knowledge in this area.
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Materials and methods
Search strategy and selection criteria
To assemble the available journal articles reporting
metagenomics sequencing in bovine reproductive tracts,
searches were conducted in six electronic databases
(PubMed, Web of Science, Cochrane Library, Embase,
Scopus and CABI) on 16th of September 2020. This sys-
tematic review was framed around the review title
“metagenomics sequencing in bovine reproductive tract”
by using the keywords “cattle”, “reproductive”, “metagen-
ome” and “microbiome” for the searches. The detailed
search strategies for each database are listed in Add-
itional File 1. The records summoned by the databases
were imported to EndNote [70] and the duplicates were
removed. In this systematic review, records which did
not report original data were excluded, including re-
views, conference abstracts and book sections. The full-
text articles were downloaded and articles which did not
have English full text available were excluded. The title
and abstracts of all records were screened to filter out
studies which performed metagenomics analysis in hosts
other than cattle, metagenome analysis in bovine organs
other than the reproductive tract and non-
metagenomics analyses. If the paper reported both
culture-dependent and culture-independent, only culture
independent results were taken into consideration. The
steps of this systematic review were adopted and modi-
fied from the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [71] (Fig. 1).

Data extraction and analysis
The included records were subjected to the next tier of
screening to extract the following information: first au-
thor, journal name, year of publication, maturity and
gender of the cattle, cattle breed, geographical location
of the cattle, reproductive health condition, reproductive
status, breeding method, sample size, specimen type,
microbiome DNA isolation method, metagenomics se-
quencing platform, analysis platform, microbial phyla
detected and rationale of the study. Data cleaning, strati-
fication, analyses, and visualisation were performed in
both Microsoft Excel [72] and R studio [73] with pack-
ages include dplyr [74], ggplot2 [75] and reshape2 [76].

Stratification of bovine reproductive tract microbiome
studies
The information extracted were used to categorise the
included records. The geographical origins of the in-
cluded studies were classified according to World Health
Organisation (WHO) regional groupings [77], mainly
European region, region of Americas and Western Pa-
cific region. The sequencing platforms adopted in each
of the included studies were stratified into three major
categories: pyrosequencing, Illumina and Multiple/
Other/Not specified. The sequencing regions in each
study were stratified into 16S V1-V2, 16S V1-V3, 16S
V3-V4, 16S V4, 16S V5-V6, shotgun and Multiple/
Other/Not specified. Sample sizes were divided into less
than 10, 11–50, 51–100, 101–200 and above 200. If

Fig. 1 Flow chart of systematic review. The steps were adopted and modified from the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [71]

Ong et al. Animal Microbiome            (2021) 3:41 Page 3 of 12



samples were pooled together before sequencing, the
number of pooled samples was used as the sample size
instead of the number of samples. The category “Bovine
reproductive tract” referred to the part of bovine repro-
ductive tract from which the metagenomics sample was
collected, mainly cow vagina and uterus. The specimen
type collected from the bovine reproductive tract were
categorised into biopsy, swab, wash or multiple if several
types of specimens were collected. In general, biopsies
were tissue samples incised from reproductive organs,
swabs collected mucus using sterile tools such as cotton
swabs, catheters or cytobrushes, while washes used sa-
line injected into the reproductive organs to obtain a
sample. DNA isolation methods were divided into five
categories: column-based, magnetic-based, precipitation-
based and Multiple/Other/Not specified. Column-based
referred to DNA extraction depending on the solid-
phase system in a spin-column for DNA purification;
magnetic-based DNA extraction used magnetic beads
for the separation of DNA; while precipitation-based
DNA extraction utilised the isopropanol precipitation
method as described previously [78].
The included studies were also stratified into different

categories under “Rationale” according to the study ob-
jectives and primary findings, including baseline, breed,
pathology, fertility and pregnancy stages, reproductive
cyclicity stages, transmission and intervention studies.
Baseline studies were designed to investigate the micro-
biome in cattle reproductive tract and did not include
any comparative analysis. Studies which were stratified
under the “breed” category compared the cattle repro-
ductive tract microbiome between different breeds.
Studies which were categorised under “pathology” com-
pared the cattle reproductive tract microbiome between
samples collected from healthy cattle and cattle with re-
productive clinical diagnosis, including metritis, endo-
metritis, purulent vaginal discharge and retained
placenta. “Fertility/ Pregnancy stages” comprised of stud-
ies which compared the cattle reproductive tract micro-
biomes between non-pregnant and pregnant animals at
different gestation stages. “Cyclicity stages” consisted of
studies which determined the cattle reproductive tract
microbiome at different reproductive cyclicity phases.
Studies which examined the origin and the transmission
of cattle reproductive tract microbiome were classified
under “Transmission”. Studies which determined the ef-
fect of supplements, vaccines, antibiotics or treatments
were categorised under “Intervention”.

Results
In total, 531 records were retrieved from the customised
searches. After excluding the duplicates, the first screen-
ing was conducted with 210 records. One hundred and
sixty-two records were removed, including records which

did not report original data (n=58), records which do not have
an English full text available (n=11), studied animals were not
cattle (n=54), metagenome samples were not collected from
bovine reproductive tract (n=5) and non-metagenomics stud-
ies (n=34). Full texts of the remaining records (n=49) were
assessed for eligibility and 46 records were eventually subjected
to data extraction and stratification (Fig. 2).
The bovine reproductive tract metagenomics papers

included in this review were published between 2011
and 2020, with an increasing number of papers pub-
lished in the 4 years from 2016 to 2020 (Fig. 3). Geo-
graphically, the studies reviewed in this paper were
mainly from the Americas (n = 24), the Western Pacific
region (n = 8), and Europe (n = 7) while the cattle breed
which was most studied was the Holstein dairy breed.
Twenty and sixteen studies selected for this review spe-
cifically targeted the metagenomes isolated from bovine
uterus and vagina respectively, while the others investi-
gated the metagenome from other or multiple parts of
the bovine reproductive tract. Approximately 80% of the
studies (n = 37) employed column-based DNA isolation
methods to extract the genomic material from the
microbiome samples while the precipitation-based,
osmotic-based magnetic-based methods were less com-
mon. Illumina sequencing platform (~ 76%) was the
most popular sequencing technology adopted by the
studies to sequence bovine reproductive tract metagen-
omes, followed by Multiple/Other/Not specified (~
15.2%) and pyrosequencing (8.7%). The majority of the
studies included in this review focused on the bacterial
metagenome by sequencing the 16S rRNA gene, particu-
larly variable region V4. Assignment of taxonomic units
in the studies included in this review were commonly
performed using Greengenes (n = 15), followed by RDP/
RDP II (n = 12) and SILVA (n = 6), while other studies
conducted taxonomic unit identification using M5RNA,
Genbank, EzTaxon server or multiple databases. Many
of the studies (~ 43%) were conducted to examine the
bovine reproductive metagenome of animals with repro-
ductive disease, including metritis and endometritis. The
bovine reproductive tract metagenome at different preg-
nancy stages and its causative relationship to cow fertil-
ity were explored by ~ 15% of the studies.
Approximately 15% of the studies investigated the
changes introduced to the bovine reproductive tract
metagenome as the results of interventions of various
supplements, vaccines, antibiotics and devices.
Some of the papers were not included in the analysis

of the most common bacterial taxonomic profile in bo-
vine reproductive tract metagenomes because the paper
did not report the common bacterial taxonomic profile
(n = 2) or reported the common bacterial taxonomic
profile generated using culture-dependent method (n =
3). The taxonomic profiles from various reports (n = 41)
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revealed that the most abundant bacterial phyla in the
bovine reproductive tract were Bacteroidetes, Firmicutes
and Proteobacteria, which were persistently identified in
all studies, following by Actinobacteria, Fusobacteria and
Tenericutes, which were detected in most of the studies
(Fig. 4). Other microbial phyla which were reported in
some of the studies reviewed include Spirochaetes, Ver-
rucomicrobia, Lentisphaerae and Euryarchaeota.

Discussion
Culture-independent studies support existing
understanding and provide new knowledge about bovine
reproductive tract metagenomes
Bovine reproductive tract metagenomics studies
reinforce our understanding of the microbial ecosystem
within bovine reproductive systems. For example, the
discovery of Campylobacter fetus subsp. venerealis in the

Fig. 2 Overview of study design of 46 studies included in this systematic review. Each column depicts the study design of a paper which was
represented with a paper identification number (ID) (Additional File 2). The rows describe the data extracted from the paper, including year of
publication, sequencing platform, sequencing region, WHO geographical region, cattle breed, sample size, specimen type, microbiome DNA
isolation method, taxonomy identification database and rationale. The colour codes for each data categories are listed in the Figure legend

Fig. 3 Number of papers stratified into different categories in A) year of publication, B) taxonomy identification method, C) WHO geographical
region, D) sample size, E) cattle breed, F) specimen type, G) sequencing platform and sequencing region, H) microbiome DNA isolation method
and I) rationale. Papers were classified as “Not specified” when the metadata was not available, “Multiple” if multiple study designs were
implemented and “Other” if the study design was not commonly used
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metagenomics study investigating preputial samples
from healthy bulls reinforced the previous findings re-
garding the role of bulls in spreading venereal diseases
while remaining asymptomatic [17, 18, 20, 60]. Mean-
while, metagenomics studies also revealed that the lower
reproductive tract of cows has a different microbial com-
position compared to primates and humans, which both
have Lactobacillus spp. as the dominant genera in the
vaginas of healthy individuals [79]. However, Lactobacil-
lus spp. were detected in bovine vaginas at low levels,
and this finding corresponds to the near-neutral pH in
the bovine vagina, in sharp contrast to human vaginas
[80, 81]. Additionally, metagenomics investigations dis-
closed that there were both shared and different core
operational taxonomy units (OTUs) between the bovine
vaginal and uterine samples. The shared OTUs indicated

the interactions between the bacterial communities in
the two reproductive organs while the different OTUs
reiterated the differential microbial ecosystem niches as
well as their attributes to the functional differences be-
tween the two reproductive organs [82]. The close re-
semblance of the vaginal microbiome and the
microbiome in associated calves highlighted the possibil-
ity of vertical transmission of the maternal microbiome,
which predetermines the health and survival rate of the
calves [57, 83, 84]. A metagenomics study focused solely
on the viruses also provided a baseline understanding of
the genital tract virome of healthy dairy cattle [85].
High-throughput sequencing unveils a more detailed

and accurate picture of the bovine genital tract micro-
biome. Intriguingly, some of the species, including Bacil-
lus spp., Enterococcus spp., Staphylococcus spp. and

Fig. 4 Number of papers reporting the six most abundant microbial phyla, including Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
Proteobacteria and Tenericutes, under different study rationale. Blue represents the number of papers reported while red represents the number
of papers did not report the respective bacterial phyla
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Streptococcus spp., which were perceived as the normal
microflora in the bovine genital tract via culture-based
studies, were not significantly detected in the sequencing
studies [86–88]. Similarly, Escherichia spp. and Trueper-
ella spp., which were previously regarded as the causes
of bovine metritis and endometritis by culture-
dependent approaches, were reported with low abun-
dances in reproductive disease-associated sequencing
studies [89–93]. This observation is potentially attrib-
uted to the limitations of culturing in which the abun-
dance of certain bacteria is masked selectively by
enriched media and culturing conditions. However, it is
also debatable if the main driver of bovine reproductive
diseases is due to A) the high abundance of a specific
bacterial species (or set of species) or B) the presence of
key virulence factors associated with a minor population
(which is more difficult to detect by metagenomics se-
quencing unless sequencing is very deep). Nevertheless,
Fusobacterium spp. from the phylum Fusobacteria, Pre-
votella spp. (formerly Bacteroides spp.) and Porphyromo-
nas spp. (formerly Bacteroides spp.) from the phylum
Bacteroidetes were consistently identified to be associ-
ated with bovine reproductive diseases by both culture-
dependant and culture-independent studies [49, 94, 95].
The studies highlighted the role of Fusobacterium spp.,
Porphyromonas spp. and Prevotella spp. in bovine repro-
ductive infections. The mechanisms and the minimal in-
fective concentrations of these species needs to be
further examined to provide a better platform of know-
ledge for the development of diagnostic methods and
treatments.

Prevalence of microbial phyla in the bovine reproductive
tract microbiome
Collectively, the bovine reproductive tract metagenomics
studies have characterized the normal microflora at the
phylum level in bovine reproductive organs. The com-
monly identified bacterial phyla in bovine reproductive
tracts are Bacteroidetes, Firmicutes and Proteobacteria,
followed by Actinobacteria, Fusobacteria and Teneri-
cutes. Bacteria from these predominant phyla form the
commensal microbiome in cattle reproductive organs,
regardless of the breed, farm, gender, geographical loca-
tion, sampling site, reproductive status and reproductive
health. Notably, these bacterial phyla were also com-
monly detected in gastrointestinal tract microbial studies
[96–98]. The close anatomical proximity between the
two systems may have allowed the colonization of the
reproductive tract microbial community originating
from the gastrointestinal tract [56, 82, 99]. In addition,
the possibility of direct faecal and environmental con-
tamination of the reproductive organs should be taken
into consideration [60, 82].

Interestingly, there was no exclusive association of a
specific bacterial phyla with bovine reproductive diseases
consistently reported across the studies. Several studies
reported that the reproductive organs of both diseased
and healthy cows shared the same dominant bacterial
phyla, including Bacteroidetes, Firmicutes, Fusobacteria
and Proteobacteria, but at different proportions [48, 94,
100–103]. Proteobacteria and Firmicutes were dominant
in healthy cows while Fusobacteria and Bacteroidetes
were prevalent in the reproductive tract of cows that
eventually developed reproductive disease after partur-
ition. Similar results were also derived from two shotgun
sequencing studies, one that investigated the uterine
microbiome of cows diagnosed with metritis [104] and
one that investigated the uterine microbiome of cows
with purulent vaginal discharge [105]. In both studies,
the same sets of bacterial phyla were present in the
uterus of both healthy cows and cows with reproductive
diseases, but with increased abundance of Fusobacteria
and Bacteroidetes in diseased animals.
It was observed that the low Firmicutes to Bacteroi-

detes ratio was an early sign in cows who subsequently
develop postpartum endometritis [106]. The significance
of the presence of Firmicute lactic acid bacteria, particu-
larly Lactobacillus spp., in maintaining the vaginal
homeostasis has been well established [107]. Lactobacil-
lus spp. are not the dominant Firmicutes in bovine re-
productive tracts, however the dominance of other lactic
acid bacteria, such as Enterococcus spp. and Streptococ-
cus spp., has been identified in bovine reproductive
tracts [86, 108]. Lactic acid bacteria convert glycogen
into lactic acid, creating an environment with a low pH
level that inhibits the growth of pathogenic microbes
[109]. Additionally, lactic acid bacteria also exert anti-
microbial effects by producing compounds, such as bac-
teriocins, defensins and hydrogen peroxide, to facilitate
their survival over other bacteria [110, 111]. Overgrowth
of opportunistic bacteria from the phyla Bacteroidetes
and Fusobacteria at the expense of Firmicutes contrib-
utes to the development of bovine reproductive diseases.
A recent culture-independent investigation with droplet
digital PCR confirmed that Prevotella melaninogenica
(Bacteroidetes) and Fusobacterium necrophorum (Fuso-
bacteria) were the causative agents responsible for metri-
tis in cattle [112]. Several studies have suggested a
strong synergetic interaction between Bacteroidetes and
Fusobacteria causes bovine metritis and endometritis
[36, 94, 113]. Fusobacterium spp. stimulate Bacteroidetes
proliferation by providing growth factors and by releas-
ing a toxic protein against the host leukocytes to weaken
the host defence [114, 115]. Hence, Prevotella melanino-
genica, which possess collagenolytic activity, can disrupt
the epithelial integrity even when present in low num-
bers [116].
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Biodiversity in bovine reproductive tract microbiome
Microbial biodiversity is governed by two major factors,
which are the number of species present in the commu-
nity (richness) and the relative abundance of each spe-
cies (evenness) [117]. Dysbiosis, which is the shift of
commensal communities, [118, 119], was observed in
some metagenomics studies comparing different preg-
nancy status, reproductive health conditions and fertility.
Metagenomic-based investigations of the bovine geni-

tal tract illustrated the potential association between the
shifts of microbial abundancies and the hormonal
changes within the bovine reproductive system during
different stages of the reproductive cycle. In an experi-
ment characterizing the vaginal microbiome of heifers,
non-pregnant cows, primiparous and multiparous cows,
a lower bacterial composition and a higher archaeal
abundance were observed in the pregnant cows [99].
Since progesterone is the dominant hormone during
pregnancy, the level of progesterone hormone and the
microbial community structure are likely to be inter-
dependent. On the other hand, the shifts of bacterial di-
versity in the uterus during the oestrus synchronization
program was also observed, reinforcing the effects of
hormonal changes on the bacterial composition [120].
This finding coincides with the shifts of vaginal micro-
bial communities during the oestrous cycle as illustrated
previously in a culture-dependent analysis, in which a
decrease in the abundance of aerobes and facultative an-
aerobes was observed when progesterone levels are high
[86]. A rise in estrogen levels stimulates the production
and accumulation of glycogen while high progesterone
levels suppress glycogen synthesis [121–123].
Depolymerization of glycogen, either by the host or
amylase-producing microbes, releases nutrients for the
microbial communities in the reproductive tract [124].
Hence the reduced numbers of microbes and conse-
quently the reduced biodiversity are attributed to low
levels of estrogen and high levels of progesterone, as oc-
curs for example during luteal phase and pregnancy.
The association between dysbiosis and bovine repro-

ductive infections was observed in some of the metage-
nomic studies. Low microbial diversity was also the
differentiating factor which separated vaginal micro-
biome samples isolated from cows that developed bovine
necrotic vulvovaginitis from those that developed mild
vulvovaginitis [125]. Multiple metagenomics studies re-
ported lower levels of microbial diversity in the repro-
ductive tract samples from cows with reproductive
diseases, which contrasted with the complex bacterial
communities sampled from healthy cows [95, 126–132].
These studies suggested that the opportunistic bacteria
from phyla Bacteroidetes and Fusobacteria overgrow
other members in the microflora, resulting in a dis-
turbed microbiome with low microbial diversity.

However, the occurrence of bacterial dysbiosis and an
association with reproductive disease development and
low fertility were observational and not observed in
some disease-associated metagenomics studies (Add-
itional File 3) [101, 104, 105]. Therefore, it is question-
able whether the low microbial diversity can be adopted
as an indicator for pathology. Further investigations need
to be conducted to examine the inconsistent findings, by
ruling out the different biases introduced by experimen-
tal designs and sequencing strategies such as sequencing
depth.

Functional aspects of bovine reproductive tract
microbiome
The growing interest of sequencing microbiome samples
using shotgun approaches is attributed to a benefit in
characterizing the functional profiles with the informa-
tion encoded within the contigs. Functional analysis re-
vealed that the uterine microbiome of cows with metritis
expressed a significantly higher amount of genes coding
for “protein transportation across cytoplasmic mem-
brane” and “type IV bacterial secretion systems” [104].
Secretion and invasion of virulence factors into host cells
via the cellular membranes are common pathological
mechanisms [133, 134], and are conjectured to aid in the
colonization of uterine epithelial cells and the invasion
of the mucosal surface by bovine metritis-causing bac-
teria [135]. Genes transcribing for “LPS modification”
and “cytolethal distending toxins (CDTs)” have been ex-
clusively and highly expressed in the uterine microbiome
of cows diagnosed with purulent vaginal discharge [105].
The highly variable LPS modification systems of invad-
ing Gram-negative bacteria increase their survival oppor-
tunities in hosts, e.g. by escaping the host antimicrobial
defence mechanisms, subsequently leading to persistent
and chronic infections [136, 137]. Gram-negative bac-
teria also secrete CDTs to trigger G2/M cell cycle arrest
and cause apoptosis by inducing the enlargement of the
mammalian cells [138]. Examples of CDT coding bacter-
ial species are Escherichia coli, Campylobacter spp. and
enterohepatic Helicobacter spp. [139]. Furthermore, the
exclusive expression of genes coding for tolerance to
colicin E2 in the microbiome of healthy cows is intri-
guing [104, 105]. Colicin E2 is an antibiotic nuclease
which exhibits inhibitory effects by binding onto the
outer membrane receptors of targeted bacteria [140].
The tolerance to colicin E2 posed by the uterine micro-
biome of healthy cows represses the overgrowth of
harmful pathogens [104, 105].

Future prospects
The bovine reproductive tract microbiome is relatively
underexplored, particularly in terms of specific taxo-
nomic classification and functional aspect of the
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microbiome, which are beneficial for the development of
diagnostic methods, such as microbial biomarkers and
dysbiosis indexes. Further investigations are essential to
provide more meaningful and supportive information to
aid development of novel treatment for bovine infertility
and reproductive illness, based on altering the micro-
biome of the reproductive tract, such as microbiome
transplantation.

Conclusions
Despite the different experimental designs and ap-
proaches, the bovine reproductive tract microbiome
studies reported the most common bacterial phyla in bo-
vine reproductive organs are Bacteroidetes, Proteobac-
teria and Firmicutes, followed by Fusobacteria,
Actinobacteria and Tenericutes. The shift of microbial
composition, with elevated abundancies of bacterial
phyla Bacteroidetes and Fusobacteria in the reproductive
tract metagenomes from cows with reproductive dis-
eases, emphasized a pivotal relationship of the members
from these two bacterial phyla with bovine reproductive
disease development. Further analyses are needed to
examine whether the shifts in microbial community
compositions are the reason for higher susceptibility of
the animals towards reproductive diseases or the result
of the reproductive disease. Dysbiosis was observed in
some studies that investigated the metagenomes of
healthy cattle and cattle diagnosed with reproductive
diseases. It is crucial to determine whether the low mi-
crobial diversity is truly representative of a disease
process or a distorted view of the bovine reproductive
tract microbiome due to inherent biases of the experi-
mental design and sequencing methodologies.
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