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ABSTRACT
Background: Diet is a determinant of gut microbiota. Both diet and gut microbiota have been linked to metabolic

diseases.

Objective: We aimed to examine data-driven food patterns in relation to the prevalence of prediabetes and gut

microbiota composition and food pattern–associated bacteria in relation to prediabetes.

Methods: Food patterns were extracted using principal component analysis in 1726 individuals (aged 18–71 y, 55%

women, mean BMI = 25.5 kg/m2) without diabetes from the population-based Malmö Offspring Study. The gut (fecal)

microbiota was analyzed by sequencing the 16S ribosomal RNA gene (V1–V3 region). Prediabetes classification was

based on fasting glucose ≥6.0 mmol/L and/or glycated hemoglobin ≥42 mmol/L at baseline and/or type 2 diabetes

diagnosis during follow-up (0–3.8 y). Logistic regression was used to investigate cross-sectional associations with

prediabetes, and the general linear model to examine associations between food patterns and bacterial genera.

Results: Two food patterns, the Health-conscious and the Sugar and High-Fat Dairy patterns, were identified. Adherence

to the Health-conscious pattern was associated with a lower prevalence of prediabetes (OR comparing highest quintile

with lowest: 0.54; 95% CI: 0.32, 0.92; P-trend = 0.03) and with the abundance of several gut bacterial genera, of which

the most robust findings were with a higher abundance of Roseburia and Lachnospira and with a lower abundance of

Eubacterium. Roseburia was also associated with a lower prevalence of prediabetes (OR comparing highest quintile

with lowest: 0.56; 95% CI: 0.35, 0.92; P-trend = 0.01) and the association between the Health-conscious pattern

and prediabetes was attenuated after adjustment for abundance of Roseburia and BMI. Adherence to the Sugar and

High-Fat Dairy pattern was associated with a higher prevalence of prediabetes in women (P-trend across food pattern

quintiles = 0.03).

Conclusions: In this Swedish population-based study, a Health-conscious food pattern showed an inverse association

with the prevalence of prediabetes. Potential underlying explanations may involve links between healthy diet and BMI,

as well as gut microbiota, especially a higher abundance of Roseburia. J Nutr 2020;150:861–872.
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Introduction
Type 2 diabetes (T2D) affects the quality of life of many
individuals worldwide and the high and increasing prevalence
is an enormous burden to society. Identification of modifiable
lifestyle factors including diet, that have beneficial effects on
glucose metabolism and counteract the development of T2D is
consequently of great value to public health. However, diet is a
complex exposure of interacting food components, consumed
in different combinations. It is therefore important to capture
overall healthy food patterns that could be translated into
dietary guidelines. Many data-driven food patterns referred to

as “Healthy” or “Prudent” have been associated with decreased
risk of T2D (1–3). Diet is also an important factor for gut
microbiota composition and richness (4), which have been
found to be altered in many disease states including obesity and
T2D (5–7), and a recent study indicated that the gut microbiota
may play a causal role in the development of T2D via the effects
on SCFA production from fermentable food components (8).
Studies on overall dietary patterns in relation to gut microbiota
are scarce and have mainly focused on associations with the
Mediterranean dietary patterns or plant-based versus animal-
based diets (9–13). Although diet has been identified as 1 of
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the main determinants of gut microbiota composition, large
observational studies are lacking regarding foods commonly
consumed in modern societies and no study has examined
data-driven food patterns in relation to gut bacterial composi-
tion. Moreover, the importance of gut microbiota in health and
disease in a large number of individuals, or in population-based
cohorts, have only recently been studied (4, 14).

Our aim was to identify data-driven food patterns using
principal component analysis in 1726 men and women from
the Malmö Offspring Study (MOS) without a previous diabetes
diagnosis, and to examine whether the extracted food patterns
were associated with prevalence of prediabetes at baseline,
independently of other lifestyle factors. In addition, we wanted
to examine the identified food patterns in relation to gut
microbiota composition. Finally, the food pattern-related gut
bacteria were examined in relation to prediabetes.

Methods
Study population and data collection
MOS is an ongoing population-based cohort study where children
and grandchildren (aged >18 y) of participants in the Malmö Diet
and Cancer Study—Cardiovascular Cohort are recruited (15, 16).
Participants were invited via letter and visited the research clinic on
2 occasions with about a week in between the visits. There were no
exclusion criteria. At the first visit, venous blood was drawn after an
overnight fast, and anthropometrics and blood pressure were measured.
The study participants were instructed on how to collect the fecal
samples at home, how to record their food intake during 4 d (starting
the day after the first visit), and how to fill in a web-based food
propensity questionnaire and a comprehensive questionnaire on other
lifestyle and socioeconomic factors (before the second visit). At the
second visit the fecal samples were brought to the clinic. The study
protocols were approved by the Ethics Committee of Lund University
(protocol number DNR 2012/594) and all participants provided written
informed consent.

From the start of the study in March 2013 until the end of
April 2017, 2644 individuals participated in baseline examinations
(47% of the eligible participants) (Supplemental Figure 1). Of the
nonparticipants, 29% answered that they were not willing to take part,
28% did not reply, 26% did not come to their appointment, 5% died or
moved before they had received an invitation, 4% wanted to participate
later, 5% stated lack of time due to work or other activities, 1% were
ill, and 2% had other reasons. In total, 1788 participants contributed
dietary data by completing a web-based 4-d food record. Out of
those, we excluded 62 individuals with prevalent diabetes (according to
information from national and local registries and questionnaire data at
baseline), leaving 1726 (55% women) individuals for the present study.
For gut microbiota analyses, 1477 individuals with gut microbiota data
were included. As use of antibiotics and probiotics are known to alter
the gut microbiota composition, we performed sensitivity analysis on
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the gut microbiota in a reduced sample (n = 851) after the exclusion
of: 1) individuals reporting to have used antibiotics during the 6 mo
previous to data collection (n = 169) or with missing data on use
of antibiotics (n = 177), and/or 2) individuals reporting probiotic use
>3 times per week (n = 77) or with missing data on the use of probiotics
(n = 363).

Clinical measurements
Height (m), without shoes and hats, was measured to the nearest
centimeter directly under the meter with the legs together looking
straight ahead. Weight (kg) was measured in light clothing on a
calibrated balance beam or digital scale. BMI (kg/m2) was calculated
from measurements of weight and height. Resting blood pressure
(mmHg) was measured as a mean of 2 readings in the supine position
after 10 min rest by use of an automatic device (Omron). Blood samples
were analyzed at the Department of Clinical Chemistry, Malmö. Whole
blood glycated hemoglobin (HbA1c) concentrations were measured
within 4 h using the Capillarys 3 Tera HbA1c kit (Sebia). Plasma
glucose concentrations were measured directly using the HemoCue
Glucose 201+ System (HemoCue AB). Total cholesterol, triglycerides,
and HDL cholesterol plasma concentrations were measured within
4 h by enzymatic methods using the COBAS system (Roche Diagnos-
tics). LDL cholesterol was calculated using the Friedewald equation.

Dietary data
Diet was assessed using a 4-d web-based food record, the Riks-
maten2010, developed by the Swedish National Food Institute (17).
The relative validity of the Riksmaten2010 method has been evaluated
by comparing the reported energy intake to objectively measured total
energy expenditure with the doubly labelled water technique (r = 0.40)
(17). Estimated intakes of fiber sources with the Riksmaten2010 method
have been compared with objective plasma biomarkers; the Pearson
correlation coefficients for fruit and vegetable intake were 0.46 and
0.20, and for whole grain intake 0.30 and 0.29, in women and men,
respectively (18). In addition, repeated 4-d records have been collected
for 323 individuals indicating reliable data with Pearson correlation
coefficients of 0.55, 0.40, 0.56, and 0.61 for energy-adjusted intakes of
carbohydrates, fat, protein, and fiber, respectively (unpublished data).

The mean daily food intakes were calculated from frequency
and portion estimates from the food records. Food intakes were
converted into energy and nutrient intakes using the national food
database; Riksmaten vuxna 2010, version 10–05-05. Food intakes were
aggregated into 43 food groups considered to represent overall dietary
intake. Our aim was to cover as many parts of the overall diet as
possible, but to avoid an overly detailed level on foods consumed
irregularly, which may not be satisfactorily captured on a 4-d basis. This
was, for example, the reason that the intake of lean and fatty fish were
grouped together. Characteristics related to both dietary behaviors and
nutrient content were considered when aggregating the foods. In order
to minimize the effects of misreporting, energy-adjusted intakes of the
food groups were calculated by regressing the intakes on nonalcohol
energy intake using the residual method (19).

Other variables
Lifestyle variables were based on answers from a web-based self-
administered questionnaire on lifestyle and socioeconomic factors.
Education was based on the participants highest level of completed
education defined as primary (<9 y), secondary (9 y), upper secondary
(12 y), and a university or college degree. Smoking status was defined
as never-smoker, ex-smoker, irregular smoker, and regular smoker
(based on the participant’s own definition of regular smoking). Total
physical activity level was estimated by summing 4-grade scale answers
regarding physical activity at work (very light = 1, light = 2, moderately
heavy = 3, and heavy/very heavy = 4) and leisure time (sedentary = 1,
moderate activity = 2, moderate and regular activity = 3, and regular
training = 4) into a 7-grade scale (2–8 points, e.g. 2 = 1 + 1
for very light physical activity at work and sedentary leisure time).
Alcohol consumption was defined by a 7-category variable. Participants
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reporting zero consumption during the 4-d record and reporting to
never consume alcohol in the lifestyle questionnaire were categorized
as zero-reporters. The second category was defined as no consumption
during the 4-d record, but indication of alcohol consumption in
the questionnaire, the other category ranges were ≤10 g/d, >10–
20 g/d, >20–30 g/d, >30–40 g/d, and >40 g/d, according to reported
consumption during the 4-d record. Use of antibiotics was based
on the question “Have you used antibiotics during the previous 6
months?” Use of probiotics was defined as ≤3 times per week or
>3 times per week based on information from the food propensity
questionnaire.

Definition of prediabetes
In total, 260 cases were classified as having prediabetes. The
classification was based on fasting plasma glucose ≥6.0 mmol/L and/or
HbA1c ≥42 mmol/L at baseline (2013–2017) (n = 258) and/or
individuals diagnosed with T2D during follow-up according to register
data (n = 12) [follow-up until 31 December 2016, mean follow-up
= 1.6 y (0–3.8)]. Register data were obtained from national and regional
registries (3).

Gut microbiota
Fecal samples were collected without preservatives at home in sterile
plastic tubes (80.9924.014 polypropylene, Sarstedt) and stored in
a home freezer until they were brought to the clinic where they
were stored at −80◦C. The microbial DNA was extracted using the
QIAamp column Stool Kit and the V1–V3 region (300bp∗2) of the
16S rRNA gene was amplified and sequenced on a HiSeq Illumina
at the GATC Biotech (Constance). The fastq files were then aligned
by FLASH and binned together to operational taxonomical units
(OTUs) using QIIME 1 (Quantitative Insight Into Microbial Ecology)
(20, 21). The sequences were matched with the reference database
Greengene (v.13.8). OTUs with <0.01% counts assigned to them (out
of the pool of all counts assigned to all OTUs) and OTUs occurring
in <3 individuals were removed, leaving 64 bacteria characterized
at genus level and belonging to 8 microbial phyla, for further
analysis. All association analyses were performed using normalized
absolute abundancies, i.e. counts that were normalized by cumulative
sum scaling (CSS) in R using the metagenomicSeq package. In addition,
to descriptively illustrate percentage abundances of the bacterial genera
in the study population, relative abundances were used. The Shannon
diversity index was calculated using diversity within the R package
vegan.

Statistical analysis
The SPSS statistical computer package (version 24.0; IBM Corporation)
was used for all statistical analyses. All food variables were log
transformed (e-log) to normalize the distribution before analysis. To
handle log transformation of zero intakes, we added a very small
amount (0.01 g). All food intakes were energy adjusted with the residual
method.

We used principal component analysis (eigenvalues >1 and varimax
rotation) to reduce 43 energy-adjusted food groups into factors
representing food patterns. From the obtained scree plots (Supplemental
Figure 2), we decided to retain and rotate the 2 factors with eigenvalues
>2, that explained most of the variance in the data (6.8% and 5.2%,
respectively). These factors were possible to interpret and translate into
food patterns based on their loadings for the initial food group variables.
In addition, these factors were found to be similar in men and women,
indicating robust patterns. Reported characteristics of the patterns were
based on food group loadings <−0.25 or >+0.25. All individuals were
assigned scores for each of the 2 factors that represented food patterns,
corresponding to the agreement of their diet to the patterns.

We examined baseline characteristics according to prediabetes status
and quintiles of the factors representing food patterns with the general
linear model for continuous variables (adjusted for age and sex)
and with the chi-square test for categorical variables. Food patterns
in relation to prediabetes were examined using logistic regression.

The basic model included adjustments for age, sex, and total energy
intake. A second multivariable model also included physical activity
level, smoking, alcohol consumption, and level of education, and a
third model additionally included BMI. Missing data for the potential
confounding variables were treated as separate categories. We examined
Spearman’s correlations between retained food patterns and microbiota
genera. In addition, we examined microbiota genera across quintiles
of the food patterns with the general linear model adjusted for age,
sex, physical activity level, smoking, and alcohol consumption, as
well as with additional adjustments for BMI and fiber intake. Finally,
the gut bacterial genera found to associate with food patterns, after
adjustment for lifestyle factors including BMI, were examined in
relation to prediabetes with logistic regression. Tests for interactions
between gender and food patterns on prediabetes and gut bacterial
composition were performed [gender × quintile of food pattern (treated
as continuous variables)].

In sensitivity analysis, we only included individuals who had not
used antibiotics during the previous 6 mo and those who did not use
probiotics >3 times per week.

All statistical tests were 2-sided. Statistical nominal significance was
assumed at P < 0.05.

To correct for multiple testing, when analyzing dietary patterns
in relation to 64 gut bacterial genera, the Bonferroni correction was
applied and therefore statistical significance was assumed at P <

8 × 10−4 (0.05/64).

Results

We retained 2 factors from the principal component analysis.
The first derived factor explained 6.8% of the variance in the
data. We called it the Health-conscious food pattern, because
it was characterized by (loadings <−0.25 or >+0.25) high
intakes of fruits and berries, nuts and seeds, legumes, other
vegetables (nonlegumes), plain yogurt, fresh cheese, tea, animal
replacement foods, breakfast cereals, cooked grains such as
bulgur, oil-based dressings, fish and fiber-rich bread, and by
low intakes of sugar-sweetened beverages, red and processed
meat, white bread and fried/deep-fried potatoes (Figure 1A).
The second food pattern, named the Sugar and High-Fat Dairy
pattern, explained 5.2% of the variance and was characterized
by high intakes of pastry and desserts, high-fat milk, cream,
traditional sauces, jam and sugar, white bread, boiled potatoes,
cheese, butter, eggs, processed meat, and sweets, and by low
intake of food replacement products, such as weight loss
powders (Figure 1B).

The factors showed strongest loadings for the same foods in
women and men (data not shown), with the main exception that
the Sugar and High-Fat Dairy pattern did not show a loading
above 0.25 for cream in men (loading = 0.16).

Baseline characteristics

The study participants with high adherence to the Health-
conscious food pattern were more often women and they were
characterized by higher age and level of education, compared
with those with low adherence to that food pattern (Table 1).
In addition, those adhering to the Health-conscious pattern
reported less sedentary leisure time, less heavy work, less
smoking, and lower energy intake, and they had a lower BMI,
blood pressure, fasting glucose, triglycerides, and higher HDL
cholesterol. Their diets contained more polyunsaturated fat
and fiber, but less sucrose, and they reported somewhat higher
alcohol consumption. Those adhering to the Sugar and High-
Fat Dairy pattern were also more often women and of higher
age, level of education, and energy intake, compared with those
with low adherence to the Sugar and High-Fat Dairy pattern.
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Low-fat margarine spreads
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Poultry 
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Sport beverages
Sauce/salad-mix
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Salty snacks

Medium/high-fat milk
High-fat margarine spreads

Juice
Low-fat milk

Yoghurt, flavoured
Food replacement products

Cream 
Sweets

Butter
Jam/Sugar/Honey

Pastry/desserts
Salty biscuits/rusks

Coffee
Eggs

High-fiber bread
Fish/shellfish 

Oil/vinaigrette/mayo
Bulgur/quinoa/other grains

Breakfast cereals
Animal protein replacement foods

Tea
Fresh cheese
Yoghurt, plain

Legumes
Vegetables

Nuts and seeds
Fruits and berries

 Factor loadings - Health-conscious food pattern
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Yoghurt, plain
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Tea
Vegetables
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Sauce/salad mix
High-fiber bread

Sweets
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Eggs
Butter 

Cheese
potatoes, boiled/baked

Low-fiber bread
Jam/Sugar/Honey

Sauces excl. vinaigrette/mayo
Cream 

High-fat milk
Pastry/desserts

Factor loadings - Sugar and High-Fat Dairy pattern

FIGURE 1 The Heath-conscious food pattern explained most of the variance in the data (6.8%) in 1726 individuals without prevalent diabetes
from the Malmö Offspring Study (panel A) and the second retained food pattern, the Sugar and High-Fat Dairy pattern (panel B), explained 5.2%
of the variance in the data.

In addition, they had a more sedentary leisure time and their
diet contained more saturated fat and sucrose. Finally, they
reported much higher alcohol consumption during the 4-d food
record.

Individuals identified as having prediabetes were older and
had a higher BMI, waist circumference, and blood pressure
compared with those without prediabetes (Supplemental Table
1). They were also found to have a more sedentary leisure time,
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lower LDL cholesterol and HDL cholesterol concentrations,
and they reported lower alcohol consumption during the 4-d
food record period.

The most abundant bacterial genus in MOS was Bacteroides,
followed by an unclassified genus in the family Ruminococcae,
another in the family Rikenellaceae, and 1 in the order
Clostridiales, as well as Faecalibacterium, all with relative
abundances of over 5% in the feces samples collected at baseline
(Figure 2).

Food patterns and prediabetes

High adherence to the Health-conscious food pattern was
associated with a lower prevalence of prediabetes, both in the
basic model and after adjustment for several lifestyle factors (P
for trend across quintiles of the food pattern = 0.03) (Table 2).
However, after additional adjustment for BMI the association
did not remain significant (P-trend = 0.19). We did not observe

FIGURE 2 Mean relative abundance (%) of bacterial genera in
feces samples collected in 1477 individuals at baseline of the Malmö
Offspring Study. Other refers to the 50 identified genera not specified
in the figure (Supplemental Table 2).

TABLE 1 Baseline characteristics across quintiles of food patterns in 1726 individuals from the Malmö Offspring Study without
prevalent diabetes

Quintile of the Health-conscious food pattern1

Baseline characteristics n β2 1 (n = 345) 2 (n = 345) 3 (n = 346) 4 (n = 345) 5 (n = 345) P-trend3

Age, y 1726 +2.2 ± 0.24 33.8 ± 0.73 38.5 ± 0.72 41.8 ± 0.72 42.2 ± 0.73 43.1 ± 0.74 <0.001
BMI, kg/m2 1726 − 0.7 ± 0.08 26.9 ± 0.23 25.8 ± 0.23 25.8 ± 0.23 25.0 ± 0.23 23.9 ± 0.23 <0.001
Systolic BP, mmHg 1710 − 1.0 ± 0.22 118 ± 0.69 117 ± 0.67 116 ± 0.66 115 ± 0.67 114 ± 0.68 <0.001
Diastolic BP, mm Hg 1710 − 1.2 ± 0.15 74 ± 0.44 72 ± 0.43 72 ± 0.43 70 ± 0.44 69 ± 0.44 <0.001
FPG, mmol/L 1725 − 0.04 ± 0.01 5.46 ± 0.04 5.37 ± 0.04 5.36 ± 0.04 5.35 ± 0.04 5.29 ± 0.04 <0.001
B-HbA1c, mmol/mol 1060 − 0.03 ± 0.11 33.8 ± 0.34 33.4 ± 0.33 34.0 ± 0.32 33.6 ± 0.33 33.5 ± 0.33 0.79
Total P-cholesterol, mmol/L 1722 +0.01 ± 0.02 4.96 ± 0.05 4.99 ± 0.05 4.94 ± 0.05 4.92 ± 0.05 4.96 ± 0.05 0.65
P-LDL-C, mmol/L 1721 − 0.02 ± 0.02 3.20 ± 0.05 3.18 ± 0.04 3.15 ± 0.04 3.13 ± 0.05 3.10 ± 0.05 0.11
P-HDL-C, mmol/L 1722 +0.04 ± 0.01 1.54 ± 0.02 1.64 ± 0.02 1.61 ± 0.02 1.63 ± 0.02 1.75 ± 0.02 <0.001
P-TG, mmol/L 1712 − 0.07 ± 0.01 1.22 ± 0.03 1.15 ± 0.03 1.11 ± 0.03 1.03 ± 0.03 0.93 ± 0.03 <0.001
Energy intake, MJ/d 1726 +0.28 ± 0.05 8.0 ± 0.14 8.2 ± 0.13 8.6 ± 0.13 8.7 ± 0.14 9.2 ± 0.14 <0.001
Protein, E% 1726 +0.06 ± 0.07 17.3 ± 0.21 17.8 ± 0.21 17.7 ± 0.20 17.7 ± 0.21 17.6 ± 0.21 0.38
Fat, E% 1726 +0.39 ± 0.12 36.3 ± 0.38 37.0 ± 0.37 37.3 ± 0.37 37.4 ± 0.37 38.0 ± 0.38 0.002
SFA, E% 1726 − 0.06 ± 0.06 13.9 ± 0.19 14.5 ± 0.18 14.4 ± 0.18 14.2 ± 0.18 13.8 ± 0.19 0.31
PUFA, E% 1726 +0.22 ± 0.04 5.7 ± 0.11 5.8 ± 0.11 5.9 ± 0.11 6.2 ± 0.11 6.6 ± 0.11 <0.001
Carbohydrate, E% 1726 − 0.45 ± 0.14 46.4 ± 0.41 45.2 ± 0.40 45.0 ± 0.40 44.9 ± 0.40 44.3 ± 0.41 0.001
Fiber, g/MJ 1726 +0.25 ± 0.01 1.9 ± 0.04 2.1 ± 0.04 2.2 ± 0.04 2.5 ± 0.04 2.9 ± 0.04 <0.001
Sucrose, E% 1726 − 0.44 ± 0.08 9.7 ± 0.24 8.6 ± 0.23 8.4 ± 0.23 8.2 ± 0.23 7.7 ± 0.24 <0.001
Alcohol,4 g/d 1726 +0.48 ± 0.32 11.9 ± 0.98 14.7 ± 0.96 14.6 ± 0.95 14.6 ± 0.96 14.5 ± 0.98 <0.0015

P value6

Gender, female, % 1726 32.5 43.5 55.2 65.2 75.4 <0.001
Smokers, current, % 1594 21.8 14.6 14.2 9.8 6.3 <0.001
Higher education,7 % 1590 23.4 34.5 38.9 45.4 56.1 <0.001
LPAL, sedentary/low % 1585 55.1 49.5 48.6 38.7 30.4 <0.001
Work AL, very light/light % 1502 51.1 56.8 60.0 66.3 69.6 <0.001

Quintile of the Sugar and High-Fat Dairy pattern1

Baseline characteristics n β2 1 (n = 345) 2 (n = 345) 3 (n = 346) 4 (n = 345) 5 (n = 345) P-trend3

Age, y 1726 +1.06 ± 0.24 37.3 ± 0.74 39.0 ± 0.74 40.9 ± 0.74 40.1 ± 0.74 42.0 ± 0.74 <0.001
BMI, kg/m2 1726 − 0.12 ± 0.07 25.9 ± 0.23 25.5 ± 0.23 25.4 ± 0.23 25.4 ± 0.23 25.3 ± 0.23 0.10
Systolic BP, mm Hg 1710 − 0.36 ± 0.21 117 ± 0.67 117 ± 0.67 116 ± 0.67 115 ± 0.67 116 ± 0.67 0.09
Diastolic BP, mm Hg 1710 − 0.01 ± 0.14 72 ± 0.44 71 ± 0.44 71 ± 0.44 72 ± 0.44 71 ± 0.44 0.94
FPG, mmol/L 1725 − 0.01 ± 0.01 5.41 ± 0.04 5.36 ± 0.04 5.38 ± 0.04 5.30 ± 0.04 5.40 ± 0.04 0.42
B-HbA1c, mmol/mol 1060 0.14 ± 0.10 33.3 ± 0.33 33.8 ± 0.32 33.6 ± 0.32 33.5 ± 0.33 34.2 ± 0.34 0.18
Total P-cholesterol, mmol/L 1722 − 0.01 ± 0.02 4.93 ± 0.05 5.00 ± 0.05 4.96 ± 0.05 4.96 ± 0.05 4.93 ± 0.05 0.81
P-LDL-C, mmol/L 1721 − 0.01 ± 0.12 3.14 ± 0.04 3.20 ± 0.04 3.14 ± 0.04 3.15 ± 0.04 3.14 ± 0.05 0.76
P-HDL-C, mmol/L 1722 1 × 10− 4 ± 0.01 1.61 ± 0.02 1.64 ± 0.02 1.66 ± 0.02 1.64 ± 0.02 1.61 ± 0.02 0.99
P-TG, mmol/L 1712 0.004 ± 0.01 1.10 ± 0.03 1.10 ± 0.03 1.04 ± 0.03 1.10 ± 0.03 1.12 ± 0.03 0.72
Energy intake, MJ/d 1726 +0.6 ± 0.04 7.3 ± 0.13 8.0 ± 0.13 8.6 ± 0.13 9.0 ± 0.13 9.8 ± 0.13 <0.001
Protein, E% 1726 − 0.82 ± 0.06 19.9 ± 0.19 17.9 ± 0.19 17.2 ± 0.19 16.9 ± 0.19 16.2 ± 0.20 <0.001
Fat, E% 1726 +0.77 ± 0.12 35.7 ± 0.36 36.5 ± 0.36 37.0 ± 0.36 38.1 ± 0.36 38.7 ± 0.37 <0.001
SFA, E% 1726 +0.43 ± 0.06 13.2 ± 0.18 13.9 ± 0.18 14.2 ± 0.18 14.5 ± 0.18 15.0 ± 0.18 <0.001
PUFA, E% 1726 +0.12 ± 0.03 5.9 ± 0.11 5.8 ± 0.11 6.0 ± 0.11 6.3 ± 0.11 6.3 ± 0.11 0.001
Carbohydrate, E% 1726 +0.05 ± 0.13 44.4 ± 0.40 45.7 ± 0.40 45.8 ± 0.40 45.0 ± 0.40 45.0 ± 0.40 0.69
Fiber, g/MJ 1726 − 0.12 ± 0.01 2.6 ± 0.04 2.4 ± 0.04 2.3 ± 0.04 2.2 ± 0.04 2.1 ± 0.04 <0.001

(Continued)
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TABLE 1 (Continued)

Quintile of the Sugar and High-Fat Dairy pattern1

Baseline characteristics n β2 1 (n = 345) 2 (n = 345) 3 (n = 346) 4 (n = 345) 5 (n = 345) P-trend3

Sucrose, E% 1726 +0.48 ± 0.07 7.5 ± 0.23 8.1 ± 0.23 8.8 ± 0.23 8.8 ± 0.23 9.5 ± 0.23 <0.001
Alcohol,4 g/d 1726 +2.1 ± 0.30 9.4 ± 0.94 11.5 ± 0.94 15.5 ± 0.94 15.6 ± 0.94 18.1 ± 0.95 <0.0015

P value6

Gender, female, % 1726 44.6 54.5 53.8 56.8 62.0 <0.001
Smokers, current, % 1594 17.4 12.5 12.2 11.8 12.8 0.24
Higher education,7 % 1590 32.7 36.7 36.9 42.8 49.8 0.001
LPAL, sedentary/low % 1585 37.7 41.0 46.0 45.6 50.8 0.01
Work AL, very light/light % 1502 57.6 56.3 64.8 62.1 63.8 0.13

1Values are means ± SEs or percentage distribution.
2β indicates mean difference per intake quintile ± SEs.
3Calculated with the general linear model. Adjusted for age and sex (continuous) when appropriate.
4Alcohol consumption assessed with the Riksmaten2010 method (17).
5P value calculated from ln-transformed values.
6Chi-square test.
7University degree.
AL, activity level; B-HbA1c, blood glycated hemoglobin; BP, blood pressure; FPG, fasting plasma glucose; LPAL, leisure time physical activity level;
P-cholesterol, plasma cholesterol; P-HDL-C, plasma HDL-C; P-LDL-C, plasma LDL-C; P-TG, plasma triglycerides.

any interaction between the Health-conscious food pattern and
gender (P = 0.72).

The Sugar and High-Fat Dairy pattern did not indicate
any overall association with the prevalence of prediabetes.
However, we observed a statistical interaction with gender (P-
interaction = 0.03); no significant association was seen in men
(P-trend = 0.40), but women adhering to the Sugar and High-
Fat Dairy pattern were more likely to have prediabetes (OR
comparing the highest quintile with the lowest: 2.16; 95%
CI: 1.02, 4.54; P-trend = 0.03) (Table 3) and this association
remained significant after adjustment for BMI (P-trend = 0.04).

Food patterns and gut microbiota

Adherence to the Health-conscious food pattern was signif-
icantly correlated to the abundance of 19 bacterial genera
after the Bonferroni correction (Supplemental Table 2). After
adjustment for lifestyle factors, a high adherence to the
pattern was associated with a higher abundance of 4 bacterial
genera and lower abundance of 6 genera. After additional
adjustment for BMI, the higher abundance of Lachnospira
and Roseburia genus in the RF39 order (Figure 3A), and the
lower abundance of Blautia, Anaerotruncus, and Eubacterium
(Figure 3B), remained significant. After additional adjustment
for fiber intake, only the higher abundances of Lachnospira
and Roseburia, and the lower abundance of Eubacterium
remained significant. In a sensitivity analysis, restricted to
individuals reporting no use of antibiotics during the previous
6 mo and consumption of probiotics ≤3 times per week, the
higher abundances of Lachnospira (β = 0.22; P-trend across
quintiles of the food pattern = 1 × 10−4) and Roseburia (β
= 0.25; P-trend = 1 × 10−4) with a higher adherence to
the Health-conscious food pattern, and the lower abundance
of Eubacterium, remained similar as in the whole study
sample. However, the lower abundance of Eubacterium was
only nominally significant (β = −0.33, P-trend = 0.002).
In addition, higher adherence to the Health-conscious food
pattern was associated with a significantly lower abundance
of Anaerotruncus (β = −0.25; P-trend = 3 × 10−4) in the
sensitivity analysis.

Adherence to the Sugar and High-Fat Dairy pattern
correlated to a genus within the family Christensenellaceae and
a genus within the order SFA98, but it did not significantly
associate with any bacterial genera after adjustment for

potential confounders, although a few nominally significant
associations were observed (Supplemental Table 3).

We did not observe any significant association between the
food patterns and α-diversity (Shannon index across the food
pattern quintiles; P-trend ≥ 0.16).

Gender was not found to significantly modify the association
between the food patterns and gut bacteria (data not shown).

Food pattern related gut bacteria and prediabetes

The abundance of Roseburia was inversely associated with the
prevalence of prediabetes (OR per quintile of gut bacterial abun-
dance: 0.86; 95% CI: 0.76–0.96; P-trend = 0.01) (Figure 4).
The association remained significant after adjustment for
adherence to the Health-conscious food pattern. The other 5
gut bacterial genera that associated with the Health-conscious
food pattern were not associated with the prevalence of
prediabetes, after adjustment for lifestyle factors including BMI
(Table 4).

Adjusting for gut bacteria associating with both diet
and prediabetes

In line with the result of the whole study cohort (Figure
5A), adherence to the Health-conscious food pattern tended to
associate with a lower prevalence of prediabetes in the sample
only including those with data on gut microbiota (n = 1477)
(OR per quintile: 0.88; 95% CI: 0.79–1.00; P-trend = 0.056
after adjustment for potential confounders) (Figure 5B). The
association was also attenuated after adjustment for BMI
(OR: 0.93; 95% CI: 0.82–1.06; P-trend = 0.30) (Figure 5C).
When additionally adjusting for the abundance of Roseburia,
the association between the Health-conscious food pattern
and prevalence of prediabetes was further attenuated (OR:
0.96; 95% CI: 0.84–1.10; P-trend = 0.56) (Figure 5D). The
association was also slightly attenuated when adjusting for
Roseburia but not BMI (OR: 0.91; 95% CI: 0.80–1.04; P-
trend = 0.15).

Discussion
In this large observational study with data on diet and
microbiota, 2 food patterns were extracted from principal
component analysis. Participants adhering to the first food
pattern, characterized by Health-conscious food choices, such
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TABLE 2 ORs with CIs for prediabetes across quintiles of food patterns in 1726 individuals from the Malmö Offspring Study without
prevalent diabetes

Quintile of food pattern

Food patterns β1 1 OR 2 OR (95% CI) 3 OR (95% CI) 4 OR (95% CI) 5 OR (95% CI) P-trend

Health conscious
Cases/controls 60/285 48/297 49/297 53/292 50/295
Basic model2 − 0.10 ± 0.05 1.00 0.64 (0.42, 0.98) 0.58 (0.38, 0.90) 0.64 (0.41, 0.99) 0.59 (0.38, 0.93) 0.049
Multivariable model3 − 0.13 ± 0.06 1.00 0.70 (0.44, 1.14) 0.60 (0.37, 0.96) 0.63 (0.39, 1.03) 0.54 (0.32, 0.92) 0.03
Multivariable model with BMI4 − 0.08 ± 0.06 1.00 0.76(0.47, 1.23) 0.65 (0.40, 1.05) 0.72 (0.44, 1.18) 0.68 (0.40, 1.17) 0.19

P for interaction with gender 0.72
Sugar and High-Fat Dairy

Cases/controls 53/292 50/295 52/294 45/300 60/285
Basic model2 +0.02 ± 0.05 1.00 0.92 (0.60, 1.41) 0.92 (0.60, 1.42) 0.83 (0.53, 1.30) 1.17 (0.75, 1.82) 0.19
Multivariable model3 +0.07 ± 0.06 1.00 0.95 (0.58, 1.56) 0.95 (0.58, 1.56) 1.01 (0.61, 1.66) 1.35 (0.82, 2.23) 0.22
Multivariable model with BMI4 +0.08 ± 0.06 1.00 1.00 (0.61, 1.65) 1.00 (0.61, 1.64) 1.05 (0.63, 1.74) 1.41 (0.85, 2.34) 0.33

P for interaction with gender 0.03

1β indicates mean difference per intake quintile ± SEs.
2Adjusted for age, sex, and total energy intake.
3Adjusted for age, sex, total energy intake, level of education, smoking, alcohol intake, and level of physical activity.
4Adjusted for age, sex, total energy intake, level of education, smoking, alcohol intake, level of physical activity, and BMI.

as fiber-rich plant foods, were less likely to have prediabetes.
Several gut bacterial genera correlated with adherence to this
Health-conscious food pattern. A higher abundance of Rose-
buria was found to associate both with a higher adherence to
the Health-conscious food pattern and with a lower prevalence
of prediabetes. The association between the Health-conscious
food pattern and prevalence of prediabetes was attenuated after
adjustment for BMI and abundance of Roseburia, suggesting
possible underlying pathways. Women adhering to the pattern
characterized by foods high in sugar and high-fat dairy were
more likely to have prediabetes, independently of BMI, and
this pattern did not show any strong associations with gut
bacteria, indicating other underlying mechanisms, such as
stronger glucose response by sugar-rich foods or impaired
insulin sensitivity due to the high content of saturated fat in
dairy products (22–24).

Our observation showing that individuals adhering to the
Health-conscious food pattern were less likely to have predia-
betes is in line with earlier results regarding healthy/prudent
dietary patterns and incident diabetes, in other populations (1,
2), and with our previously reported findings from the Malmö

Diet and Cancer study (3), where the index individuals (first gen-
eration) to those enrolled in MOS were included. However, in
the present study cohort we also had the opportunity to examine
food patterns in relation to the gut microbiota. Although we
observed the Health-conscious pattern to be related to several
bacterial genera, the association with Roseburia is of special
interest, as the food pattern was so strongly associated with
Roseburia and as Roseburia per se was found to associate with
a lower prevalence of prediabetes, independently of adherence
to the Health-conscious food pattern.

As Roseburia is known to be a butyrate-producing genera,
dependent on fermentable carbohydrates in the diet (25), it
is biologically plausible that Roseburia could affect diabetes
development, as butyrate and other SCFAs act as signal
substances with beneficial effects on glucose metabolism
(20, 26). Moreover, a recent study indicated that the butyrate-
producing activity of the gut may causally affect the glucose-
stimulated insulin response and that Roseburia was among the
bacteria showing the strongest correlation to such activity (8).
Since different types of dietary fibers are utilized as substrates
in bacterial SCFA production, it is possible that potential effects

TABLE 3 ORs with CIs for prediabetes across quintiles of the Sugar and High-Fat Dairy food pattern in women (n = 938) and men
(n = 788) from the Malmö Offspring Study without prevalent diabetes

Quintile of food pattern

Sugar and high-fat dairy pattern β1 1 OR 2 OR (95% CI) 3 OR (95% CI) 4 OR (95% CI) 5 OR (95% CI) P-trend

Women
Cases/controls 18/136 26/162 27/159 27/169 39/175
Basic model2 +0.12 ± 0.07 1.00 1.21 (0.62, 2.33) 1.21 (0.62, 2.34) 1.28 (0.66, 1.50) 1.42 (0.90, 3.31) 0.10
Multivariable model3 +0.18 ± 0.08 1.00 1.33 (0.62, 2.82) 1.28 (0.60, 2.71) 1.61 (0.76, 3.42) 2.16 (1.02, 4.54) 0.03
Multivariable model with BMI4 +0.17 ± 0.08 1.00 1.42 (0.66, 3.05) 1.32 (0.61, 2.83) 1.61 (0.74, 3.48) 2.21 (1.04, 4.72) 0.04

Men
Cases/controls 35/156 24/133 25/135 18/131 21/110
Basic model2 − 0.09 ± 0.08 1.00 0.77 (0.43, 1.38) 0.77 (0.42, 1.39) 0.56 (0.29, 1.08) 0.80 (0.42, 1.55) 0.27
Multivariable model3 − 0.08 ± 0.09 1.00 0.71 (0.35, 1.42) 0.72 (0.36, 1.45) 0.59 (0.28, 1.24) 0.78 (0.36, 1.65) 0.40
Multivariable model with BMI4 − 0.06 ± 0.09 1.00 0.73 (0.37, 1.47) 0.76 (0.38, 1.56) 0.63 (0.30, 1.33) 0.82 (0.38, 1.78) 0.52

1β indicates mean difference per intake quintile ± SEs.
2Adjusted for age, sex, and total energy intake.
3Adjusted for age, sex, total energy intake, level of education, smoking, alcohol intake, and level of physical activity.
4Adjusted for age, sex, total energy intake, level of education, smoking, alcohol intake, level of physical activity, and BMI.
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FIGURE 3 High adherence to the Health-conscious food pattern was significantly associated with a higher abundance of Lachnospira,
Roseburia, and a genus in the RF39 order (panel A), and with a lower abundance of Blautia, Anaerotruncus, and Eubacterium (panel B) after
adjustment for lifestyle factors including BMI (P values for trend across quintiles of the food pattern < 8 × 10−4) in 1477 individuals from the
Malmö Offspring Study. Data points show mean normalized absolute abundances (with 95% CIs) of the bacterial genera in quintiles (Q) of the
food pattern. Q1, n = 286; Q2, n = 292; Q3, n = 306; Q4, n = 293; Q5, n = 300.

of higher fiber intake on the abundance of Roseburia partly
explain our observed association between adherence to the
Health-conscious pattern and lower prevalence of prediabetes.
This food pattern was indeed characterized by high intakes
of different fiber-rich foods and especially by high intakes
of fruits and berries, nuts and seeds, and vegetables. Further
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FIGURE 4 The prevalence of prediabetes was found to be lower
in individuals with a higher abundance of Roseburia (OR per quintile
of gut bacterial abundance: 0.86; 95% CI: 0.76–0.96; P-trend = 0.01)
in the Malmö Offspring Study (n = 1477). Data points show ORs
(with 95% CIs) of prediabetes in quintiles (Q) of bacterial abundance
(normalized absolute abundance of Roseburia). Q1, n = 295; Q2,
n = 296; Q3, n = 295; Q4, n = 296; Q5, n = 295.

support of this is the fact that the association between the
Health-conscious food pattern and prevalence of prediabetes
was slightly attenuated after adjustment for Roseburia. On the
other hand, the association between adherence to the Health-
conscious food pattern and higher abundance of Roseburia,
although attenuated, remained significant after adjustment for
fiber intake, indicating that the overall food pattern per se,
or components other than fiber, may also be of importance.
In addition, a meta-analysis on fiber interventions and gut
bacterial abundances did not find Roseburia to be significantly
changed after fiber supplementation by itself (21). Other foods
characterizing the Health-conscious pattern may affect growth
of Roseburia indirectly, due to the potential effects on transit
time, and digestion or absorption of fiber-rich foods, and fat
intake has also been indicated to potentially influence the
abundance of Roseburia (27). Moreover, the high content of
yogurt in the Health-conscious pattern may also contribute
to decreased development of diabetes via beneficial effects
on gut bacterial composition as earlier described (28). In
line with our results, Roseburia has been associated with
another overall healthy dietary pattern, i.e. the Mediterranean
pattern, and identified as a marker of health (25), and a lower
abundance of Roseburia has been observed in individuals with
cardiometabolic diseases including T2D (29, 30).

The abundance of Lachnospira, which like Roseburia
belongs to the Lachnospiraceae family, as with Roseburia, was
found to be higher upon greater adherence to the Health-
conscious food pattern in all statistical models, as well as in
the sensitivity analysis. Lachnospira can use pectin (a type
of dietary fiber mainly found in fruits and vegetables) for
acetate production, which in turn can be used by other bacteria
for butyrate production (31). The abundance of Lachnospira
was not associated with the prevalence of prediabetes, but
interestingly, a bacterial cluster characterized by Lachnospira
and Roseburia has previously been associated with a vegetable-
based dietary pattern (10). Eubacterium is another butyrate-
producing genera (32) that was found to consistently associate
with the Health-conscious pattern, but in contrast to Roseburia,
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TABLE 4 ORs with CIs for prevalence of prediabetes across quintiles of diet-related gut bacteria in 1477 individuals from the Malmö
Offspring Study without prevalent diabetes

Quintile of gut bacterial abundance

Gut bacterial genus β1 1 OR 2 OR (95% CI) 3 OR (95% CI) 4 OR (95% CI) 5 OR (95% CI) P-trend

Roseburia
Cases/controls 58/237 46/250 45/250 36/260 44/251
Basic model2 − 0.11 ± 0.05 1.00 0.65 (0.42, 1.00) 0.68 (0.44, 1.06) 0.50 (0.31, 0.79) 0.68 (0.44, 1.06) 0.04
Multivariable model3 − 0.16 ± 0.06 1.00 0.59 (0.37, 0.93) 0.54 (0.33, 0.87) 0.43 (0.26, 0.71) 0.56 (0.35, 0.92) 0.01
Multivariable model with BMI4 − 0.16 ± 0.06 1.00 0.56 (0.35, 0.89) 0.52 (0.32, 0.85) 0.43 (0.26, 0.70) 0.57 (0.35, 0.92) 0.01

Blautia
Cases/controls 52/243 41/255 46/249 37/259 53/242
Basic model2 0.03 ± 0.05 1.00 0.82 (0.52, 1.28) 1.02 (0.65, 1.59) 0.77 (0.48, 1.23) 1.20 (0.78, 1.85) 0.53
Multivariable model3 0.06 ± 0.06 1.00 0.80 (0.49, 1.32) 0.95 0.58, 0.54 0.82 0.49, 1.35 1.30 0.82, 2.07 0.32
Multivariable model with BMI4 0.04 ± 0.06 1.00 0.79 (0.48, 1.30) 0.92 (0.56, 1.50) 0.77 (0.46, 1.27) 1.14 (0.71, 1.84) 0.53

Lachnospira
Cases/controls 50/245 49/247 40/255 40/256 50/245
Basic model2 − 0.03 ± 0.05 1.00 0.97 (0.63, 1.51) 0.74 (0.47, 1.18) 0.76 (0.48, 1.20) 0.98 (0.63, 1.51) 0.58
Multivariable model3 0.001 ± 0.06 1.00 1.22 (0.75, 1.98) 0.92 (0.55, 1.54) 1.01 (0.61, 1.67) 1.10 (0.68, 1.79) 0.99
Multivariable model with BMI4 − 0.01 ± 0.06 1.00 1.22 (0.75, 2.00) 0.94 (0.56, 1.57) 1.02 (0.62, 1.69) 1.06 (0.65, 1.73) 0.88

Anaerotruncus
Cases/controls 63/315 34/179 39/256 47/249 46/249
Basic model2 0.02 ± 0.05 1.00 0.99 (0.63, 1.58) 0.86 (0.55, 1.33) 1.12 (0.74, 1.71) 1.04 (0.68, 1.59) 0.71
Multivariable model3 − 0.002 ± 0.06 1.00 0.96 (0.58, 1.58) 0.85 (0.53, 1.35) 0.96 (0.59, 1.54) 1.01 (0.64, 1.59) 0.97
Multivariable model with BMI4 0.02 ± 0.05 1.00 1.01 (0.61, 1.68) 0.87 (0.54, 1.40) 0.98 (0.61, 1.58) 1.05 (0.66, 1.67) 0.74

Eubacterium
Cases/controls 40/255 47/249 41/254 53/243 48/247
Basic model2 +0.03 ± 0.05 1.00 1.28 (0.81, 2.04) 1.03 (0.64, 1.66) 1.44 (0.92, 2.27) 1.11 (0.70, 1.77) 0.54
Multivariable model3 +0.08 ± 0.06 1.00 1.15 (0.69, 1.93) 1.04 (0.61, 1.75) 1.44 (0.88, 2.35) 1.32 (0.82, 2.23) 0.17
Multivariable model with BMI4 +0.06 ± 0.06 1.00 1.13 (0.67, 1.90) 0.98 (0.58, 1.67) 1.37 (0.84, 2.25) 1.22 (0.74, 2.02) 0.28

Genus within the order RF39
Cases/controls 70/375 41/216 45/214 33/225 40/218
Basic model2 − 0.05 ± 0.05 1.00 0.98 (0.67, 1.58) 0.76 (0.69, 1.59) 0.91 (0.43, 1.06) 0.45 (0.62, 1.46) 0.33
Multivariable model3 − 0.05 ± 0.06 1.00 0.92 (0.57, 1.47) 1.04 (0.65, 1.63) 0.65 (0.39, 1.06) 0.91 (0.57, 1.45) 0.33
Multivariable model with BMI4 − 0.04 ± 0.06 1.00 0.92 (0.57, 1.47) 1.03 (0.65, 1.63) 0.70 (0.43, 1.16) 1.00 (0.62, 1.61) 0.53

1β indicates mean difference per quintile of normalized absolute abundance ± SEs.
2Calculated with the general linear model. Adjusted for age and sex (continuous) when appropriate.
3Adjusted for age, sex, smoking, alcohol intake, and physical activity.
4Adjusted for age, sex, smoking, alcohol intake, physical activity, and BMI.

the abundance of Eubacterium was lower at higher adherence
to the pattern and was not found to associate with prediabetes.
Different bacteria could compete for dietary substrates for
butyrate production (33) and this may explain the contrasting
associations. The potentially pathogenic Anaerotruncus (34)
has, in accordance with our results showing a lower abundance
of this genera at higher adherence to the Health-conscious
pattern, been negatively correlated to the colonic content of
SCFA in pigs (35).

Although it is reasonable to believe that overall dietary
quality and especially fiber intake may beneficially affect
glucose metabolism and diabetes development, via effects on
gut bacterial composition including abundance of Roseburia,
dietary components also act via other pathways, which may
partly have contributed to our observations. The association
between the Health-conscious food pattern and prevalence of
prediabetes was, for example, attenuated after adjustment for
BMI, suggesting that obesity-related dietary qualities might also
be of importance. Although Roseburia was associated with the
prevalence of prediabetes independently of BMI, dietary fiber
components may, for example, affect BMI and subsequently
diabetes development via beneficial effects on satiety. Potentially

favorable effects of antioxidants in fruits and vegetables char-
acterizing the Health-conscious food pattern could also have
contributed to the observed lower prevalence of prediabetes, as
antioxidants may affect glucose metabolism (36).

The strengths of this study are the large size, when
considering studies with data on gut microbiota, detailed dietary
data, and that only few observational studies have reported
associations between dietary patterns and microbiota. Our
intention was to study overall food patterns instead of single
foods or nutrients. This approach has several advantages; food
intakes are correlated and it may be challenging to disentangle
their individual importance, cumulative effects of several foods
may also be easier to detect compared with those of single
foods or nutrients, and foods are consumed together and may
interact. For example, it is possible that foods with probiotic
components, such as some fermented dairy products, may
have greater effects if accompanied by foods with prebiotic
qualities such as fiber-rich foods (37, 38). In addition, it cannot
be excluded that a pattern indicating Health-conscious food
choices might be a better marker of long-term fiber intake than
assessed fiber intake per se reported during 4 specific days. On
the other hand, fiber consumption close to feces sampling is also
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FIGURE 5 Adherence to the Health-conscious food pattern was associated with a lower prevalence of prediabetes, after adjustment
for lifestyle factors, in 1726 individuals without prevalent diabetes from the Malmö Offspring Study (P-trend across quintiles of the food
pattern = 0.03) (panel A), and the association remained similar in the sample only including individuals with data on gut microbiota (n = 1477)
(P-trend = 0.06) (panel B). In line with observations in the whole study sample the association was attenuated after adjustment for BMI
(P-trend = 0.30) (panel C). When additionally adjusting for the abundance of Roseburia, the Health-conscious food pattern was further attenuated
(P-trend = 0.56) (panel D). Data points show ORs (with 95% CIs) of prediabetes in quintiles of the food pattern.

of importance, as the changes in fiber intake can rapidly affect
the gut bacterial composition (39).

A limitation of our study is that we could not examine
incident T2D, as the participants were followed for only
a few years resulting in very few incident cases. Instead,
we could examine the prevalence of prediabetes, defined
according to baseline concentrations of fasting glucose and
HbA1c or the development of T2D during the short follow-
up. However, the observed association between the Health-
conscious food pattern and the butyrate-producing genera
Roseburia is biologically plausible, considering that the pattern
was characterized by fiber-rich foods that provide substrates
for SCFA production, which in turn affect glucose metabolism.
We also need to acknowledge that measurement error is
a major problem in studies with self-reported diet and
1 consequence might have been unsatisfactory adjustment for
fiber intake. Moreover, we cannot completely exclude the
risk of overadjustment, when including fiber intake in the
same model as the Health-conscious food pattern. Another
drawback is that both diet and microbiota were only measured
at baseline in the whole study sample. Nevertheless, data from a
subsample of our study population with repeat measurements of
diet indicate acceptable agreement between the measurements;
with Pearson correlation coefficients of 0.6 and 0.7 for
energy-adjusted intakes of fiber and fat, respectively (40).
Unfortunately, we do not have any repeat measurements of
microbiota. Another concern is that our results may not be
generalizable to other populations; different dietary patterns
may, for example, occur in other study settings. In addition,
dietary patterns could represent overall lifestyle, and despite
adjustment for several confounders, we cannot completely rule
out residual confounding. On the other hand, the fact that
the Health-conscious pattern was characterized by foods that
per se have been found to be associated with cardiometabolic
disease in other studies (41–48) makes our findings more
credible. Finally, a lack of power may be an important issue
in the sensitivity analyses, as almost half the study sample was
removed.

To conclude, our findings suggest that the association be-
tween the Health-conscious food pattern and lower prevalence
of prediabetes may partly be explained by links between healthy

diet, BMI-status, and abundance of Roseburia, as the included
fiber-rich foods may constitute substrates for gut bacterial
SCFA production and thereby affect glucose metabolism. The
association between adherence to the Sugar and High-Fat Dairy
pattern and higher prevalence of prediabetes may be explained
by more direct links to glucose metabolism. Future studies are
warranted to replicate our findings in other populations and to
evaluate their importance in experimental settings.

Acknowledgments

We thank data manager Anders Dahlin for extensive quality
control of MOS data, and Johan Hultman for working with
setting up the microbiota pipeline. The authors’ contributions
were as follows—UE, LB, and MO-M: designed the research;
UE, LB, and SH: contributed to data collection; LB: performed
the microbiome analysis from raw DNA sequencing data; UE:
performed the statistical analysis and wrote the paper; UE,
LB, SH, PMN, and MO-M: contributed to the interpretation
of results and revision of the manuscript; UE: had primary
responsibility for final content; and all authors read and
approved the final manuscript.

References
1. Maghsoudi Z, Ghiasvand R, Salehi-Abargouei A. Empirically derived

dietary patterns and incident type 2 diabetes mellitus: a systematic
review and meta-analysis on prospective observational studies. Public
Health Nutr 2016;19:230–41.

2. McEvoy CT, Cardwell CR, Woodside JV, Young IS, Hunter SJ,
McKinley MC. A posteriori dietary patterns are related to risk of type
2 diabetes: findings from a systematic review and meta-analysis. J Acad
Nutr Diet 2014;114:1759–75 e1754.

3. Ericson U, Brunkwall L, Alves Dias J, Drake I, Hellstrand S, Gullberg B,
Sonestedt E, Nilsson PM, Wirfalt E, Orho-Melander M. Food patterns
in relation to weight change and incidence of type 2 diabetes, coronary
events and stroke in the Malmo Diet and Cancer cohort. Eur J Nutr
2018;58(5):1801–14.

4. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust
K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D,
et al. Population-level analysis of gut microbiome variation. Science
2016;352:560–4.

5. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human
gut microbes associated with obesity. Nature 2006;444:1022–3.

870 Ericson et al.



6. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y,
Shen D, et al. A metagenome-wide association study of gut microbiota
in type 2 diabetes. Nature 2012;490:55–60.

7. Ottosson F, Brunkwall L, Ericson U, Nilsson PM, Almgren P, Fernandez
C, Melander O, Orho-Melander M. Connection between BMI-related
plasma metabolite profile and gut microbiota. J Clin Endocrinol Metab
2018;103:1491–501.

8. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A,
Vosa U, Mujagic Z, Masclee AAM, Jonkers D, Oosting M, et al. Causal
relationships among the gut microbiome, short-chain fatty acids and
metabolic diseases. Nat Genet 2019;51(4):600–5.

9. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe
BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly
and reproducibly alters the human gut microbiome. Nature 2014;505:
559–63.

10. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A,
Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, et al.
High-level adherence to a Mediterranean diet beneficially impacts
the gut microbiota and associated metabolome. Gut 2015;65(11):
1812–21.

11. Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts
on gut microbiota associated to Mediterranean diet adherence and
specific dietary intakes on general adult population. Front Microbiol
2018;9:890.

12. Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary
patterns with gut microbial composition and function. Gut Microbes
2017;8:113–29.

13. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia
M, Panagiotakos DB, Kyriacou A. Adherence to the Mediterranean diet
is associated with the gut microbiota pattern and gastrointestinal
characteristics in an adult population. Br J Nutr 2017;117:
1645–55.

14. Brunkwall L, Orho-Melander M. The gut microbiome as a target
for prevention and treatment of hyperglycaemia in type 2 diabetes:
from current human evidence to future possibilities. Diabetologia
2017;60:943–51.

15. Manjer J, Carlsson S, Elmstahl S, Gullberg B, Janzon L, Lindstrom
M, Mattisson I, Berglund G. The Malmo Diet and Cancer Study:
representativity, cancer incidence and mortality in participants and non-
participants. Eur J Cancer Prev 2001;10:489–99.

16. Wirfalt E, Hedblad B, Gullberg B, Mattisson I, Andren C, Rosander
U, Janzon L, Berglund G. Food patterns and components of the
metabolic syndrome in men and women: a cross-sectional study within
the Malmo Diet and Cancer cohort. Am J Epidemiol 2001;154:
1150–9.

17. Nybacka S, Berteus Forslund H, Wirfalt E, Larsson I, Ericson U,
Warensjo Lemming E, Bergstrom G, Hedblad B, Winkvist A, Lindroos
AK. Comparison of a web-based food record tool and a food-frequency
questionnaire and objective validation using the doubly labelled water
technique in a Swedish middle-aged population. J Nutr Sci 2016;
5:e39.

18. Nybacka S, Lindroos AK, Wirfal E, Leanderson P, Landberg R, Ericson
U, Larsson I, Warensjö Lemming E, Bergström G, Hedblad B, et al.
Carotenoids and alkylresorcinols as objective biomarkers of diet quality
when assessing the validity of a web-based food record tool and a food
frequency questionnaire in a middle-aged population. BMC Nutrition
2016;2:53

19. Willett W, Stampfer MJ. Total energy intake: implications for
epidemiologic analyses. Am J Epidemiol 1986;124:17–27.

20. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye
J. Butyrate improves insulin sensitivity and increases energy expenditure
in mice. Diabetes 2009;58:1509–17.

21. So D, Whelan K, Rossi M, Morrison M, Holtmann G, Kelly JT,
Shanahan ER, Staudacher HM, Campbell KL. Dietary fiber intervention
on gut microbiota composition in healthy adults: a systematic review
and meta-analysis. Am J Clin Nutr 2018;107:965–83.

22. Riccardi G, Rivellese AA. Dietary treatment of the metabolic syndrome–
the optimal diet. Br J Nutr 2000;83 (Suppl 1):S143–8.

23. Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U,
Uusitupa M, Becker W. Effect of the amount and type of dietary fat
on cardiometabolic risk factors and risk of developing type 2 diabetes,
cardiovascular diseases, and cancer: a systematic review. Food Nutr Res
2014;58:10.

24. Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables
of glycemic index and glycemic load values: 2008. Diabetes Care
2008;31:2281–3.

25. Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong
SB, Bonnaure-Mallet M, Jolivet-Gougeon A. Roseburia spp.: a marker
of health? Future Microbiol 2017;12:157–70.

26. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ,
Bakker BM. The role of short-chain fatty acids in the interplay
between diet, gut microbiota, and host energy metabolism. J Lipid Res
2013;54:2325–40.

27. Feng ZM, Li TJ, Wu L, Xiao DF, Blachier F, Yin YL. Monosodium
L-glutamate and dietary fat differently modify the composition of the
intestinal microbiota in growing pigs. Obes Facts 2015;8:87–100.

28. Kok CR, Hutkins R. Yogurt and other fermented foods as sources of
health-promoting bacteria. Nutr Rev 2018;76:4–15.

29. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ,
Fagerberg B, Nielsen J, Backhed F. Gut metagenome in European
women with normal, impaired and diabetic glucose control. Nature
2013;498:99–103.

30. Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X, Yang R, Jiang R,
Xu Y, Qin H. Dysbiosis signatures of gut microbiota in coronary artery
disease. Physiol Genomics 2018;50(10):893–903.

31. Bang SJ, Kim G, Lim MY, Song EJ, Jung DH, Kum JS, Nam YD, Park
CS, Seo DH. The influence of in vitro pectin fermentation on the human
fecal microbiome. AMB Express 2018;8:98.

32. Tanaka S, Yamamoto K, Yamada K, Furuya K, Uyeno Y. Relationship of
enhanced butyrate production by colonic butyrate-producing bacteria
to immunomodulatory effects in normal mice fed an insoluble
fraction of Brassica rapa L. Appl Environ Microbiol 2016;82:
2693–9.

33. La Rosa SL, Leth ML, Michalak L, Hansen ME, Pudlo NA, Glowacki R,
Pereira G, Workman CT, Arntzen MO, Pope PB, et al. The human gut
Firmicute Roseburia intestinalis is a primary degrader of dietary beta-
mannans. Nat Commun 2019;10:905.

34. Kong C, Gao R, Yan X, Huang L, Qin H. Probiotics improve gut
microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet.
Nutrition 2019;60:175–84.

35. Liu B, Wang W, Zhu X, Sun X, Xiao J, Li D, Cui Y, Wang C, Shi Y.
Response of gut microbiota to dietary fiber and metabolic interaction
with SCFAs in piglets. Front Microbiol 2018;9:2344.

36. Avignon A, Hokayem M, Bisbal C, Lambert K. Dietary antioxidants: do
they have a role to play in the ongoing fight against abnormal glucose
metabolism? Nutrition 2012;28:715–21.

37. Van’t Veer P, van Leer EM, Rietdijk A, Kok FJ, Schouten EG, Hermus
RJ, Sturmans F. Combination of dietary factors in relation to breast-
cancer occurrence. Int J Cancer 1991;47:649–53.

38. Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC,
Klinder A, O’Riordan M, O’Sullivan GC, Pool-Zobel B, et al. Dietary
synbiotics reduce cancer risk factors in polypectomized and colon
cancer patients. Am J Clin Nutr 2007;85:488–96.

39. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA,
Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-
term dietary patterns with gut microbial enterotypes. Science 2011;334:
105–8.

40. Hellstrand S, Ottosson F, Smith E, Ramne S, Brunkwall L, Nilsson PM,
Orho-Melander M, Ericson U. Dietary data in the Malmö Offspring
study, reproducibility of intake data. In Manuscript 2019.

41. Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular
diseases risk. Crit Rev Food Sci Nutr 2017;57:1950–62.

42. Stanhope KL. Sugar consumption, metabolic disease and obesity:
the state of the controversy. Crit Rev Clin Lab Sci 2016;53:
52–67.

43. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-
grain intake is associated with lower risk of type 2 diabetes,
cardiovascular disease, and weight gain. J Nutr 2012;142:
1304–13.

44. Micha R, Wallace SK, Mozaffarian D. Red and processed meat
consumption and risk of incident coronary heart disease, stroke, and
diabetes mellitus: a systematic review and meta-analysis. Circulation
2010;121:2271–83.

45. Patel PS, Forouhi NG, Kuijsten A, Schulze MB, van Woudenbergh GJ,
Ardanaz E, Amiano P, Arriola L, Balkau B, Barricarte A, et al. The

Food patterns, prediabetes, and gut microbiota 871



prospective association between total and type of fish intake and type 2
diabetes in 8 European countries: EPIC-InterAct Study. Am J Clin Nutr
2012;95:1445–53.

46. Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined
grain consumption and the risk of type 2 diabetes: a systematic review
and dose-response meta-analysis of cohort studies. Eur J Epidemiol
2013;28:845–58.

47. Wang M, Yu M, Fang L, Hu RY. Association between sugar-sweetened
beverages and type 2 diabetes: a meta-analysis. J Diabetes Investig
2015;6:360–6.

48. Sluijs I, Forouhi NG, Beulens JW, van der Schouw YT, Agnoli C, Arriola
L, Balkau B, Barricarte A, Boeing H, Bueno-de-Mesquita HB, et al. The
amount and type of dairy product intake and incident type 2 diabetes:
results from the EPIC-InterAct Study. Am J Clin Nutr 2012;96:382–90.

872 Ericson et al.


