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Abstract

G-quadruplex structures, formed from guanine rich sequences, have previously been shown to be involved in various
physiological processes including cancer-related gene expression. Furthermore, G-quadruplexes have been found in several
oncogene promoter regions, and have been shown to play a role in the regulation of gene expression. The mutagenic
properties of oxidative stress on DNA have been widely studied, as has the association with carcinogenesis. Guanine is the
most susceptible nucleotide to oxidation, and as such, G-rich sequences that form G-quadruplexes can be viewed as
potential ‘‘hot-spots’’ for DNA oxidation. We propose that oxidation may destabilise the G-quadruplex structure, leading to
its unfolding into the duplex structure, affecting gene expression. This would imply a possible mechanism by which
oxidation may impact on oncogene expression. This work investigates the effect of oxidation on two biologically relevant G-
quadruplex structures through 500 ns molecular dynamics simulations on those found in the promoter regions of the c-Kit
and c-Myc oncogenes. The results show oxidation having a detrimental effect on stability of the structure, substantially
destabilising the c-Kit quadruplex, and with a more attenuated effect on the c-Myc quadruplex. Results are suggestive of
a novel route for oxidation-mediated oncogenesis and may have wider implications for genome stability.
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Introduction

G-quadruplexes (G4-DNA) are a class of secondary structures

formed from guanine rich sequences that have been implicated in

telomere maintenance, genome stability and gene (including

oncogene) expression [1,2,3]. In recent years both bioinformatics

analyses and in vitro methods have shown G4-DNA abundance in

upstream promoter regions and at telomeric ends [4,5], and the

potential effects of the folding and unfolding of these structures

in vivo [3,6,7,8]. Within upstream promoter regions, G-quadru-

plexes typically take on the form of intramolecular structures

consisting of three tetrads of four guanines, stacked on top of each

other; each tetrad is stabilised by eight Hoogsteen hydrogen bonds

between the Guanines and the p- p (stacking) interactions between

the tetrads (reviewed in [9]). Two of the most well studied G4-

DNA structures are those found in the promoter regions of the

proto-oncogenes c-Myc and c-Kit.

Elevated expression levels of c-Myc are associated with self-

sufficiency of cancer cells, through regulation of cellular pro-

liferation, differentiation and apoptosis [10,11]. The G-quadru-

plex structure found in the nuclease hypersensitive element (NHE)

III region [12] upstream of the gene has been widely linked to

regulation of c-Myc expression.

The NHE III is a C rich, 27 base pair long sequence and is

located approximately 100 bp upstream of the P1 promoter of c-

Myc [13] and has been shown to repress transcription of c-Myc

when in a non-canonical state [14]. This was then shown to be due

to G-quadruplex formation by the use of a G4-DNA binding

ligand, TMPyP4, which stabilised the G-quadruplex in the NHE

III region and decreased c-Myc expression [15].

Similarly, the c-Kit proto-oncogene is also associated with the

self-sufficiency of cancer cells, and has been found to be increased

in a variety of cancers [3] it is now a target in the treatment of

gastrointestinal tumours. Two G-quadruplex forming motifs

(GQMs) have been discovered in the promoter region. Structures

have been elucidated for both c-Myc and c-Kit-related G4-DNA

motifs which are available in the Protein Data Bank [12,16,17].

The mutagenic properties of oxidative stress on DNA have been

widely studied, as has their association with carcinogenesis. Of

particular interest is the association of oxidation with the up- and

down-regulation of transcription when mutations occur within the

promoter region of cancer associated genes (reviewed in [18]. The

oxidation of deoxyguanosine to 8-oxo-29deoxyguanosine (8-

oxodG) is the most frequent effect when DNA is under oxidative

stress [19] and indeed, 8-oxo-dG is used as a biomarker for DNA

oxidative damage [20]. As such, the G-rich sequences that form G-

quadruplexes can be viewed as potential ‘‘hot-spots’’ for DNA

oxidation.

The effect of oxidation on the thermodynamic stability of G4-

DNA has not been widely studied. However studies performed on

all parallel tetramolecular structures in vitro [21,22] have shown

that oxidation is well tolerated and, in certain circumstances, can

promote the formation and stability of the G-quadruplex structure.
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However, recent studies [23] investigating the effect of oxidation

on the stability of telomeric G-quadruplex DNA have found that

the incorporation of 8-oxo-dG destabilises the quadruplex

structure, with potential effects on telomere maintenance. Addi-

tional in vitro studies of G-quadruplexes have revealed stability is

dependent on factors such as loop length [24,25], sequence [25]

and number of tetrads [26], and so it is likely that the varied

stability observed for different G4-DNA motifs may affect the

extent to which these structures are susceptible to chemical

modification, such as oxidation.

We propose, that oxidation may also decrease the stability of

intramolecular G-quadruplexes found in upstream promoter

regions; suggesting a possible mechanism by which oxidation

may impact on oncogene expression.

Here we present an in silico molecular dynamics study of the

effects of 8-oxodG presence in the tetrad structures of the c-Kit

and c-Myc-related G4-DNA motifs. Through the longest pub-

lished simulations performed on the c-Kit and c-Myc G4-DNA

structures to date, we observe disruption of the G-quadruplex

structure on incorporation of just a single 8-oxodG and propose

therefore, oxidation as a mechanism for altering gene expression

for genes with GQM-containing promoters – of particular

relevance to oncogene expression.

Results and Discussion

Molecular Dynamics simulations were carried out on equili-

brated c-Myc and c-Kit promoter G4-DNA structures using

parameters approximating physiological conditions for 500 ns.

Representations of the first and last 100 ns of the MD simulations

are presented in Figure 1, showing snapshots representing the

largest groups of similar structures (clusters) observed during those

times. To simulate the effect of oxidation, both G4-DNA

structures had a single 8-oxo-dG nucleotide incorporated into

the central tetrad (G9 in c-Myc and G7 in c-Kit; shown in red in

figure 1). The 500 ns simulations of the non-oxidised c-Myc and c-

Kit (Figure 1, top left and bottom left structures, respectively) G-

quadruplexes exhibit good stability throughout the simulations.

All-atom root mean square deviation (RMSD) calculations for the

structures, and specific calculations focussed on the atoms of

Guanines involved in tetrad formation (tetrad-specific RMSD)

(Figure 2) give low values for both the non-oxidised c-Myc and c-

Kit G4-DNA structures (average all-atom RMSD of 0.282 nm

with average tetrad-specific RMSD of 0.112 nm; and average all-

atom RMSD of 1.78 Å with average tetrad specific RMSD of

0.105 nm respectively). Hydrogen bonding calculations (calculated

for atoms from the Guanine bases involved in tetrad formation

with a maximum distance of 0.35 Å and 60u cut-off) support these

findings, as both non-oxidised structures presented an average

number of Hydrogen bonds of 24, throughout the 500 ns

simulation, accounting for all the Hoogsteen hydrogen bonds

expected (8 per tetrad, for 3 tetrads - data not shown). These

results point to the remarkable stability of these structures,

particularly the Hoogsteen-bonded tetrads, at near physiological

conditions.

The extent of the effects of incorporating 8-oxodG, as observed

in Figures 1 and 2, appears to be dependent on the structure of the

G-quadruplex. In the c-Myc G4-DNA structure the clusters

observed in Figure 1 (top right structures) show that the G-tetrads

retain p- p stacking with adjacent tetrad(s) and that each guanine,

although fluctuating, does not appear to deviate in relation to the

remaining guanines in the G-tetrad. In contrast, the 8-oxodG

appears to twist in relation to the tetrad into which it was

incorporated, however it still does not appear to affect the

surrounding bases. The loop regions however, appear to fluctuate

substantially with the closest loops to the 8-oxodG twisting

outward, increasing the distance from the affected tetrad.

This observation is confirmed by the RMSD data (Figure 2) in

which tetrad-specific RMSD is relatively low (averages of 1.19 Å

and 1.47 Å for the final 100 ns for the normal and 8-oxodG-

containing structures, respectively), although there is a more

pronounced difference between the all-atom RMSD values of the

normal and 8-oxodG-containing c-Myc quadruplexes (averages of

2.72 Å and 3.29 Å for the final 100 ns, respectively). The

difference between the hydrogen bonding data further illustrates

differences apparent from the macroscopic observations, as the 8-

oxodG-containing c-Myc G-quadruplex retains only 22 hydrogen

bonds throughout the simulation, indicating a loss of 2 Hydrogen

bonds; one between the 8-oxodG base and each of the two

adjacent Guanines.

Inclusion of 8-oxodG into the c-Kit-related G4-DNA structure

(Figure 1, bottom right structures) had a less pronounced effect on

the loop regions, with the only observable difference from the

normal structure being that the nucleotides in the long loop

(closest loop to the 8-oxodG inclusion site) show greater

fluctuation, increasing the distance from the oxidised base.

However, the Guanines involved in tetrad formation suffered

substantial distortion over the course of the simulation. At around

300 ns the 8-oxodG within the central tetrad begins to twist in

relation to the other Guanines, with this distortion spreading to the

Guanines directly above and below in the stack and causing them

to begin to move away from the remaining tetrads. This distortion

becomes more apparent over the course of the simulation and

appears to affect both the stacking of the tetrads and the

Hoogsteen hydrogen bonding between the distorted Guanines

and the tetrad.

These observations are supported by the RMSD plots (Figure 2)

in which there is an increase in the tetrad-specific RMSD of the 8-

oxodG-containing c-Kit structure compared to the normal, with

average RMSD values of 0.210 nm and 0.142 nm respectively

over the last 100 ns of the simulation. As with the c-Myc G4

structure, the c-Kit all-atom RMSD also shows increased values

with respect to 8-oxodG, and to a greater extent than observed for

the c-Myc G4-DNA (averages of 0.268 nm and 0.218 nm for the

final 100 ns for the 8-oxodG and normal structures respectively).

Hydrogen bonding estimation supports the RMSD and macro-

scopic observations made. During the final 100 ns of simulation,

the c-Kit structure retains an average of only 16 Hoogsteen

hydrogen bonds, consistent with the 8-oxodG and those Guanines

directly above and below twisting away and partially loosing

Hydrogen bonding with the rest of the stacked tetrads.

Principal component analysis (PCA) is a common multivariate

analysis technique that can be used to identify large-scale collective

motions of atoms and separate significant motion from back-

ground thermodynamic fluctuation [27]. This analysis provides

eigenvectors (principal components) corresponding to directions of

motion, and often a large proportion of the motility of the analysed

molecule can be explained by a few eigenvectors with the highest

eigenvalues.

The percentage of motility as explained by eigenvectors with

the 10 highest eigenvalues is presented in Figure 3; it plots the

eigenvalues corresponding to the 10 eigenvectors as a percentage

of eigenvalues for the total eigenvectors (Figure 3, top) and as

a cumulative percentage (Figure 3, bottom). This analysis shows

that the first 3 eigenvectors account for a large proportion of

the motility of the 8-oxodG-containing c-Myc and c-Kit G4-

DNA structures (approximately 50% and 60% respectively), but

Oxidation of Oncogene Related G4-DNA
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account for a smaller proportion of the normal c-Myc and c-Kit

G4-DNA structures (approximately 35% and 30% respectively).

For both 8-oxodG-containing and normal G4-DNA, the

structures corresponding to the extremes of the eigenvectors fit

the macroscopic observations. The eigenvalues of eigenvectors for

the normal G4-DNA structures are lower than those of the 8-

oxodG-containing structures, and correspond to fluctuations of

loop nucleotides and small distortions in the backbone of the loops.

For the 8-oxodG-containing c-Myc quadruplex, the first 2

eigenvectors correspond to the distortion of both the loop

nucleotides (rotating around the backbone) and the movement of

the backbone of the loops away from the 8-oxodG. In the case of

8-oxodG-containing c-Kit structure the first eigenvector represents

the distortion observed in the G-tetrads, with the 8-oxodG and the

Guanines directly above and below it twisting and moving away

from the remaining Guanines in the tetrads. The second

eigenvector represents the distortions caused to the loop nucleo-

tides, as observed macroscopically.

Considering macroscopic and PCA analyses together, it appears

that although inclusion of 8-oxodG causes the c-Myc quadruplex

to distort, the effects are principally seen in the loop regions;

whereas in the case of inclusion of 8-oxodG in the c-Kit

quadruplex, not only is distortion more apparent (both macro-

scopically and through data analysis), but the distortion is localised

to the G-tetrads.

Several thermodynamic studies on the stability of G4-DNA

have revealed the extent to which structural characteristics affect

stability (reviewed in [9]), indicating that the two most import

factors are the Hoogsteen hydrogen bonding between Guanines

involved in tetrad formation and the p- p (stacking) interactions

between adjacent tetrads [27]. Considering this it becomes

apparent that the effect of 8-oxodG incorporation is more

detrimental to the c-Kit quadruplex than the c-Myc structure, as

the former appears to lose a quarter of the Hoogsteen hydrogen

bonds as well as stacking of the tetrads. This suggests that the

sensitivity of a G-quadruplex structure to oxidation is likely

dependent on structural characteristics known to affect stability

in vitro, such as loop length [25,28] and sequence [26] and number

of tetrads [27].

Reduced stability of G4-DNA is likely to have biological

implications. The G-quadruplex selective RecQ helicases, WRN

and BLM, have been observed to preferentially unwind quad-

ruplex substrates containing 8-oxodG [29]; a G-quadruplex

structure destabilised by oxidative stress is likely to be more

susceptible to unwinding. Importantly, previous studies have

shown that the expression of a number of oncogenes potentially

mediated by G-quadruplex motifs is inhibited by stabilisation of

G4-DNA, including the c-Kit [30] and c-Myc [15]oncogenes. This

inhibition would suggest that destabilisation of G4-DNA through

oxidative stress may be a possible mechanism for the over-

expression or activation of such oncogenes, and offers a tentative

explanation for previous studies showing apparent enrichment of

G4-DNA motifs in genes affected by Hydrogen peroxide

treatment [31], and where Benzoyl peroxide has been shown to

specifically oxidise Guanine double and triple repeat sequences in

dsDNA affecting regulation of tumour suppression genes and

oncogene expression [32].

Significantly, considering the prevalence of GQMs in oncogene

promoter regions [3], and that the transition of Guanine to 8-

oxodG is a common occurrence when DNA is under oxidative

stress in vivo [20], the effect on G4-DNA described here could be

widespread. The results presented suggest that chemical modifi-

cation of just a single Guanine involved in tetrad formation in

intramolecular G-quadruplexes to 8-oxo-29deoxyguanosine may

be sufficient to destabilise the G4-DNA structure, suggesting

a mechanism by which oxidative stress and exposure to reactive

oxygen species may have a direct influence on oncogene

expression, with wider implications for gene regulation and

genomic stability.

This has been a short study and therefore has several

limitations. Due to limited compute resource, we have not

attempted to study the effect of oxidation at different positions

within the G4-DNA structure, and neither have we evaluated the

effect of multiple oxidation sites on the same g-quadruplex

Figure 1. Comparison of the effect of 8-oxodG on the c-Myc and c-Kit G-quadruplexes.Most prevalent clusters (NMRclust) observed in the
initial 100 ns and final 100 ns of the MD simulations are represented for c-Myc and c-Kit structures with and without the inclusion of 8-oxodG. Top
row shows c-Myc first simulated without 8-oxodG (initial and final 100 ns) followed by c-Myc simulated with 8-oxodG at position G9 (shown in red)
(initial and final 100 ns). Similarly, the second row shows c-Kit first simulated without 8-oxodG (initial and final 100 ns) followed by c-Kit simulated
with 8-oxodG at position G7 (shown in red) (initial and final 100 ns).
doi:10.1371/journal.pone.0043735.g001
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structure that could reveal a dose-dependent response from G-

quadruplex DNA to oxidative stress. Additionally, as with any

purely in silico study of course, the results should ideally be

complemented by in vitro or in vivo experiments observing the effect

of oxidative stress on possible G-quadruplex regulated genes in

a biological context.

However, we feel that the current work describes an

intriguing in silico observation that oxidation may affect the

stability of G4-DNA structures, and that this could hint towards

a novel route for the association between oxidative stress and

carcinogenesis. It is our hope that these preliminary observa-

tions will be of interest to the wider community and stimulate

debate and further research on this topic. To this end, we make

the GROMACS port of the ParmBSC0 force field available to

facilitate the wider use of molecular dynamics applied to DNA

structural studies.

Materials and Methods

All simulations were performed using GROMACS 4.5.3 [33].

Parameters for the simulations were based on the AMBER

ParmBSC0 force field [34], ported to GROMACS by the

authors – available on request. The PDB structure files for the

c-Myc and c-Kit promoter G4-DNA structures were PDB ID:

Figure 2. RMSD plots of the G-quadruplex structures with and without 8-oxodG incorporated. Plots of all-atom (red and blue) and
tetrad-specific (magenta and green) RMSD for the c-Myc (top graph) and c-Kit (bottom graph) G-quadruplex structures with and without 8-oxodG
incorporated. Data was extracted from the simulation trajectories using the g_rms tool, part of the GROMACS package and plotted using R.
doi:10.1371/journal.pone.0043735.g002
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1XAV and PDB ID: 2O3M, respectively. Parameters for the 8-

oxodG nucleotide were taken from the Bryce Group at the

University of Manchester (http://www.pharmacy. manchester.-

ac.uk/bryce/amber) and ported to GROMACS 4.5.3.

The methodology for both the molecule preparation and the

simulations performed were adapted from that of Haider and

Neidle (2010) [35] All structures were solvated in water, counter-

ionised in KCl to a K+ concentration of 100 mM, and sub-

sequently equilibrated, simulating physiological conditions at

310 K. Molecular dynamics (MD) simulations were then per-

formed (isothermic, isobaric 500ns unrestrained simulation in

explicit solvent and counterions) on the c-Kit and c-Myc G-

quadruplex structures with and without 8-oxo-dG incorporated

into the central tetrad.

Data was analysed using tools built in to the GROMACS

package and are explained when used. Representative Clusters

from trajectories were obtained using NMRclust [36] algorithm

and images were captured using UCSF Chimera [37].

Figure 3. PCA of the G-quadruplex structures with and without 8-oxo-dG incorporated. Graph plotting percentage of motility explained
by eigenvalues against eigenvectors (principal components) of the entire G-quadruplex structure (top) and cumulative percentage (bottom). Principal
component analysis (PCA) was performed on the Molecular Dynamics trajectories using the g_covar and g_anaeig tools, part of the GROMACS
package and plotted using R.
doi:10.1371/journal.pone.0043735.g003
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