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Primary aldosteronism (PA) is the most common form of secondary arterial hypertension,
with a prevalence of approximately 20% in patients with resistant hypertension. In the last
decade, somatic pathogenic variants in KCNJ5, CACNA1D, ATP1A1 and ATP2B3 genes,
which are involved in maintaining intracellular ionic homeostasis and cell membrane
potential, were described in aldosterone-producing adenomas (aldosteronomas). All
variants in these genes lead to the activation of calcium signaling, the major trigger for
aldosterone production. Genetic causes of familial hyperaldosteronism have been
expanded through the report of germline pathogenic variants in KCNJ5, CACNA1H
and CLCN2 genes. Moreover, PDE2A and PDE3B variants were associated with bilateral
PA and increased the spectrum of genetic etiologies of PA. Of great importance, the
genetic investigation of adrenal lesions guided by the CYP11B2 staining strongly changed
the landscape of somatic genetic findings of PA. Furthermore, CYP11B2 staining allowed
the better characterization of the aldosterone-producing adrenal lesions in unilateral PA.
Aldosterone production may occur from multiple sources, such as solitary aldosteronoma
or aldosterone-producing nodule (classical histopathology) or clusters of autonomous
aldosterone-producing cells without apparent neoplasia denominated aldosterone-
producing micronodules (non-classical histopathology). Interestingly, KCNJ5 mutational
status and classical histopathology of unilateral PA (aldosteronoma) have emerged as
relevant predictors of clinical and biochemical outcome, respectively. In this review, we
summarize the most recent advances in the pathogenesis of PA and discuss their impact
on clinical outcome.
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INTRODUCTION

Arterial hypertension (AH) represents one of the main risk factors
for premature death, affecting about 10 to 40% of the world
population (1, 2). Primary aldosteronism (PA) is the most
frequent cause of endocrine AH, with a prevalence of around
4% and 10% in hypertensive patients treated in primary and
tertiary care services, respectively, reaching around 20% of patients
with resistant AH (3–6).

PA is characterized by autonomous production of
aldosterone, independent of the renin-angiotensin system. As a
consequence, sodium retention, plasma renin suppression, blood
pressure (BP) elevation and K+ excretion increase occur, with
consequent cardiovascular damage (7). The latter is due to the
fact that excess of aldosterone exerts its deleterious
cardiovascular effects independent of blood pressure levels,
resulting in higher cardiovascular morbidity and mortality in
patients with PA when compared with patients with essential AH
(8, 9).

Aldosterone is a mineralocorticoid hormone, which is
synthesized by the zona glomerulosa (ZG) of the adrenal
cortex. Its play a major role in electrolyte regulation through
sodium and water renal reabsorption (10, 11). Aldosterone is
synthetized from cholesterol and its biosynthesis is under the
control of two principal factors: angiotensin II (Ang II) and
extracellular potassium concentration (K+) (10).

Stimulation of ZG cells by Ang II or an increase in plasma K+

concentration leads to cell membrane depolarization and
increase in intracellular Ca2+, by opening of voltage-gated Ca2+

channels and inositol triphosphate-dependent Ca2+ release from
the endoplasmic reticulum. The increase of intracellular Ca2+

leads to activation of a phosphorylation cascade that positively
regulate aldosterone synthesis and cell proliferation, specifically
by increasing the CYP11B2 gene transcription (10, 12, 13).

Effects of aldosterone are mediated through the
mineralocorticoid receptor (MR), a hormone dependent
transcription factor that is expressed in non-epithelial tissues,
such as the heart and vessels, and in epithelial tissues such as the
salivary glands and kidney distal tubule, where aldosterone
regulates sodium/water reabsorption and potassium
excretion (10).

The main causes of PA are bilateral cortical adrenal hyperplasia
(idiopathic hyperaldosteronism) and aldosteronomas (14).
Idiopathic hyperaldosteronism is caused by bilateral nodular
hyperplasia originating from the cortical zona glomerulosa,
whereas aldosteronomas are aldosterone-producing adenomas
usually measuring between 1-3 cm (but can even measure less
than 1 cm). Each of these accounts for about 50-60% and 40-50%
of PA cases, respectively (7, 14).

The two major causes of PA account for more than 95% of
cases, with approximately 5% of bilateral hyperplasia occurring
in a familial context. Thus, bilateral hyperplasia remains without
a defined genetic etiology in most cases. Although somatic allelic
variants are identified in about 90% of aldosteronomas, few
advances have been made in the genetic elucidation of bilateral
PA (10, 15).
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Several genes that encode ion channels that modulate zona
glomerulosa cell depolarization and aldosterone synthesis
pathways have already been associated with the pathogenesis
of PA (Figure 1), differing in prevalence among aldosteronomas
and familial PA cohorts (12). The aim of this review is to discuss
the most recent discoveries about the PA pathogenesis, as well as
the clinical and prognostic impact of the genetic characterization
of this very prevalent disorder, associated with a high
cardiovascular morbidity.
DIAGNOSIS AND CLINICAL
MANAGEMENT

According to the American Endocrine Society (The Endocrine
Society), the following scenarios are indicated for PA screening
in hypertensive patients: I) AH and hypokalemia (spontaneous
or induced by diuretic therapy); II) AH and adrenal
incidentaloma; III) Blood pressure >150x100 mmHg on three
different occasions; IV) AH not controlled (≥140/90 mmHg) on
three or more antihypertensive drugs (resistant AH); V)
controlled AH (<140x90 mmHg) on four antihypertensive
drugs (resistant AH); VI) AH associated with obstructive sleep
apnea; VII) AH and family history of AH or cerebrovascular
disease of the young (<40 years); VIII) AH in first-degree
relatives of patients with PH (7).

PA screening should be performed with plasma aldosterone
(A) and renin (R) measurements, with hypokalemia correction
before the test. To avoid false negative results, diuretics and
spironolactone should be withheld for at least 4 to 6 weeks before
the test. Aldosterone concentration >10 ng/dL and an A/PRA
ratio (plasma renin activity) ≥ 30 ng/dL/ng/mL/h or A/R ≥2.0
confer a sensitivity and specificity greater than 90% for PH
diagnosis (7, 16, 17). It should be emphasized that A/PRA or A/R
ratio should be calculated only for patients with suppressed or
very low renin levels.

After laboratorial PA confirmation, patients should undergo
adrena l computed tomography (CT) for et io log ic
characterization and exclusion of adrenal cortical carcinoma.
Adrenal CT has limited accuracy (around 60-70%), especially for
detection of small (<1 cm) aldosteronomas (7) or for patients
with bilateral nodules (to differentiate non-functioning or
cortisol producing-adenomas). Therefore, adrenal vein
sampling (AVS) is indicated for the majority of patients with
PA for the proper characterization of the lateralization of
aldosterone production (7, 16). Although AVS is the gold
standard approach to define aldosterone lateralization, it
should be carried out only in centers with expertise for this
procedure and by a very experienced interventional radiologist.
In addition, AVS should be considered only if laparoscopic
surgery is a treatment option. A detailed description of PA
work-up investigation is beyond the scope of this review.

Treatment of unilateral PA consists of laparoscopic
adrenalectomy. The bilateral hyperplasia is treated with a
mineralocorticoid antagonist (spironolactone or eplerenone).
Both approaches are associated with reduced cardiovascular
June 2022 | Volume 13 | Article 927669
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morbidity caused by excess of aldosterone (18, 19). The
reduction of cardiovascular risk after medical treatment for PA
is associated with normalization of renin levels (PRA >1 ng/mL/
h) (20).
FAMILIAL HYPERALDOSTERONISM

Familial hyperaldosteronism (FH) is rare, but likely a highly
underdiagnosed entity due to lack of routine screening (Table 1).
Therefore, there is a lack of prevalence data for most of
Frontiers in Endocrinology | www.frontiersin.org 3
pathogenic variants listed in Table 1. The first report of FH
occurred in 1966 (30), with subsequent characterization of its
molecular etiology (21). This autosomal dominant form of PH
was caused by a chimeric gene consisting of the 11b-hydroxylase
promoter (CYP11B1) and aldosterone synthase (CYP11B2)
coding region, resulting from a non-homologous pairing
during crossing-over. Therefore, aldosterone synthesis becomes
now regulated by adrenocorticotropic hormone (ACTH) instead
of Ang II (21). This presentation of familial PH was then termed
FH type 1 (OMIM #103900) , o r g lucocor t i co id -
suppressible hyperaldosteronism.
FIGURE 1 | Aldosterone secretion in adrenal zona glomerulosa cells under physiological (A) and pathological (B) conditions. (A) Adrenal glomerulosa cell resting.
The normal resting potential of zona glomerulosa cells is hyperpolarized (highly negative membrane potential). Activation of the angiotensin receptor (AT1R) by
angiotensin II or extracellular hyperkalemia results in membrane depolarization and calcium influx via activated voltage-gated calcium channels. Calcium influx
activates signaling to increase expression of aldosterone synthase (CYP11B2) and ultimately aldosterone production. (B) Genetic alterations leading to cell
membrane depolarization, intracellular ionic modification, and autonomous aldosterone secretion in PA. Pathogenic variants in the KCNJ5 gene (G-protein-activated
inward rectifier potassium channel GIRK4) [6] promote loss of channel K+ selectivity and increase permeability to Na+, leading to membrane depolarization and
calcium influx via voltage-gated calcium channels. Similarly, impaired ATPase, Ca2+ (ATP2B3) [1]; Cav1.3 (CACNA1D) [2]; Cav3.2 (CACNA1H) [3]; ATPase, Na+ | K+

(ATP1A1) [4], and CLC-2 (CLCN2) [5] function results in cell membrane depolarization, calcium influx and autonomous aldosterone secretion. PA, primary
aldosteronism.
June 2022 | Volume 13 | Article 927669
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A diagnosis of FH 1 is highly suggestive if aldosterone
suppression (<4 ng/dL) occurs after a dexamethasone
suppression test (0.5 mg each 6h for 48h). However, the FH 1
diagnosis should be confirmed by the presence of the chimeric
gene in a long range PCR (31). The treatment of FH 1 consists of
low dose dexamethasone administration in adults (0.125–
0.25mg/d) to suppress ACTH and block aldosterone synthesis
(32, 33). If additional blood pressure control is required, a
mineralocorticoid antagonist can be added.

The molecular pathogenesis of Type 2 FH (OMIM #605635)
consists of gain-of-function heterozygous germline variants in
Frontiers in Endocrinology | www.frontiersin.org 4
the CLCN2 gene (Table 1). Type 2 FH is characterized by
autosomal dominant inheritance, incomplete penetrance and a
family history of aldosteronoma or bilateral PA (34, 35). CLCN2
was mapped as a FH gene in 2018 and encodes an inwardly
rectifying chloride channel (ClC-2), a member of the CLC
voltage-gated Cl– channels family which is expressed in the
cortical zona glomerulosa (28, 29).

So far, 6 missense pathogenic variants in CLCN2 have been
reported in the literature associated with FH 2 (Table 2) (48).
The presence of these alleles causes an increase in Cl-

conductance through the channel, leading to a continuous
June 2022 | Volume 13 | Article 927669
)

TABLE 2 | Germline allelic variants identified in probands with (familial) primary hyperaldosteronism/(early onset) hypertension.

Gene Nucleotide change1 Aminoacid change1 Region Families ACMG2,3 Reference (first report)

(familial) Primary Hyperaldosteronism
CLCN2 c.65T>A p.(Met22Lys) Exon 2 1 VUS-Cool Scholl et al., 2018 (29)

c.71G>A p.(Gly24Asp) 1 VUS-Hot Fernandes-Rosa et al., 2018 (28)
c.76T>A p.(Tyr26Asn) 1 VUS-Cool Scholl et al., 2018 (29)
c.515G>A p.(Arg172Gln) Exon 5 8 P
c.1084A>T p.(Lys362*) Exon 10 1 VUS-Tepid
c.2593A>C p.(Ser865Arg) Exon 24 1 VUS-Cool

KCNJ5 c.155G>A p.(Arg52His) Exon 2 2 VUS-Tepid Murthy et al., 2014 (36)
c.433G>C p.(Glu145Gln) 3 LP Monticone et al., 2015 (37)
c.452G>A p.(Gly151Glu) 3 P Mulatero et al., 2012 (38)
c.451G>A p.(Gly151Arg) 2 P Scholl et al., 2012 (39)
c.455A>G p.(Tyr152Cys) 1 VUS-Hot Monticone et al., 2013 (40)
c.470T>G p.(Ile157Ser) 1 VUS-Warm Charmandari et al., 2012 (41)
c.472A>G p.(Thr158Ala) 3 LP Choi et al., 2011 (23)
c.736G>A p.(Glu246Lys) 1 VUS-Warm Murthy et al., 2014 (36)
c.446_448del p.(Thr149del) 1 VUS-Hot Pons Fernández et al., 2019 (42)

CACNA1H c.587C>T p.(Ser196Leu) Exon 5 1 VUS-Tepid Daniil et al., 2016 (27)
c.2669G>A p.(Arg890His) Exon 12 1 VUS-Warm Wulczyn et al., 2019 (43)
c.4645A>G p.(Met1549Val) Exon 25 5 LP Scholl et al., 2015 (26)
c.4647G>C p.(Met1549Ile) 1 VUS-Hot Daniil et al., 2016 (27)
c.6248C>T p.(Pro2083Leu) Exon 35 1 VUS-Cold

CACNA1D c.1208G>A p.(Gly403Asp) Exon 8 1 LP Scholl et al., 2013 (25)
c.2310C>G p.(Ile770Met) Exon 17 1 LP
c.776T>A p.(Val259Asp) Exon 6 1 VUS-Warm Semenova et al., 2018 (44)
c.812T>A p.(Leu271His) 1 VUS-Warm De Mingo Alemany et al., 2020 (45

(early onset) Hypertension
KCNJ5 c.775G>A p.(Val259Met) Exon 2 1 VUS-Tepid Markou et al., 2015 (46)

c.834T>A p.(His278Gln) 1 VUS-Tepid Qin et al., 2019 (47)
c.1042T>A p.(Tyr348Asn) Exon 3 1 VUS-Tepid Markou et al., 2015 (46)
c.1123C>T p.(Arg375Trp) 1 LB Qin et al., 2019 (47)
1 RefSeq reference transcript: NM_004366.6 (CLCN2)/NM_000890.5 (KCNJ5)/NM_021098.3 (CACNA1H)/NM_000720.4 (CACNA1D); 2 ACMG/AMP five-tier system: B (Benign), LB
(Likely benign), P (Pathogenic), LP (Likely pathogenic), VUS (Variant of uncertain significance); 3 ACGS (Association for Clinical Genomic Science) VUS temperature scale: Ice Cold, Cold,
Cool, Tepid, Warm, Hot.
TABLE 1 | Genetic causes of familial hyperaldosteronism.

Gene (OMIM) First
Report

Prevalence Discovery
Approach

Features

CYP11B1
(*610613)

1992 (21) – Kindred |
Linkage

Chimeric CYP11B1/CYP11B2 gene; PA remission by glucocorticoid treatment; variable age at
onset (childhood to adult) (21, 22)

KCNJ5
(*600734)

2011 (23) 7% (FH) | 0.3%
(PA) (24)

Cohort | Exome Early onset (first decade of life); medication-resistant hypertension; hypokalemia; bilateral adrenal
macronodular hyperplasia (24)

CACNA1D
(*114206)

2013 (25) – Cohort | Exome Early onset (at birth/first decade of life); seizures; neurologic abnormalities; cardiomyopathy (25)

CACNA1H
(*607904)

2015 (26) – Cohort | Exome Early onset (usually in the first decade of life); incomplete penetrance (26, 27)

CLCN2
(*600570)

2018 (28) – Cohort | Exome Early onset (usually before 20 years of age); incomplete penetrance; variable expressivity; favorable
response to spironolactone (29)
FH, familial hyperaldosteronism; PA, primary aldosteronism.
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depolarization of the plasma membrane, resulting in an increase
of CYP11B2 expression and consequent stimulus for aldosterone
synthesis (Figure 1B) (28, 29).

In 2008, individuals with childhood-onset PA, resistant AH,
hypokalemia and bilateral macronodular adrenal hyperplasia
were reported (31). In 2011, an inactivating germline variant in
the KCNJ5 gene was identified in a case with a similar clinical
presentation. Named FH 3 (OMIM #613677), this autosomal
dominant PA subtype is caused by an impaired function of K+

GIRK4 (Kir3.4) potassium channel, which is encoded by KCNJ5
gene (23).

The molecular defect in the K+ GIRK4 potassium channel
leads to the loss of its ionic selectivity, with a consequent
increase in sodium conductance (Figure 1B). Naturally
responsible for maintaining the zona glomerulosa
membrane potential, it starts to act as a channel in favor of
sod ium influx , p romot ing con t inuous membrane
depolarization and subsequent activation of voltage-
dependent Ca+ channels. These increased intracellular
calcium concentrations trigger CYP11B2 overexpression and
aldosterone synthesis (39).

The genetic study of numerous PA cohorts and the
consequent mapping of new KCNJ5 pathogenic variants
al lowed, over the years, to expand the phenotypic
heterogeneity of this PA subtype (39–41) (Table 2). Certain
alleles between amino acids residues 151-158 of the K+ GIRK4
potassium channel, more specifically p.(Gly151Arg),
p.(Ile157Ser), and p.(Thr158Ala), are correlated with a more
severe PA clinical presentation, with early-onset hypertension,
more resistant to drug treatment and with a frequent need for
bilateral adrenalectomy (24). On the other hand, some
substitutions in this same region, namely p.(Gly151Glu) and
p.(Tyr152Cys), result in a mild clinical presentation, with an
Frontiers in Endocrinology | www.frontiersin.org 5
adequate blood pressure control with aldosterone antagonists
and without evidence of adrenal hyperplasia in CT evaluation
(13, 39). Interestingly, in vitro experiments showed that mutant
KCNJ5 channels can be undermined with the use of macrolide
antibiotics such as roxithromycin and clarithromycin,
suppress ing CYP11B2 express ion and a ldos terone
production (49).

Four KCNJ5 germline variants were reported in cohorts of
patients with AH without a typical familial and biochemical
diagnosis of PA (Table 2) (46, 47). The p.(His278Gln) variant,
for example, was reported in a patient with resistant AH with
normal serum K+ levels, plasma renin activity and aldosterone
levels. The allele was inherited from his father who had essential
AH without PA (47). None of the other reported cases had a
phenotype similar to FH 3 patients, with early-onset medication-
resistant hypertension, hypokalemia and bilateral adrenal
macronodular hyperplasia (24).

Type 4 FH (OMIM #617027), the rarest subtype of PA, is
caused by gain-of-function germline variants in CACNA1H
gene (autosomal dominant inheritance), which encodes
calcium voltage-gated channel subunit a1 H (Cav3.2) (26)
(Tables 1, 2). Scholl et al. identified a recurrent heterozygous
variant in the CACNA1H gene in five patients with early-onset
PA (26). In silico studies with the identified p.(Met1549Val)
mutant demonstrated an increase in calcium influx into zona
glomerulosa cells, resulting in continual stimulation of
aldosterone synthesis (50). Later studies demonstrated a late
and incomplete penetrance of this PA subtype (27).

In 2013, Scholl et al. sequenced the candidate CACNA1D gene
in 100 unrelated individuals with early-onset PA and identified
two de novo heterozygous alleles in two girls with an undescribed
syndrome featuring PA, AH, seizures and neuromuscular
abnormalities (OMIM #615474) (25) (Table 2). This gene
June 2022 | Volume 13 | Article 927669
TABLE 3 | Genetic causes of unilateral primary aldosteronism.

Gene
(OMIM)

First
Report

Prevalence Discovery
Approach

Features

KCNJ5
(*600734)

2011
(23)

>40% Cohort |
Candidate
Gene

Larger APAs with predominance of ZF-like clear cell composition; More frequent in younger, females, and East
Asian patients; High aldosterone levels and severe hypokalemia (55–58)

ATP1A1
(*182310)

2013
(59)

5.3% Cohort More frequent in male patients; APA with predominance of compact ZG-like cells, smaller size* (56, 60)

ATP2B3
(*300014)

2013
(59)

1.7% Cohort APA with predominance of compact ZG-like cells; Severe hypokalemia (56, 60)

CACNA1D
(*114206)

2013
(61)

9.3% Cohort |
Candidate
Gene

More frequent in black and male patients; APA with predominance of compact ZG-like cells, smaller size* (56,
62)

CTNNB1
(*116806)

2015
(63)

5% Cohort |
Candidate
Gene

More frequent in female and older patients; Associated with pregnancy and menopause; Higher LHCGR and
GNRHR gene expression (63, 64)

CLCN2
(*600570)

2018
(28)

<1% Cohort |
Candidate
Gene

Found in younger patients with high aldosterone levels; APA with smaller size** (65, 66)

CACNA1H
(*607904)

2020
(67)

<1% Cohort |
Candidate
Gene

Intra-tumoral CYP11B2 expression heterogeneity; Composed of compact ZG-like cells** (67)
*Compared with KCNJ5 tumors; **Few (<3) cases reported in the literature, no statistical relevance; APA, aldosterone-producing adenomas (aldosteronomas); ZF, zona fasciculata; ZG,
zona glomerulosa.
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TABLE 4 | Somatic variants identified in adrenal lesions associated with unilateral primary aldosteronism.

Gene Nucleotide change1 Aminoacid change1 Region Reference(first report)

KCNJ5 c.451G>A p.(Gly151Arg) Exon 2 Choi et al., 2011 (23)
c.503T>G p.(Leu168Arg)
c.433G>C p.(Glu145Gln) Akestrom et al., 2012 (69)
c.472A>G p.(Thr158Ala) Mulatero et al., 2012 (38)
c.451G>C p.(Gly151Arg) Taguchi et al., 2012 (70)
c.467_469del p.(Ile157del) Azizan et al., 2012 (58)
c.433G>A p.(Glu145Lys) Azizan et al., 2013 (61)
c.446insAAC p.(Thr149_Ile150insThr) Kuppusami et al., 2014 (71)
c.376T>C p.(Trp126Arg) Williams et al., 2014 (72)
c.461T>G p.(Phe154Cys) Scholl et al., 2015 (73)
c.470_471delinsAA p.(Ile157Lys)
c.450_451insATG p.(Ile150_Gly151insMet)
c.433_434insCCATTG p.(Ile144_Glu145insAlaIle)
c.445_446insGAA p.(Thr148_Thr149insArg) Zheng et al., 2015 (74)
c.439G>C and c.448_449insCAACAACCA p.(Glu147Gln) and p.(Thr149_Ile150insThrThrThr) Wang et al., 2015 (75)
c.457_492dup p.(Gly153_Gly164dup)
c.343C>T p.(Arg115Trp) Cheng et al., 2015 (76)
c.737A>G p.(Glu246Gly)
c.445A>T p.(Thr149Ser) Nanba et al., 2016 (77)
c.443C>T p.(Thr148Ile)
c.432_439delinsCA p.(Glu145_Glu147delinsLys) Zheng et al., 2017 (78)
c.414_425dup p.(Ala139_Phe142dup) Hardege et al., 2015 (79)
– p.(Gly184Glu)* Kitamoto et al., 2018 (80)
– p.(Ile157_Glu159del)*
– p.(Gly151_Tyr152del)*
c.420C>G p.(Phe140Leu) Nanba et al., 2018 (81)
c.447_448insATT p.(Thr149delinsThrIle)
c.445_446insTGG p.(Thr149delinsMetAla) Nanba et al., 2019 (62)

CACNA1D c.4007C>G p.(Pro1336Arg) Exon 32 Azizan et al., 2013 (61)
c.4062G>A p.(Met1354Ile)
c.2239T>C p.(Phe747Leu) Exon 16
c.2969G>A p.(Arg990His) Exon 23
c.776T>A p.(Val259Asp) Exon 6
c.2241C>G p.(Phe747Leu) Exon 16
c.2250C>G p.(Ile750Met) Scholl et al., 2013 (25)
c.4012G>A p.(Val1353Met) Exon 33
c.2239T>G p.(Phe747Val) Exon 16
c.1207G>C p.(Gly403Arg) Exon 8A
c.1955C>T p.(Ser652Leu) Exon 14 Fernandes-Rosa et al., 2014 (56)
c.2222A>G p.(Tyr741Cys) Exon 16
c.2993C>T p.(Ala998Val) Exon 23
c.3455T>A p.(Ile1152Asn) Exon 27
c.3451G>T p.(Val1151Phe)
c.2936T>A p.(Val979Asp) Exon 23
c.1964T>C p.(Leu655Pro) Exon 14
c.2943G>C p.(Val981Asn) Exon 23
c.2248A>T p.(Ile750Phe) Exon 16
c.2992_2993delinsAT p.(Ala998Ile) Exon 23
c.2182G>A p.(Val728Ile) Exon 15 Wang et al., 2015 (75)
c.2240T>G p.(Phe747Cys) Exon 16 Nanba et al., 2016 (82)
c.3458T>G p.(Val1153Gly) Exon 27 Tan et al., 2017 (83)
c.776T>G p.(Val259Gly) Exon 6 Nanba et al., 2018 (81)
c.1201G>C p.(Val401Leu) Exon 8 Akerstrom et al., 2015 (84)
c.1229C>T p.(Ser410Leu) Exon 9 Backman et al., 2019 (85)
c.3019T>C p.(Cys1007Arg) Exon 24 Nanba et al., 2019 (62)
c.3044T>G p.(Ile1015Ser)
c.926T>C p.(Val309Ala) Exon 7
c.2978G>C p.(Arg993Thr) Exon 23
c.2968C>G p.(Arg990Gly)
c.1856G>C p.(Arg619Pro) Exon 13
c.3452T>C p.(Val1151Ala) Exon 27 Guo et al., 2020 (86)
c.2240T>C p.(Phe747Ser) Exon 16
c.2261A>G p.(Asn754Ser)

(Continued)
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encodes the a 1D subunit of the L-type voltage-gated Ca2+

channel Cav1.3. The identified variants promote an activation
of the Ca+2 channel at lower depolarization potentials, resulting
in increased Ca+2 influx (25). Subsequently, two more cases were
reported with de novo heterozygous CACNA1D variants, leading
to a severe developmental disorder also associated with
developmental delay, intellectual impairment, neurological
symptoms (including seizures), and endocrine symptoms,
evident as PA and/or congenital hyperinsul inemic
hypoglycemia (44, 45).

Recently, rare heterozygous missense germline variants in the
phosphodiesterase 2A (PDE2A) and 3B (PDE3B) genes were
identified in 3 out of 11 patients with PA caused by bilateral
hyperplasia (51). In addition, PDE2A was a marker of zona
glomerulosa and aldosterone-producing hyperplastic areas and
micronodules. In vitro functional studies supported the
involvement of PDE2A and PDE3B in the pathogenesis of
bilateral PA. PKA activity in frozen tissue was significantly
higher in adrenals from patients harboring PDE2A and PDE3B
variants. Interestingly, inactivating PDE2A and PDE3B variants
increased SGK1 and SCNN1G/ENaCg at mRNA or protein
levels (51).
Frontiers in Endocrinology | www.frontiersin.org 7
SGK1 (serum and glucocorticoid inducible kinase-isoform 1)
belongs to a large family of serine-threonine kinases. SGK1 is
expressed in numerous tissues and plays a major role in
transmembrane ionic transport, being established as an
important regulator of Na+ transporters (52). Aldosterone is
the most notorious hormonal regulator of SGK1 expression.
After binding to the cytosolic mineralocorticoid receptor,
aldosterone promotes the transcription of SGK1, which
regulates a variety of ion transporters, such as ENaC (epithelial
sodium channel). SGK1 reduces ENaC ubiquitination and
degradation, as well as its cellular internalization (53).
Therefore, PDE2A and PDE3B variants can induce aldosterone
signaling by increasing SGK1/SCNN1G(ENag) (51). In addition,
an increase in SGK1 activity also stimulates hypercoagulability,
fibrosis and inflammation processes (54).
UNILATERAL PRIMARY ALDOSTERONISM

Aldosteronomas are a major cause of unilateral PA, associated
with somatic variants in KCNJ5, CACNA1D, ATP1A1, ATP2B3,
CLCN2, CACNA1H and CTNNB1 genes (Table 3). These genes
TABLE 4 | Continued

Gene Nucleotide change1 Aminoacid change1 Region Reference(first report)

c.2978G>T p.(Arg993Met) Exon 23
c.2906C>T p.(Ser969Leu) Exon 22 Nanba et al., 2020 (87)
c.3044T>C p.(Ile1015Thr) Exon 24 De Sousa et al., 2020 (88)

ATP1A1 c.311T>G p.(Leu104Arg) Exon 4 Beuschlein et al., 2013 (59)
c.299_313del p.(Phe100_Leu104del)
c.995T>G p.(Val332Gly) Exon 8
c.2878_2887delinsT p.(Glu960_Ala963delinsSer) Exon 21 Azizan et al., 2013 (61)
c.295G>A p.(Gly99Arg) Exon 4 Williams et al., 2014 (72)
c.306_317del p.(Met102_Trp105del) Akerstrom et al., 2015 (84)
c.304_309del p.(Met102_Leu103del)
c.308_313del p.(Leu103_Leu104del)
c.2867_2882delinsG p.(Phe956_Glu961delinsTrp) Exon 21
c.2877_2882del p.(Phe959_Glu961delinsLeu)
c.2879_2890del p.(Glu960_Leu964delinsVal)
c.2864_2878del p.(Ile955_Glu960delinsLys) Nanba et al., 2019 (62)
c.2878_2892delinsGCCGTG p.(Glu960_Leu964delinsAlaVal) Nanba et al., 2018 (81)
c.2874_2882del p.(Phe959_Glu961del) Guo et al., 2020 (86)
c.2877_2888del p.(Glu960_Ala963del)
c.2878_2895delinsGCCCTGGTT p.(Glu960_Ala965delinsAlaLeuVal) Nanba et al., 2020 (87)

ATP2B3 c.1272_1277del p.(Leu425_Val426del) Exon 8 Beuschlein et al., 2013 (59)
c.1277_1282del p.(Val426_Val427del)
c.1273_1278del p.(Leu425_Val426del)
c.1270_1275del p.(Val424_Leu425del) Fernandes-Rosa et al., 2014 (56)
c.1277_1298delinsACA p.(Val426Aspfs*10) Scholl et al., 2015 (73)
c.1264_1278delinsAGCACACTC p.(Val422_Val426delinsSerThrLeu) Zheng et al., 2015 (74)
c.1276_1287del p.(Val426_Val429del) Akerstrom et al., 2015 (84)
c.1228T>G p.(Tyr410Asp) Wu et al., 2015 (89)
c.1269_1274del p.(Val424_Leu425del) Murakami et al., 2015 (90)
c.1279_1284del p.(Val427_Ala428del) Kitamoto et al., 2016 (60)
c.1281_1286del p.(Ala428_Val429del) Dutta et al., 2014 (91)
c.1264_1275delinsATCACT p.(Val422_Leu425delinsIleThr) Nanba et al., 2018 (81)
c.367G>C p.(Gly123Arg) Exon 2 Backman et al., 2019 (85)

CACNA1H c.4289T>C p.(Ile1430Thr) Exon 22 Nanba et al., 2020 (67)
CLCN2 c.71G>A p.(Gly24Asp) Exon 2 Dutta et al., 2019 (65)

c.64-2_74del p.(Met22fs) Rege et al., 2020 (66)
June 20
1 RefSeq reference transcript: NM_000890.5 (KCNJ5)/NM_001128839.3 (CACNA1D)/NM_000701.8 (ATP1A1)/NM_001001344.2 (ATP2B3)/
NM_004366.6 (CLCN2)/NM_021098.3 (CACNA1H); * Nucleotide change not provided by authors.
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drive autonomous aldosterone production and/or directly
contribute for tumorigenesis (68). In 2011, Choi et al.
identified recurrent KCNJ5 gain-of-function variants in
aldosteronomas, namely p.(Gly151Arg) and p.(Leu168Arg),
that affects residues at the channel ion selectivity filter (23)
(Table 4 and Figure 1B).

KCNJ5 is the most frequently affected gene in aldosteronomas
(>40%), with even higher prevalence in Japanese and/or Eastern
Asian cohorts (65-69% approximately). Characteristically,
KCNJ5 mutant aldosteronomas are more frequent in female
(>70%) and younger patients, with larger tumor size. Higher
preoperative aldosterone and reduced potassium levels were also
identified in these patients, which could contribute to early-onset
disease, severity and earlier diagnosis (23, 24, 55, 74, 92).

In 2013 after KCNJ5 discovery, somatic CACNA1D gain-of-
function variants were reported in aldosteronomas, with a
prevalence of around 10%. CACNA1D encodes the a1 subunit
Cav1.3 of a voltage dependent L-type (long-lasting) calcium
channel and its pathogenic variants affect conserved residues
within the channel activation gate (Table 3). Compared to wild-
type, mutated Cav1.3 reaches activation in less depolarized
membrane potentials, causing abnormal Ca+ influx, CYP11B2
expression, and aldosterone production (Table 4 and
Figure 1B). In contrast with KCNJ5 related aldosteronomas,
CACNA1D tumors are significantly smaller and more frequent in
older male patients (25, 56, 61).

In 2013, Beuschlein et al. identified somatic variants in genes
encoding ATPases, ATP1A1 and ATP2B3 in aldosteronomas
(59). Missense and in-frame deletion variants in ATP1A1,
which encodes Na+/K+ ATPase a subunit, impair pump
activity and significantly reduce affinity for potassium,
resulting in inappropriate membrane depolarization (Table 4
and Figure 1B). ATP2B3 encodes a Ca+ ATPase in which loss-
of-function alleles (in-frame deletions) lead to a loss of
physiological pump function, responsible for sodium and
possibly calcium ions leaking into the cell, inducing
membrane depolarization, and contributing to increased
calcium concentrations. The combined prevalence of somatic
variants in ATPases is around 7% and, until now, no ATPase
pathogenic variants were found as germline or surrounding
aldosteronoma tissue. Additionally , ATPase mutant
aldosteronomas showed a high prevalence among older male
patients (61, 93).

As found in other adrenocortical tumors, somatic gain of
function variants in CTNNB1 gene, encoding b catenin, also have
been reported in around 5% of aldosteronomas (Tables 3, 4).
Affected adrenals had an aberrant b catenin accumulation in the
Wnt cell-differentiation pathway and overexpression of
luteinizing hormone/choriogonadotropin receptor (LHCGR)
and gonadotropin-releasing hormone receptor (GnRHR) (63,
94, 95). Patients harboring aldosteronomas with CTNNB1
variants are more frequently females (60-70%) and older
individuals, with no significant differences in preoperative
aldosterone levels, tumor size and frequency familial
hypertension compared with those with KCNJ5 variants (64).
Unfortunately, the underlying mechanism leading to CYP11B2
Frontiers in Endocrinology | www.frontiersin.org 8
overexpression due to CTNNB1 mutations remains unclear.
Berthon et al. (96) showed that b-catenin plays an essential
role in the control of basal and Angi II-induced aldosterone
secretion, by activating AT1R , CYP21 and CYP11B2
transcription (96).

Due to recent advances in high throughput sequencing, few
somatic variants have been recently identified in 2 genes only so
far related to FH (CLCN2 and CACNA1H): the missense
p.(Gly24Asp) (CLCN2), previously reported in FH 2 (28, 65);
the splice junction loss c.64-2_74del (CLCN2) (65), and more
recent ly , the missense p.(I le1430Thr) (CACNA1H)
(Table 4) (67).

The knowledge about adrenal lesions associated with PA and
the detection rate of somatic variant have been significantly
changed since the development of highly specific monoclonal
antibodies against CYP11B1 and CYP11B2 (97). Under normal
conditions, CYP11B2 was sporadically detected in the zona
glomerulosa, whereas CYP11B1 was entirely detected in the
zonae fasciculata-reticularis (98). In younger individuals,
immunohistochemistry from normal adrenals reveals a
continuous CYP11B2 expression throughout the ZG layer, but
this pattern changes in adults and CYP11B2 expression becomes
discontinuing in ZG (98, 99). Next, Nanba et al. demonstrated
that CYP11B2 immunostaining was a powerful tool for
histopathological identification of adrenal lesions associated
with aldosterone overproduction (100).

Fernandes Rosa et al. performed the most comprehensive
study in a cohort of 474 aldosteronomas from the European
Network for the Study of Adrenal Tumors, reaching a detection
rate of somatic variants of 54%, although CTNNB1 sequencing
was not included in this study (56). Two other studies, which
included CTNNB1 sequencing, demonstrated similar findings:
Wu et al. studied 219 aldosteronomas, detecting somatic variants
in 58.4% of them (101), and Vilela et al. reported a discovery rate
of approximately 50% (102).

Recent studies using immunohistochemistry-guided
approach to determine the exact source of abnormal
aldosterone production led to the identification of pathogenic
somatic variants in around 90% of screened aldosteronomas (81,
82, 88, 103). The lower prevalence of somatic variants found in
aldosteronomas in previous studies using conventional
approaches, not taking in account CYP11B2 expression, is
TABLE 5 | New histopathological nomenclature (HISTALDO) of aldosterone-
producing adrenal lesions in patients with unilateral primary aldosteronism.

Aldosterone-producing Lesions
(HISTALDO)

Size HE
visible

Histology

Aldosterone-producing adenoma
(APA)

> 10mm Yes classical

Aldosterone-producing nodule
(APN)

< 10mm Yes classical*

Aldosterone-producing micronodule
(APM)

Microscopic No non-
classical

Aldosterone-producing diffuse
hyperplasia

Continuous layer of
ZG cells

Yes non-
classical
June 2022 | Volume
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explained due to the macroscopical selection of non-aldosterone-
producing adrenal lesions (81). A recent review confirmed these
previous findings, showing a higher detection rate of somatic
variants with CYP11B2-guided extraction (85%) when compared
to the classical approach with DNA extraction from fresh frozen
tissue (54%) (57). Overall, the variant-negative ratio decreased
from 46% to 15%. Gene-specific detection rate also increased
from 34% to 56% in KCNJ5, 8% to 10% in CACNA1D, 8% to 12%
in ATP1A1 and 4% to 5% in ATP2B3 (57).

Moreover, the CYP11B2-guided high throughput sequencing
method has revealed a wide complexity of aldosterone-
producing lesions in patients with PA (81, 82, 88, 103, 104). In
multinodular cases, tumors from the same adrenal might harbor
different recurrent somatic variants, suggesting independent
triggers for the somatic events (82, 105). Interestingly,
aldosterone production may occur from multiple sources:
multiple aldosteronomas in the same adrenal gland, dominant
non-producing adenoma with satellite CYP11B2 positive non-
dominant nodules, and clusters of autonomous aldosterone-
producing cells (APCCs) without apparent neoplasia (55, 81,
88, 106, 107).

APCCs are common in normal adrenals and accumulate with
age, becoming more often detectable in morphologically normal
adult adrenals (108). Somatic pathogenic variants in CACNA1D,
ATP1A1 and ATP2B3 were found in 35% to 76% of the APCCs,
with CACNA1D being the most mutated gene (108, 109).
Interestingly, the spectrum of affected gene in APCCs is
different from aldosteronomas. APCCs may a key player to the
understanding of the physiology and pathophysiology of
aldosterone production. It has been hypothesized that
aldosteronomas can derive from APCCs with autonomous
aldosterone production (harboring somatic in aldosterone-
driver genes) (15, 99, 108).

Recently, the international histopathology consensus for
unilateral PA (HISTALDO) classified the aldosterone-
producing lesions (110). (Table 5). Aldosteronoma was
defined as a well circumscribed CYP11B2-positive solitary
neoplasm (≥ 10 mm diameter) composed of clear or compact
eosinophilic cells or both cell types. Aldosterone-producing
nodule is a CYP11B2-positive lesion (<10 mm diameter)
morphologically visible with hematoxylin-eosin staining
(“microaldosteronoma”). In this consensus, the nomenclature
for APPC was changed to aldosterone-producing micronodules
(APMs). APMs are defined as CYP11B2-positive lesion (<10
mm diameter) composed of ZG cells located beneath adrenal
capsule. APMs are indistinguishable from normal zona
glomerulosa (ZG) cells in hematoxylin-eosin staining (108,
110). In CYP11B2 staining, APMs have a strong uniform
immunoreactivity for CYP11B2, without evident neoplasia or
hyperplasia (108, 110).

These advances in PA histopathology allowed the definition
of classical and non-classical histopathological features
associated with PA (Table 5) (110). The classical histology is
defined by the presence of a solitary aldosteronoma or APN. In
contrast, “non-classical” histology is characterized by adrenals
with multiple APNs or APMs (or multiple APMs and multiple
Frontiers in Endocrinology | www.frontiersin.org 9
APNs together) or aldosterone-producing diffuse hyperplasia
(110, 111). In summary, non-classical histology is defined by
the absence of a dominant aldosterone-producing lesion (such
as a solitary aldosteronoma or APN). Interestingly, the
mutational spectrum is different between classical and non-
classical histology. KCNJ5 somatic variants are predominant
among aldosteronomas (classical histology), whereas
CACNA1D is the most frequent mutated gene in APMs
(81, 111).
IMPACT ON CLINICAL OUTCOME

The impact of genetic and clinical variables in outcome in PA
patients have been more properly evaluated after the Primary
Aldosteronism Surgical Outcome (PASO) study, which
established criteria for clinical and biochemical success in
unilateral PA patients after adrenalectomy (112). PASO
criteria classified PA patients after adrenalectomy according
to the biochemical outcome and clinical success. Complete
biochemical success is defined by correction of hypokalemia
when present pre-surgery and normalization of the
aldosterone-to-renin ratio, and partial biochemical success as
a correction of hypokalemia when present pre-surgery and a
raised aldosterone-to-renin ratio, but with at least 50% decrease
in baseline plasma aldosterone concentration compared to pre-
surgical levels. Regarding blood pressure control, complete
clinical success is defined as blood pressure <140x90 mmHg
without anti-hypertensive medications after 6 months of
follow-up, whereas partial clinical success as a reduction in
the number or dose of anti-hypertensive medications when
compared to pre-surgery (98).

Recently, non-classical histopathological lesions associated
with aldosterone excess were found in 25% of the cases in a
German cohort of unilateral PA (111). On the other side, APMs
were found in only 5% (7 out of 137) of the cases in a Chinese
cohort of unilateral PA (113). Therefore, additional studies from
patients with different genetic backgrounds are essential to define
the prevalence of classical and non-classical unilateral PA among
different cohorts.

Of great importance in clinical practice, postsurgical complete
biochemical success after adrenalectomy was correlated with
histological features in a German cohort of unilateral PA. The
rate of biochemical cure of PA was 98% in patients with the
classical histopathology (solitary aldosteronoma or APN)
compared with 67% in the patients with unilateral PA caused
by non-classical histopathology (111). These findings suggested
the presence of a baseline abnormal aldosterone production from
the contralateral gland in patients with non-classical unilateral
PA (Table 5).

KCNJ5 somatic pathogenic variants have been associated with
complete clinical success in cohorts of unilateral PA from Australia,
West Norway, Japan and Brazil (80, 102, 114, 115). In a Brazilian
cohort of PA, complete clinical success based in PASO criteria was
more frequent in patients with aldosteronomas harboring KCNJ5
pathogenic variants than in those with pathogenic variants in other
June 2022 | Volume 13 | Article 927669
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driver genes (102). However, it should be emphasized that these
previous studies did not conduct a genetic investigation based on
CYP11B2 staining.

Interestingly, KCNJ5 pathogenic variants have been more
frequently detected in aldosteronomas (classical histopathology),
which is associated with a higher chance of postsurgical complete
biochemical success (57). Recently, somatic KCNJ5 pathogenic
variants were not associated with clinical and biochemical
outcome in a small group of 38 aldosteronomas with genetic
investigation guided by CYP11B2 staining. However, the influence
of KCNJ5 status in the outcome of PA patients cannot be ruled out
and should be further evaluated in larger cohorts of unilateral PA
with genetic investigation guided by CYP11B2 staining.
Furthermore, the impact of somatic KCNJ5 pathogenic variants
on clinical outcome might depend on the frequency of classical
histopathology among unilateral PA cases.
PERSPECTIVES

Genetics of unilateral PA has remarkably improved in the last
decade. However, most cases of bilateral hyperplasia remain without
genetic etiology (15). Of great importance, a new histopathological
classification has been recently proposed for aldosterone-producing
Frontiers in Endocrinology | www.frontiersin.org 10
lesions in unilateral PA (110). Besides the impact on the
comprehension of PA pathophysiology, the histopathological
features have influence in the outcome after unilateral
adrenalectomy. KCNJ5 mutational status and classical
histopathology of unilateral PA (aldosteronoma) have emerged as
relevant predictors of clinical and biochemical outcome, respectively
(102, 111). Further studies will be important to characterize the
spectrum of classical and non-classical unilateral PA among cohorts
from different genetic backgrounds.
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