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Abstract

Recent advances in the understanding of the genetic underpinnings of cancer offer the

promise to customize cancer treatments to the individual through the use of genomic classi-

fiers (GCs). At present, routine clinical utilization of GCs is uncommon and their current

scope and status, in a broad sense, are unknown. As part of a registered review (PROS-

PERO 2014:CRD42014013371), we systematically reviewed the literature evaluating the

utility of commercially available GCs by searching Ovid Medline (PubMed), EMBASE, the

Cochrane Database of Systematic Reviews, and CINAHL on September 2, 2014. We

excluded articles involving pediatric malignancies, non-solid or non-invasive cancers,

hereditary risk of cancer, non-validated GCs, and GCs involving fewer than 3 biomarkers. A

total of 3,625 studies were screened, but only 37 met the pre-specified inclusion criteria. Of

these, 15 studies evaluated outcomes and clinical utility of GCs through clinical trials, and

the remainder through the use of mathematical models. Most studies (29 of 37) were spe-

cific to hormone-receptor positive breast cancer, whereas only 4 studies evaluated GCs in

non-breast cancer (prostate, colon, and lung cancers). GCs have spurred excitement

across disciplines in recent decades. While there are several GCs that have been validated,

the general quality of the data are weak. Further research, including prospective validation

is needed, particularly in the non-breast cancer GCs.

Introduction

Over the past 30 years, there have been substantial advances in our knowledge of the genetic

underpinnings of cancer. The increase in this knowledge, and in the technology to evaluate it,

has generated tremendous excitement because of its potential to customize therapies at the

patient-specific level and deliver on the promise of personalized medicine. There is an increas-

ing emphasis on “precision oncology” or “genomics-driven oncology” [1,2], with individual-

ized therapy strategies driven by molecular “-omics” information.
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A genomic classifier (GC) offers the opportunity to select patients most likely to respond to

therapy, based on stratification of probability of a clinical outcome according to a DNA or

RNA expression signature [3,4]. This provides the potential to intensify therapy in patients

with high-risk disease, improving cure rates, and avoid the ‘overtreatment’ of patients with

biologically low-risk disease that historical, clinical, or histopathologic criteria cannot other-

wise distinguish. Since the mid-2000s, several commercially available breast cancer GCs have

been approved for coverage by Medicare & Medicaid [5]. Population-based research has

identified increasing utilization rates of GCs among breast cancer patients, with concordant

reduction in the proportion of women with hormone receptor positive cancer receiving che-

motherapy [6]. Recent series estimate that 18% of women with breast cancer in the U.S.

undergo the 21-gene recurrence score assay, which is only one of many [7]. Comparatively,

there has been surprisingly little clinical implementation of GCs for other solid tumors.

Additional research is needed to deliver on the promise of GCs for solid tumors [2,8].

Despite the promise of genomics-driven cancer medicine, its clinical implementation is lim-

ited by a relative lack of prospective evidence regarding genomic assay validation and clinical

performance [9]. The availability of strong evidence from well-designed, prospective trials is a

significant challenge and rate-limiting step in the development of GCs [3].

Our purpose was to describe the current state of GCs and delineate areas of research that

could validate their routine use in clinic. We systematically review and report the current evi-

dence evaluating the utility of commercially available GCs for solid tumors of adults. Our

study describes the outcomes and clinical utility measure of GCs as studied through clinical

trials or the use of mathematical models.

Methods and materials

As part of a registered, PROSPERO International prospective systematic review (PROSPERO

2014:CRD42014013371), we conducted literature database searches of Ovid Medline (PubMed),

EMBASE, the Cochrane Database of Systematic Reviews, and CINAHL on September 2, 2014.

The MeSH search criteria are provided in the supporting information (S1 File), but generally

includes terms associated with genomic and/or personalized cancer care. We restricted search

criteria those reported in English. This resulted in 3,815 articles with 190 duplicates (3,625

unique articles, Fig 1). The PRISMA checklist is provided in the supporting information

(S2 File).

Two investigators independently reviewed manuscript titles and abstracts to identify origi-

nal data studies that involved the use of validated GCs to demonstrate clinical utility. Clinical

utility is demonstrated when the test is shown to improve clinical outcomes and/or alter clini-

cal decisions. Studies were required to involve solid tumors, adult patients (� 18 years old),

and GCs with 3 or more biomarkers. Manuscripts involving pediatric malignancies, non-solid

or non-invasive tumors (e.g., leukemia, ductal carcinoma in situ, etc.), hereditary risk of can-

cer, non-validated GCs, and GCs involving less than 3 biomarkers were excluded (Fig 1). In

addition, manuscripts were reviewed independently by the two investigators for quality by

applying the general principles of the Reporting Recommendations for Tumor Marker Prog-

nostic Studies (REMARK) checklist items [11]. A third investigator served to resolve all coding

disagreements. Each included manuscript was assessed for clinical site, assay(s) used, number

of patients or simulated patients, the specific clinical population the results apply to, the meth-

odology, the main contribution of the study, and the country of origin. Data extraction was

completed using a pre-defined spreadsheet; one investigator performed the data extraction

while a second investigator reviewed the spreadsheet to confirm correct data extraction. We

present a figure to show the timeline of when the studies were published, number of patient
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specimens included in each clinical study (shown by dot size), and when the major GCs were

available commercially (Fig 2).

Results

We identified 3,625 manuscripts for title review according to the above methods. As shown in

Fig 1, this was reduced to 2,302 manuscripts for abstract review and 1,119 studies for full text

review. After this final review, 37 manuscripts were included [18–54]. A total of 273 abstracts

and 55 manuscripts needed a third investigator to resolve coding disagreements. Tables 1 and

2 depict the key characteristics of each included study. Table 1 provides a summary of the

breast cancer studies while Table 2 presents studies for all other types of cancer. Of the 37 stud-

ies, 15 studies evaluated outcomes and clinical utility of GCs through clinical trials, and the

remainder through the use of mathematical models.

Fig 2 depicts the timeline of the publication of the studies and the date relevant GCs became

commercially available [12–17]. Each dot represents a study, with green dots for modeling

studies and orange dots for clinical studies. The dot diameter for clinical studies corresponds

to the number of patients in the study. In general, breast cancer GCs were developed and com-

mercially available earlier than GCs for other cancers.

Breast cancer

Thirty-three (89%) of studies evaluated breast cancer, and of these, 29 (89%) were specific to

hormone-receptor positive breast cancer, and 31 (94%) concerned the Oncotype DX1 GC

(Table 1). Among the trials concerning breast cancer GCs, 13 (39%) concern the clinical

Fig 1. PRISMA flow diagram [10].

https://doi.org/10.1371/journal.pone.0176388.g001
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validation of GCs, mostly through the testing of prospectively collected tissue banks and evalu-

ation of various clinical outcomes (overall survival, cancer recurrence, pathologic response to

neoadjuvant therapy, etc.).

Two studies presented comparisons of multiple GCs. Iwamoto et al. compared six distinct

assays for breast cancer (MammaPrint, Oncotype DX1, a 76-gene signature assay, mitotic

kinase prognostic score, MKI67 mRNA expression, and molecular subtype). They demon-

strated that the assays generally performed similarly in their abilities to predict 5-year overall

survival, progression-free survival, and pathologic complete response [25]. Kelly et al. com-

pared the Oncotype DX1 GC to the PAM50 Breast Cancer Intrinsic ClassifierTM and demon-

strated general agreement between the two [28].

Of the breast cancer GC articles, 20 (61%) are based in mathematical models and generally

concern cost-effectiveness. The main type of mathematical model used is a Markov model, a state-

transition model used to simulate the health outcomes and costs for a cohort of patients. Each arti-

cle included demonstrated that the use of GCs in breast cancer was cost-effective in a variety of

reimbursement models (Table 1). In addition, 4 articles demonstrated that the use of GCs in breast

cancer altered decisions regarding the recommendation for or against adjuvant therapy.

Fig 2. Timeline of the publication of the studies and the date relevant GCs became commercially available [12–17]. Each dot

represents a study, with green dots for modeling studies and orange dots for clinical studies. The dot diameter for clinical studies corresponds to

the number of patients in the study.

https://doi.org/10.1371/journal.pone.0176388.g002
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Table 1. Papers evaluating breast carcinoma.

Year Site Assay n Population Methodology Main Conclusion Country

Clinical Outcomes

2008 Breast Oncotype DX 72 HR+, locally advanced

breast cancer

Retrospective

analysis of clinical

outcomes

GC predicts pathologic

complete response to

neoadjuvant chemotherapy

USA [18]

2008 Breast Oncotype DX 465 HR+ breast cancer Case control study GC predicts cancer control/

survival

USA [19]

2008 Breast Oncotype DX 58 HR+, early stage breast

cancer

Retrospective

analysis of clinical

outcomes

GC affects adjuvant therapy

decision making

USA [20]

2009 Breast Oncotype DX, 78-gene

profile, Two-Gene-

Index

246 HR+, early stage breast

cancer

Retrospective

analysis of clinical

outcomes

GC predicts cancer control/

survival

Netherlands [21]

2010 Breast Oncotype DX 367 HR+, node-positive,

postmenopausal breast

cancer

Retrospective

analysis of clinical

outcomes

GC predicts cancer control/

survival

USA [22]

2010 Breast Oncotype DX 1,231 HR+, postmenopausal

breast cancer

Retrospective

analysis of clinical

outcomes

GC predicts cancer control/

survival

UK [23]

2010 Breast MammaPrint 168 HER2+, early stage

breast cancer

Retrospective

analysis of clinical

outcomes

GC predicts cancer control/

survival

Netherlands [24]

2011 Breast MammaPrint,

Oncotype DX, 76-gene

signature

228 Breast cancer Retrospective

analysis of clinical

outcomes

Each GC performed similarly USA, Japan,

and Italy [25]

2011 Breast Oncotype DX 154 HR+, early stage breast

cancer

Prospective GC vs.

expert opinion

Experts tend to overestimate

risk of recurrence compared to

GC

USA [26]

2011 Breast Oncotype DX 133 Breast cancer Retrospective

analysis of clinical

outcomes

GC predicts cancer control/

survival among ER+ tumors

USA [27]

2012 Breast PAM50, Oncotype DX 151 HR+, node negative

breast cancer

Retrospective

analysis of clinical

outcomes

Each GC agreed except in low

risk patients

USA [28]

2012 Breast Oncotype DX 853 HR+, early stage breast

cancer

Retrospective

analysis of clinical

outcomes

GC less utilized among African

Americans and demonstrated

higher recurrence scores

USA [29]

2013 Breast Oncotype DX 665 HR+, early stage breast

cancer

Retrospective

analysis of clinical

outcomes

GC predicts cancer control/

survival

USA [30]

Modeled Outcomes

2005 Breast Oncotype DX 100 HR+, node-negative

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA [31]

2007 Breast Oncotype DX 688 HR+, early stage breast

cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA [32]

2010 Breast MammaPrint 427 Early stage breast cancer Cost-effectiveness,

Markov Model

GC is cost effective USA [33]

2010 Breast Oncotype DX 368 HR+, early stage breast

cancer

Cost-effectiveness,

Markov Model

GC is cost effective Israel and USA

[34]

2010 Breast Oncotype DX 89 HR+, early stage breast

cancer

Prospective pre/post

GC decision making

GC affects adjuvant therapy

decision making

USA [35]

2010 Breast MammaPrint 305 HR+, node negative

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective Netherlands and

Austria [36]

2010 Breast Oncotype DX - HR+, HER2-,early stage

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective Canada [37]

(Continued )
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Non-breast cancer

As demonstrated in Table 2, 4 studies (11%) evaluated GCs in non-breast cancer. Hornberger

et al. demonstrated that the ColoPrint GC predicted clinical outcomes in stage II colon cancer

[53], and Maak et al. went on to demonstrate its cost-effectiveness in this setting [51]. Cooper-

berg et al. provided retrospective clinical evidence supporting the Decipher GC [52]. While

Roth et al. demonstrated the cost-effectiveness of a 14-gene GC for early stage non-small cell

lung cancer following surgery [54], other articles regarding this classifier did not meet our pre-

defined inclusion criteria.

Discussion

Our results provide a summative analysis of the current state of the clinical research support-

ing the validation of GCs in patients with some solid tumors. While there are several commer-

cially available GCs, the bulk of the existing published data are evaluations of breast cancer

GCs.

While breast cancer is a common malignancy that usually requires multimodality therapy,

cure rates for most women with breast cancer is already high. Regardless, there is a subset of

patients with breast cancer that go on to die from their disease, and GCs are poised to identify

these patients and potentially cure them. The development of GCs regarding more commonly

Table 1. (Continued)

Year Site Assay n Population Methodology Main Conclusion Country

2011 Breast Oncotype DX 925 HR+, node-negative

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA [38]

2011 Breast Oncotype DX 2,000,000 HR+, HER2-,early stage

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA [39]

2012 Breast Oncotype DX - HR+, node-positive

breast cancer

Cost-effectiveness,

Modified Markov

Model

GC is cost effective UK [40]

2012 Breast Oncotype DX 489 HR+, node-negative

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective Canada [41]

2012 Breast Oncotype DX 1,000 HR+ breast cancer Cost-effectiveness,

Markov Model

GC is cost effective Canada [42]

2012 Breast Oncotype DX,

MammaPrint

- HR+, early stage breast

cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA [43]

2013 Breast Oncotype DX 151 HR+, HER2-, 0–3 nodes,

breast cancer

Prospective pre/post

GC decision making

GC affects adjuvant therapy

decision making

Australia [44]

2013 Breast Oncotype DX 142 HR+, node-negative

breast cancer

Prospective pre/post

GC decision making

GC affects adjuvant therapy

decision making and is cost

effective

UK impact,

decision

[45]

2013 Breast Oncotype DX 1,000 HR+, HER2-,early stage

breast cancer

Cost-effectiveness,

Markov Model

GC is cost effective Canada [46]

2013 Breast Oncotype DX - HR+, early stage breast

cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA [47]

2013 Breast MammaPrint 427 HR+, early stage breast

cancer

Cost-effectiveness,

Markov Model

GC is cost effective Netherlands and

Austria [48]

2013 Breast Oncotype DX, IHC4,

MammaPrint and

Mammostrat

- HR+, HER2-,early stage

breast cancer

Systematic review of

cost effectiveness

GC is cost effective Multiple [49]

2014 Breast Mammostrat - HR+, early stage breast

cancer

Cost-effectiveness,

Markov Model

GC is cost effective USA and UK

[50]

Summary of papers included in this analysis evaluating breast carcinoma. Abbreviations: HR, hormone receptor; GC, genomic classifier.

https://doi.org/10.1371/journal.pone.0176388.t001
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fatal diseases such as locally advanced lung cancer or glioblastoma multiforme may have lim-

ited clinical utility, since most patients with poor-prognosis cancers will receive the most

intensively validated therapy and a decision aid may not be clinically relevant for personalized

decisions.

Interestingly, all of the articles in this systematic review regard the decision for (or against)

adjuvant chemotherapy following definitive surgical resection. For most cancers however,

there are multiple therapies that could be informed through GCs. In head and neck cancer, for

example, many patients undergo definitive surgical resection and adjuvant therapy while oth-

ers are receive definitive chemoradiotherapy (without surgery) without clear existing evidence

as to which (if either) improves outcomes for patients. As another example, it is unlikely that

the superiority (or inferiority) of radical prostatectomy over radiotherapy will ever be estab-

lished, but it is possible that GCs could serve to define a subset of patients that would be better

served with either therapy.

GCs have positioned themselves in a gap in cancer care that has obsessed researchers for

decades. On one side are diseases that have targetable, gene-specific mutations (e.g., ALK-rear-

ranged non-small cell lung cancer) and on the other side are markedly heterogeneous diseases

where only non-discriminatory therapies have effect. GCs have the ability to fill this gap by

analyzing numerous genes and weighting them based on their ability to drive cancer recur-

rence and metastasis, keying physicians in that more intensive or alternative therapy is

warranted.

There are several trends across GCs that should be noted including that the majority of

patients included in these studies are Caucasian. Baseline genetic heterogeneity between racial

groups could have an impact on the external validity of these tests, and further research in this

area is needed before broad application of any genetic test is appropriate across a diverse popu-

lation. Finally, relatively few of the studies included comparisons of multiple GCs; as noted by

Hunter [55], more research is needed to compare how risk categorizations differ between GCs.

Conclusion

GCs promise an era of precise, personalized cancer care. While there are several GCs that have

been accepted for clinical use (particularly in breast cancer), our review demonstrates that

there are a relatively limited number of studies available to provide supportive evidence of clin-

ical utility. We await the prospective validation of several of the alternative GCs for other solid

Table 2. Papers evaluating non-breast carcinoma.

Year Site Assay n Population Methodology Main Conclusion Country

Clinical Outcomes

2013 Colon ColoPrint 135 Stage II colon cancer after resection Retrospective analysis of

clinical outcomes

GC predicts cancer

control/survival

Germany

[51]

2015a Prostate CAPRA-S,

Decipher

185 High risk prostate cancer after

radical prostatectomy

Retrospective analysis of

clinical outcomes

GC predicts cancer

control/survival

USA [52]

Modeled Outcomes

2012 Colon 12-gene assay - Stage II colon cancer after resection Cost-effectiveness, Markov

Model

GC is cost effective USA [53]

2014 Lung 14-gene assay 433 Early stage non-small cell lung

cancer after resection

Cost-effectiveness, Markov

Model

GC is cost effective USA [54]

Summary of papers included in this analysis evaluating non-breast carcinoma. Abbreviations: GC, genomic classifier.
aNote: While the manuscript publication year is 2015, it was initially published online July 2, 2014; thus, this manuscript was published during our search

period.

https://doi.org/10.1371/journal.pone.0176388.t002
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tumors. Further research, including prospective validation is needed, particularly for non-

breast cancer GCs.
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