
 

 
C

N
S 

&
 N

eu
ro

lo
gi

ca
l D

is
or

de
rs

 - 
D

ru
g 

Ta
rg

et
s

��� ��7<87�9:8=
���� ��7>>?�=7<7

������
����	
�
�
���

�������
�������

Send Orders for Reprints to reprints@benthamscience.ae 

 
CNS & Neurological Disorders - Drug Targets, 2018, 17, 389-399 

389 

RESEARCH ARTICLE 

Oleanolic Acid Ameliorates Aβ25-35 Injection-induced Memory Deficit in
Alzheimer’s Disease Model Rats by Maintaining Synaptic Plasticity 

 

Kai Wang
1#

, Weiming Sun
1#

, Linlin Zhang
2#

, Wei Guo
2
, Jiachun Xu

1
, Shuang Liu

2
, Zhen Zhou

2
 and 

Yulian Zhang
2*

 

1Graduate Institutes, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; 2Department of Neu-
rology, the Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China 

 

A R T I C L E  H I S T O R Y 

Received: April 11, 2018 
Revised: May 07, 2018 

Accepted: May 22, 2018 

 

DOI:  
10.2174/1871527317666180525113109 

Abstract: Background: Abnormal amyloid β (Aβ) accumulation and deposition in the hippocampus is 

an essential process in Alzheimer’s disease (AD).  

Objective: To investigate whether Oleanolic acid (OA) could improve memory deficit in AD model 

and its possible mechanism.  

Methods: Forty-five SD rats were randomly divided into sham operation group, model group, and OA 

group. AD models by injection of Aβ25-35 were built. Morris water maze (MWM) was applied to inves-

tigate learning and memory, transmission electron microscope (TEM) to observe the ultrastructure of 

synapse, western blot to the proteins, electrophysiology for long-term potentiation (LTP), and Ca
2+

 

concentration in synapse was also measured.  

Results: The latency time in model group was significantly longer than that in sham operation group 

(P=0.0001); while it was significantly shorter in the OA group than that in model group (P=0.0001); 

compared with model group, the times of cross-platform in OA group significantly increased 

(P=0.0001). TEM results showed OA could alleviate neuron damage and synapses changes induced by 

Aβ25-35. The expressions of CaMKII, PKC, NMDAR2B, BDNF, TrkB, and CREB protein were sig-

nificantly improved by OA (P=0.0001, 0.036, 0.041, 0.0001, 0.0001, 0.026, respectively) compared 

with that in model group; the concentration of Ca
2+

 was significantly lower in OA group (1.11±0.42) 

than that in model group (1.68±0.18); and the slope rate (P=0.0001) and amplitude (P=0.0001) of f-

EPSP significantly increased in OA group.  

Conclusion: The present results support that OA could ameliorate Aβ-induced memory loss of AD 

rats by maintaining synaptic plasticity of the hippocampus. 

 

 
Keywords: Alzheimer’s disease, Oleanolic acid, Aβ, Ca

2+
, long-term potentiation, synaptic plasticity. 

1. INTRODUCTION 

 Alzheimer’s disease (AD) is characterized by progressive 
memory loss, and the amyloid β (Aβ) peptide with its accu-
mulation, due to overproduction and/or the failure of clear-
ance mechanisms, followed by neuronal death, has been the 
upstream cause of AD over the past decades [1-3]. Abnormal 
Aβ accumulation and deposition in the hippocampus, the 
first regions of the brain to suffer damage which plays im-
portant roles in the consolidation of short-term memory, 
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long-term memory, and spatial memory [4], is an essential 
process in the pathological events occurring in individuals 
with AD [5, 6]. 

 Multiple studies reported that dysregulation of neuronal 
Ca

2+
 homeostasis also plays a pivotal role in AD pathogene-

sis [7, 8]. Aβ-mediated toxicity could regulate the calcium 
channels in the membrane to promote extracellular Ca

2+
 in-

flux [9], and/or release intracellular Ca
2+ 

pool [10, 11], to 
constantly enhance intracellular Ca

2+
 concentration, leading 

to calcium overload, which could increase the neuronal sen-
sitivity to excitotoxicity and apoptosis [12], eventually lead-
ing to neuronal synaptic injury, resulting in learning and 
memory impairment. Therefore, it could improve learning 
and memory ability in AD patients by reducing Aβ-mediated 
toxicity and intracellular Ca

2+ 
concentration. 

1996-3181/18 $58.00+.00 © 2018 Bentham Science Publishers  
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 The complicated and still unclear pathogenesis of AD 

made it hard to treat it. Though there are a few medications 

currently being used, no one has been clearly shown to delay 

or halt the progression of AD [13], even with many reported 

adverse effects  [14-16], which drives researchers to look for 

new treatments to alter the course of AD. Nowadays, natural 

products and their extracts are promising drug candidates 

[17-19], and many of them, such as Huperzine A [20], Gal-

antamine [21], and (-)-Epigallocatechin-3-gallate [22, 23], 

have shown an effect in treating AD. Similarly, many ex-

tracts from several traditional Chinese herbs such as As-
tragalus membranaceus [24], Paeonia suffruticosa [25], 

Magnolia ofcinalis [26], and Rhizoma anemarrhenae [27] 

have been reported to e�ectively prevent memory impair-
ment.  

 Oleanolic acid (OA), a natural extract from the traditional 

Chinese herb Ligustrum lucidum (Nv Zhenzi), was found to 

exhibit weak anti-HIV [28], anti-HCV [29], anti-inflammatory 

[30, 31], and anti-cancer [32, 33] properties. Combined with 

other herbs, Ligustrum lucidum could delay memory loss of 

AD in our previous clinical study [34], and further study is 

still needed to investigate the mechanism of OA against the 
AD.  

 Therefore, in this study, we build AD model rats by right 

intracerebroventricular injection of Aβ25-35, after intervened 

by OA for four weeks, to investigate whether OA could im-

prove learning and memory deficit and its possible mecha-
nism. 

2. MATERIAL AND METHODS 

2.1. Animals 

 Eight-week-male Sprague-Dawley rats (230-250g, from 

Beijing Vital River Laboratory Animal Technology Co., Ltd, 

Beijing, China) were kept at a 12h light/dark cycle under 

controlled temperature (22±2°C) and humidity (50±10%), 

and bred with standard diet and water ad libitum, acclima-

tized for 7 days before the experiments. All animal proce-

dures were approved by the local ethical committee at Tian-

jin University of Traditional Chinese Medicine and met the 

guidelines of the Guide for the Care and Use of Laboratory 

Animals published by the National Institutes of Health 
(Documentation 55, 2001). 

2.2. Drugs and Reagents 

 Oleanolic acid (purity>98%, Melonepharma), 2mg/mL, 

was suspended in 5% sodium carboxymethyl cellulose, and 

amyloid β-Protein Fragment 25-35 (Aβ25-35, purity≥97%, 

Sigma) was dissolved in 0.9% sterile water at a concentra-

tion of 4μg/μL and incubated at 37°C for 96h to induce ag-
gregation before usage. 

 The selection of OA dose in rats was calculated by 

equivalent dose ratio [Rat(200g):Human(70kg)=6.3], based 

on the clinical application of OA in patients (240mg/d/70kg), 

the result was 21.6mg/kg for a rat. The concentration of OA 

for AD rats was 2mg/mL, thus we selected the dose of 
10mL/kg. 

2.3. Modeling and Administration 

 Forty-five SD rats were randomly divided into three 

groups: the sham operation group, the model group, and the 

OA group, 15 in each group. Rats were anaesthetized by 

intraperitoneal injection of 10% chloral hydrate (0.3g/kg) 

and fixed in the rat brain stereotaxic device (Ruiwode Life 

Technology Co., Ltd, China). A hole was drilled on the right 

parietal bone (anteroposteriorly [AP], 1mm; laterally right 

[LR], 1.5mm; and dorsoventrally [DV], 4mm) [35]. The rats 

in the sham operation group received a right intracerebroven-

tricular injection of 0.9% sterile saline 5μL (speed, 

1μL/min), while the rats in the model and OA group received 

a right intracerebroventricular injection of Aβ25-35 solution 

5μL [36] at the same speed. The rats in OA group received 

OA treatments intragastricly administrated (10mL/kg) seven 

days after Aβ25-35 infusion, once daily from then on before 

water maza test, for four weeks, while distilled water was 
administrated (10mL/kg) to rats in other groups. 

2.4. Morris Water Maze (MWM) Test 

 Spatial learning ability was tested using the Morris water 

maze (MWM) test after four-week intragastric administra-

tion. The water maze was an open circular black tank 

(120cm in diameter and 60 cm in height) and a movable cir-

cular platform (8cm in diameter). A camera two meters 

above the tank was connected to the computer to record the 

rat’s movement, and the data was analyzed by TopScanLite 

(CleverSys Inc). The tank was filled with water at a height of 

23cm (23-25°C) and dyed with black edible pigment [37]. 

The tank was divided into 4 quadrants by two imaginary 

perpendicular axes with four cardinal points: North (N), 

South (S), East (E) and West (W), and the platform was 

placed in the middle of SW quadrant, 2cm submerged into 
the water surface. 

 MWM test was started with the place navigation trial, 

and each rat in all groups (n=15 in each group) underwent 

four trials per day with a one-minute-interval for 5 consecu-

tive days. The rat was gently placed in the water from the 

starting position (location of SE, NE, SW, and NW quadrant, 

respectively), facing the wall of the tank. The rat was al-

lowed to swim for 90 seconds until it found the submerged 

platform and stayed on the platform for a maximum of 10 

seconds. If the rat failed to find the hidden platform within 

90 seconds, it would be guided to the platform and remained 

on the platform for a maximum of 10 seconds before being 

removed from the pool. The escape latency was defined as 

the time taken to search for the platform within 90 seconds. 

The escape latency, swimming speed, and swimming path 
were recorded by the tracking system.  

 The spatial probe test was conducted 24 hours after the 5-

day place navigation trial where the platform was removed 

from the pool to assess memory retention for the location of 

the platform. The rat was put into the pool at the NE point 

and allowed to swim for 90 seconds. The swimming speed, 

swimming path, and the frequency of rat crossing the virtual 
platform were recorded. 
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2.5. Transmission Electron Microscope 

 Rats (n=3 in each group) were anesthetized by intraperi-
toneal injection 10% chloral hydrate (0.3g/kg) after MWM 
test. The brain was removed rapidly and placed on ice. The 
CA1 region of the left hippocampus was dissected and then 
diced into smaller blocks of 1mm×1mm×1mm. The methods 
to prepare samples were as follows: the specimens were 
fixed by immersing in 4% buffered glutaraldehyde 4 h, and 
then washed in cold 1/15M phosphate buffered saline 15-
30min for 3 times. The tissues were then post-fixed for 2 h in 
1% osmium tetroxide, and washed in cold 1/15M phosphate 
buffered saline 30min for 3 times. The samples were dehy-
drated in ascending grades of acetone: 50%, 70%, 80%, 
90%, 15 min respectively, and then in 100% acetone 15min 
×2. The tissues were infiltrated in embedding medium for 3 
h at room temperature, 60 min in mixture of 100% ace-
tone/embedding medium (1:1) in 37

o
C, overnight in mixture 

of 100% acetone/embedding medium (1:3) in 37
o
C, 5 h in 

embedding medium in 37
o
C. All tissues were embedded and 

then cured in a 37
o
C oven for 24 h followed by 48 h in a 60

o
C 

oven. The samples were sliced into 50nm with an ultra-
microtome (Leica UCT, Germany). The samples were stained 
with uranyl acetate for 45 min, and then stained with lead cit-
rate for 15 min. A transmission electron microscope (TEM) 
(Hitachi H7500, Japan) was used to observe the neurons using.  

2.6. Western Blot Analysis  

 Rats (n=5 in each group) were sacrificed for extracting 
protein samples from right hippocampi after MWM test by 
splitting, centrifugation, and boiling. Equal amounts (40 μg) 
of protein were loaded into each well of a sodium dodecyl 
sulfate-polyacrylamide gel (10% polyacrylamide gels) and 
separated by electrophoresis. The proteins were then trans-
ferred to nitrocellulose membranes (Amersham, USA), 
which were blocked with 5 % bovine serum albumin and 
prepared in a Tris-buffered saline (TBS) overnight at 4°C. 
The membranes were incubated with antibodies to detect 
CaMK  (ab134041, 1:1000), PKC (ab136491, 1:1000), 
NMDAR2B (ab65783, 1:1000), BDNF (ab205067, 1:1000), 
TrkB (sc-377218, 1:1000), CREB (ab32515, 1:1000), 
GAPDH (ab8245, 1:1000) and beta Actin (ab184220 1:1000), 
followed by incubation with appropriate HRP-conjugated goat 
anti-rabbit (ZSGB-BIO, China; ZB-5301, 1:1,000) or HRP-
conjugated goat anti-mouse secondary antibodies (ZSGB-
BIO, China; ZB-5305, 1:1,000). Immunoreactive bands were 
visualized using the BeyoECL Plus (Beyotime Company, 
China), and the resulting membranes were imaged using the 
VersaDoc MP5000 imaging system (BIO-RAD, USA). The 
Quantity One was used to assess the band intensity and to 
carry out semi-quantitative analyses. 

2.7. Measurement of Ca
2+

 Concentration  

 Rats (n=3 in each group) were intraperitoneally injected 
with 10% chloral hydrate (0.3g/kg) after the MWM tests, and 
the right hippocampi were rapidly separated. They were 
weighed and homogenized in an isotonic sucrose solution 
(0.32 mol/L) at 4°C in 1 g: 10 mL. The homogenate was 
centrifuged at 500g for 10 min to get the supernatant and 
then centrifuged at 4°C for 20 min (10000 g) to obtain the 
crude synaptosomal. The crude synaptosome was suspended 

with 0.32 mol/L sucrose solution, and then carefully spread 
over the density gradient of 0.8M and 1.2M sucrose. They 
were centrifuged with high-speed at 50000 g for 25 min to 
obtain the synaptosomes, and centrifuged at 2000 g for in 
4°C to take precipitation [38]. The synaptosomes were quan-
tified by BCA method and equal amounts (30 μg) of synap-
tosomes were added to each well of the black 96-well cell 
culture plate. Rhod 2-AM (1:500) probe 100 μL was added 
and incubated at 37°C for 30 min away from light. The cul-
ture medium was placed in a fluorescent microplate reader 
(BioTek FLx800, USA) to measure the fluorescence inten-
sity at excitation wavelength of 557 nm and emission wave-
length of 581 nm. Formula: [Ca

2+
]i=Kd(F-Fmin)/(Fmax-F). 

2.8. Electrophysiology 

 After the MWM test, long-term potentiation was quanti-
fied with in vivo electrophysiological techniques. Rats 
(n=3in each group) were anaesthetized with an intraperito-
neal injection of 20% urethane (1.2 g/kg), and then were 
positioned in a stereotaxic apparatus (Narishige, Japan) for 
surgery, covered with a towel to keep warm. A 3cm incision, 
blunt off the skin periosteum was cut to fully expose the 
bregma, sagittal suture, and parietal. A hole in the skull was 
drilled to expose CA3 region (4.2mm posterior to the 
bregma, 3.8mm right to the sagittal suture, 2.0 mm-3.5mm 
beneath the cortex) and CA1 region (3.4 mm posterior to the 
bregma, 2.5mm right to the sagittal suture, 1.5 mm-2.5mm 
beneath the cortex), coordinated according to the mouse 
brain atlas [35]. A bipolar stimulation electrode was placed 
in the CA3 region and a monopolar stainless steel recording 
electrode in the CA1 region. Stimulus-response was tested 
using a range of stimulation intensities from 0.1mA to 1 mA 
with 0.2ms 0.03HZ to determine the appropriate stimulat-
ing. The stimulating intensity (range 0.3-0.5 mA, stimulus 
pulse with 0.2 ms, at 0.03 Hz) that could evoke a response of 
70% of its maximum amplitude was chosen for the following 
experiment. 

 The basal field excitatory postsynaptic potentials (fEPSP) 
were recorded for 20 min with a single pulse of 2 times 
every minute. LTP was evoked by theta burst stimulation 
(TBS): 10 trains at 5 Hz consisting of 10 single pulses at 100 
Hz. The f-EPSP was recorded for 60 min with a single pulse 
of 1 time every minute. LTP analysis was carried out in 
ClampFit (Molecular Devices, USA) and figures were con-
structed in KaleidaGraph (Synergy Sofware, Reading, PA, 
USA) using values for the amplitude of the fEPSP. 

2.9. Statistical Analysis 

 Statistical analysis was performed with the Statistical 
Package for the Social Sciences (SPSS) v19.0, and all data 
were presented as Mean±SD. For the repeated measurement 
data (speed and escape latency time), repeated measurement 
analysis of variance (ANOVA) was applied to speed, and 
taking the sample size and normality, Generalized Estimat-
ing Equations analysis was applied to escape latency time; 
for other results, one way analysis of variance was applied 
with post-hoc LSD to data according to normality and ho-
mogeneity variance; or nonparametric test with Kruskal-
Wallis was applied. The threshold for significance was set at 
P<0.05 for all analyses. 
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3. RESULTS 

3.1. OA Improves Spatial Learning and Memory Per-

formance in the MWM Test 

 Swimming paths of rats in each group in the MWM test 
are presented in Fig. (1A). Repeated measurement ANOVA 
results showed that there was no significant difference in the 
average swimming speed in each group（F=0.331, 
P=0.721>0.05) (Fig. 1B). 

3.1.1. Escape Latency 

 In the MWM test, the escape latency was gradually 
shortened during the training period. Based on the General-
ized Estimating Equations analysis, there was significant 
difference among three groups (P = 0.002<0.05), but no inter-
action between groups and time (P = 0.063> 0.05) (Table 1). 
Based on the Estimated Marginal Means, the escape latency 
showed sham operation group < OA group < model group 
(Table 2). Post Pairwise Comparisons using Bonferroni 
method showed that the latency time in model group was 
significantly longer than that in sham operation group 
(P=0.0001<0.05); while it was significantly shorter in the 
OA group than that in model group (P=0.0001<0.05).  

Table 1. Tests model effects. 

- 
Wald Chi-square 

Value 
Variance Sig. 

(Intercept) 333.317 1 0.0001 

Groups 12.827 2 0.002 

Time 190.298 1 0.0001 

Groups×Times 5.523 2 0.063 

 

Table 2. Estimated marginal means of escape latency. 

95% Wald Confidence Interval 
Groups Mean 

Standard 

Error 
Lower Upper 

Sham 13.95 2.03 9.97 17.94 

Model 24.64 2.11 20.51 28.78 

OA 16.89 2.29 12.40 21.37 

 
 

Fig. (1). Results of Morris water maze test(n=15). (A) Swimming paths of rats in each group in the Morris water maze. (B) Average swim-

ming speed of rats in each group. Repeated measurement ANOVA results showed that there was no significant difference of the average 

swimming speed in each group（F=0.331, P = 0.721>0.05) (C) Escape latency time of rats in each group. Post Pairwise Comparisons using 

Bonferroni method showed that the latency time in model group was significantly longer than that in sham operation group 

(P=0.0001<0.05); while it was significantly shorter in the OA group than that in model group (P=0.0001<0.05) (D) platform crossing times 

of rats in each group. Post comparison with LSD method showed that compared with sham group, the times of cross-platform in model group 

significantly decreased (P = 0.007 <0.05); while compared with model group, the times of cross-platform in OA group significantly in-

creased (P = 0.0001 <0.05). 

Notes: *indicates compared with that in the sham operation group, P<0.05; 

#indicates compared with that in the model group, P<0.05. 
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3.1.2. Spatial Probe Test 

 One-way ANOVA analysis showed that there was a sta-
tistically significant difference among three groups (F = 
9.056, P = 0.001 <0.05). Post comparison with LSD method 
showed that compared with sham group, the times of cross-
platform in model group significantly decreased (P = 0.007 
<0.05); while compared with model group, the times of 
cross-platform in OA group significantly increased (P = 
0.0001 <0.05) (Fig. 1D). 

3.2. OA Alleviates Neuron Damage and Synapses 
Changes Induced by Aβ25-35 

 TEM revealed that in the sham operation group, the neu-
rons were intact, with homogeneous nuclei, abundant organ-
elles, oval and full mitochondria, clear and intact double 
layer structure of the cristal membrane, endoplasmic reticu-
lum attached with a large number of ribosomes. The syn-
apses were normal with abundant synaptic vesicles secreted 

by presynaptic elements. The synaptic cleft was narrow, and 
the postsynaptic density was centralized (Fig. 2A-C). 

 In the model group, neurons were not intact, with shrink-

ing nuclei, severe disruption of organelles, rarely normal 

mitochondria in vacuolar state, ruptured endoplasmic reticu-

lum with obvious loss of ribose. The abundance of synaptic 

vesicles secreted by presynaptic elements decreased. The 

synaptic cleft clearly widened, with sparse postsynaptic den-
sity (Fig. 2D-F). 

 In the OA group, structures of neurons were intact on the 

whole, with homogeneous nuclei, abundant organelles, 

slightly swollen mitochondria, partial fusion and fracture of 

cristal membrane, slight loss of ribose of endoplasmic reticu-

lum. Abundant synaptic vesicles secreted by presynaptic 

elements could be observed. The synaptic cleft was clear, 

without obvious widening, and the postsynaptic density was 
centralized (Fig. 2G-I). 

 
 

Fig. (2). Ultrastructure of neurons and synapses (n=3). In the sham operation group: (A, B) the neurons were intact, with homogeneous nu-

clei, abundant organelles, oval and full mitochondria, clear and intact double layer structure of the cristal membrane, endoplasmic reticulum 

attached with a large number of ribosomes (white arrows). (C) the synapses were normal with many synaptic vesicles secreted by presynap-

tic elements. The synaptic cleft was narrow, and the postsynaptic density was centralized (black arrows). In the model group: (D, E) neurons 

were not intact, with shrinking nuclei, severe loss of organelles, rarely normal mitochondria in vacuolar state, ruptured endoplasmic reticu-

lum with obvious loss of ribose (white arrows). (F) the amount of synaptic vesicles secreted by presynaptic elements decreased. The synaptic 

cleft clearly widened, with sparse postsynaptic density (black arrows). In the OA group: (G, H) structures of neurons were intact on the 

whole, with homogeneous nuclei, abundant organelles, slightly swollen mitochondria, partial fusion and fracture of cristal membrane, slight 

loss of ribose of endoplasmic reticulum (white arrows). (I) abundant synaptic vesicles secreted by presynaptic elements could be observed. 

The synaptic cleft was clear, without obvious widening, and the postsynaptic density was centralized (black arrows). 
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Fig. (3). Expression of CaMKII, PKC, NMDAR2B, BDNF, TrkB, and CREB protein (cropped blots from different gels). (A) Compared with 

that in the sham operation group, the expression of CaMKII was significantly lower in the model group (P=0.0001). While compared with 

that in the model group, the expression of CaMKII was significantly higher in the OA group (P=0.0001), and higher than that in sham group 

(P=0.0001); (B) compared with that in the sham operation group, the expression of PKC was significantly lower in the model group 

(P=0.026). While compared with that in the model group, the expression of PKC was significantly higher in the OA group (P=0.036); (C) 

compared with that in the sham operation group, the expression of NMDAR2B was significantly lower in the model group (P=0.001). While 

compared with that in the model group, the expression of NMDAR2B was significantly higher in the OA group (P=0.041), but still signifi-

cantly lower than that in sham group (P=0.018); (D) compared with that in the sham operation group, the expression of BDNF was signifi-

cantly lower in the model group (P=0.0001). While compared with that in the model group, the expression of BDNF was significantly higher 

in the OA group (P=0.0001); (E) compared with that in the sham operation group, the expression of TrkB was significantly lower in the 

model group (P=0.0001). While compared with that in the model group, the expression of TrkB was significantly higher in the OA group 

(P=0.0001), but still significantly lower than that in sham group (P=0.0001); (F) compared with that in the sham operation group, the expres-

sion of CREB was significantly lower in the model group, with statistically significant difference (P=0.0001). While compared with that in 

the model group, the expression of CREB was significantly higher in the OA group, with statistically significant difference (P=0.0001), but 

still significantly lower than that in sham group (P=0.0001). 

Notes:*indicates compared with that in the sham operation group, P<0.05. 

#indicates compared with that in the model group, P<0.05. 

 

3.3. OA could Improve the Expression of CaMKII, PKC, 

NMDAR2B, BDNF, TrkB, and CREB Protein 

 We measured protein levels of CaMKII, PKC, 
NMDAR2B, BDNF, TrkB, and CREB of the three groups. 
One way ANOVA results showed that there existed inter-
group difference (CaMKII, F=1054.102, P=0.0001<0.05; 
PKC, F=5.346, P=0.046<0.05; NMDAR2B, F=16.949, 
P=0.003<0.05; BDNF, F=95.467, P=0.0001<0.05; TrkB, 
F=40049.417, P=0.0001<0.05, CREB, F=196.703, P=0.0001 
<0.05). Post hoc statistics using LSD showed that compared 
with that in the sham operation group, the expression of 
CaMKII (Fig. 3A), PKC (Fig. 3B), NMDAR2B (Fig. 3C), 

BDNF (Fig. 3D), TrkB (Fig. 3E), and CREB (Fig. 3F) were 
significantly lower in the model group, with statistically sig-
nificant difference (P=0.0001, 0.026, 0.001, 0.0001, 0.0001, 
0.0001, respectively). While compared with that in the model 
group, the expression of CaMKII (Fig. 3A), PKC (Fig. 3B), 
NMDAR2B (Fig. 3C), BDNF (Fig. 3D), TrkB (Fig. 3E), and 
CREB (Fig. 3F) were significantly higher in the OA group, 
with statistically significant difference (P=0.0001, 0.036, 
0.041, 0.0001, 0.0001, 0.026, respectively). The levels of 
NR2B, Trkb, and CREB in OA group were still significantly 
lower than that in sham group (P=0.018<0.05, P=0.000 
<0.05, P=0.000<0.05, respectively). The levels of BDNF and 
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PKC in OA group were lower than that in sham group, but 
the difference was not statistically significant (P=0.165> 
0.05, P=0.808>0.05, respectively). The level of CAMKII in 
OA group was higher than sham group, with significant dif-
ference (P=0.000<0.05). 

3.4. OA Could Decrease the Concentration of Ca
2+ 

 Kruskal-Wallis test showed that compared with that in 
the sham operation group, the concentration of Ca

2+
 was 

significantly higher in the model group, with statistically 
significant difference (P=0.0001). While compared with that 
in the model group, the concentration of Ca

2+
 was signifi-

cantly lower in the OA group, with statistically significant 
difference (P=0.015) (Table 3). 

 

Table 3. Ca
2+ 

concentration of each group (Mean±SD). 

Group n Rhod-2 Fluorescence 

Sham operation 3 0.96±0.09 

Model 3 1.68±0.18* 

OA 3 1.11±0.42# 

Notes: *indicates compared with that in the sham operation group, P<0.05. 
#indicates compared with that in the model group, P<0.05 

3.5. OA Could Increase the Slope and Amplitude of  

f-EPSP 

 In the LTP assay, the stimulation electrode (SE) was 
placed in the CA3 region and the recording electrode (RE) in 
the CA1 region (Fig. 4A). Following the TBS stimulation 
(Fig. 4B), the fEPSPs slopes were recorded. Kruskal-Wallis 
test showed that the slope rate significantly decreased after 
high frequency stimulation in the model group compared 
with that in the sham operation group (P=0.0001). While 
compared with model group, the slope rate significantly in-
creased after high frequency stimulation in the OA group 
(P=0.0001) (Fig. 4C). 

 Kruskal-Wallis test showed that the amplitude signifi-
cantly decreased after high frequency stimulation in the 
model group compared with that in the sham operation group 
(P=0.0001). While compared with model group, the ampli-
tude significantly increased after high frequency stimulation 
in the OA group (P=0.0001) (Fig. 4D). 

4. DISCUSSION 

 AD is the most common form of dementia in the elderly, 
and it is characterized clinically by progressive cognitive 
impairment, memory loss, and altered behavior [39-41]. Sev-
eral hypotheses have been proposed, and it is widely ac-
cepted that Aβ plays a central role [42, 43]. In our study, we 

 
 

Fig. (4). OA rescues Aβ-induced deficits in long-term potentiation (n=3). (A) Position of stimulation electrode (SE) and recording electrode 

(RE); (B) 1: potential of resting state; 2: 60 min after TBS; 3: combination of (1) and (2) in each group; (C) slope change in each group. 

Kruskal-Wallis test showed that the slope rate significantly decreased after high frequency stimulation in the model group compared with 

that in the sham operation group (P = 0.0001). While compared with model group, the amplitude significantly increased after high frequency 

stimulation in the OA group (P=0.0001) (D) amplitude change in each group. Kruskal-Wallis test showed that the amplitude significantly 

decreased after high frequency stimulation in the model group compared with that in the sham operation group (P=0.0001). While compared 

with model group, the amplitude significantly increased after high frequency stimulation in the OA group (P=0.0001) 
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build the AD model by injecting Aβ25-35 aggregate into right 
ventricle, which is a widely used model to study AD [44, 
45]. It has been reported that Aβ injection would cause 
memory impairment [46, 47], and the results in our study 
that the escape latency increased and the frequency of plat-
form crossing decreased in MWM test of rats in model group 
also proved that. While the lower escape latency and higher 
frequency of platform crossing in OA group represent that 
OA could ameliorate Aβ-induced spatial learning and mem-
ory loss of AD rats.  

 It is widely accepted that the synapses play an important 
role in the formation of memory [48-50]. In the nervous sys-
tem, synapses are esseential to neuronal functions:a synapse 
is a structure where a neuron could pass an electrical or 
chemical signal to another neuron. Evidences show that syn-
apse loss or synaptic dysfunction is strongly correlated with 
memory impairment in AD, suggesting a causal role for 
dwindling synaptic integrity in the etiology of AD [51, 52]. 
Synapse is formed by presynaptic axon ending and by post-
synaptic dendritic spine, and a similar loss of both pre-
synaptic and post-synaptic components [53] as well as sig-
nificant decreases in synaptic density of the hippocampus 
could occur in AD brains [54-56]. Synapse loss, suppressed 
presynaptic vesicle release [57, 58], and changes in the shape 
and size of dendritic spines [59] caused by Aβ deposition are 
the pathological hallmarks of AD, which was also found in 
our rats of model group by TEM. Our research showed that 
OA exhibited a positive effect on preserving neuron injury, 
improving the arrangements and the ultrastructure of neu-
rons, and maintaining synaptic integrity, which suggested a 
protection and improvement of memory of AD rats. 

 Change in pre-synaptic and post-synaptic components by 
a high local concentration of Aβ oligomers could affect neu-
ronal Ca

2+
 homeostasis [60], which is a popular hypothesis of 

AD in recent years [61, 62]. The imbalance of Ca
2+

 homeo-
stasis leading to extracellular Ca

2+
 flow into the cytoplasm, 

could cause Ca
2+

 overload. A persistent elevation of Ca
2+

 
concentration could not only constantly disrupt memories but 
also contribute to neuronal cell death. Furthermore, it actu-
ally occurs prior to cognitive decline and extensive neuronal 
death in AD [63]. In our study, the injection of Aβ25-35 led to 
synaptic Ca

2+
 overload in model group, then causing neuro-

toxicity; while OA could effectively reduce synaptic Ca
2+

 
concentration, and exhibited the role of neuroprotection to 
improve learning and memory deficit. 

 Meanwhile, both pre-synaptic and post-synaptic mecha-
nisms can contribute to the expression of synaptic plasticity, 
one of the important neurochemical foundations of learning 
and memory [64, 65]. Presynaptic vesicle could release neu-
rotransmitters which are directly proportional to synaptic 
transmission strength. There are a lot of proteins such as  
N-methyl-Daspartate receptor (NMDARs), calmodulin-
dependent-protein kinase II (CaMKII), and protein kinase C 
(PKC) in postsynaptic density (PSD), and the destruction of 
PSD could inactivate synaptic proteins, influence synaptic 
homeostasis, leading to negative synaptic formation and syn-
aptic loss and dysfunction in AD [66, 67]. NMDAR, CaM-
KII, and PKC in PSD play essential roles in synaptic plastic-
ity. The accumulated evidences demonstrated NMDAR was 
dysfunctional, and the protein activation of CaMKII and 

PKC was suppressed in AD. In our study, NMDAR2B, 
CaMKII and PKC protein expression, all significantly de-
creased in model group. We also found that OA could in-
crease the NMDAR2B, CaMKII and PKC protein expres-
sion, to restore and maintain synaptic plasticity.  

 Long-term potentiation (LTP), a main form of long-term 
synaptic plasticity, is an increase in synaptic response fol-
lowing potentiating pulses of electrical stimuli, and the in-
duction and maintenance of it could reflect the strength of 
synaptic transmission efficiency, which was widely consid-
ered as one of the major cellular mechanisms underlying 
learning and memory [68-70]. It has been reported that LTP 
of hippocampal CA1 area was significantly inhibited in Aβ25-

35 induced learning-and-memory-impairment rats [71]. 
Moreover, when the way to form LTP was blocked, learning 
and memory would be inhibited, suggesting that the cogni-
tive decline in individuals with AD might result from im-
paired LTP [72, 73]. In our study, the slope and amplitude of 
fEPSP were taken as reference values for LTP (fEPSP to 
reflect the amount of excitatory synapse, slope to reflect the 
speed of synaptic response to stimuli, and amplitude to the 
intensity of synaptic stimulation). Before TBS, the amplitude 
and slope of fEPSP in the model group and sham operation 
group were consistent; while after TBS, the amplitude and 
slope of fEPSP in the model group were significantly lower 
than those in the sham operation group, suggesting that Aβ25-

35 does not affect the basic function of synaptic transmission, 
but it inhibits TBS induced LTP. Our results also showed 
that OA could increase the amplitude and slope of fEPSP in 
AD models, indicating it could enhance the synaptic trans-
mission.  

 In the maintenance and induction of LTP, brain-derived 
neurotrophic factor (BDNF), as a major regulator of synaptic 
structure and function, through tyrosine kinase B (TrkB) 
plays an essential role [74, 75], and reduced BDNF/TrkB 
leads to impaired spatial memory in AD. The increased 
BDNF/TrkB expression could activate Cyclic AMP response 
element binding protein (CREB), a constitutively expressed 
nuclear transcription factor that regulates the expression of 
genes involved in cognition and neuronal survival [76]. 
CREB shows a well-documented role in the formation and 
retention of memory by mediating gene expression in the 
hippocampus during LTP [77, 78]. CREB down-regulation is 
implicated in AD and increasing the expression of CREB is 
being considered as a possible therapeutic target for AD [79]. 
In our study, the expression of BDNF, TrkB, CREB proteins 
were all significantly suppressed in model group, while OA 
showed an up-regulating effect on them to enhance LTP.  

CONCLUSION 

 In conclusions, we found that OA could ameliorate Aβ-
induced memory loss of AD rats, which has never been re-
ported before. And during the treatment, OA showed a pro-
tective effect in maintaining synaptic integrity to restore syn-
aptic plasticity by increasing the NMDAR2B, CaMKII and 
PKC protein expression in PSD, reducing synaptic Ca

2+
 con-

centration, enhancing the inhibited LTP after Aβ25-35 injec-
tion by up-regulating the expression of BDNF, TrkB, CREB 
proteins, which might be its mechanism in improving learn-
ing and memory deficit.  
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LIST OF ABBREVIATIONS 

AD = Alzheimer’s Disease 

Aβ = Amyloid β 

OA = Oleanolic Acid 

MWM = Morris Water Maze 

fEPSP = Field Excitatory Postsynaptic Potentials 

TBS = Theta Burst Stimulation 
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