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Disentangling conical intersection and coherent
molecular dynamics in methyl bromide with
attosecond transient absorption spectroscopy
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Attosecond probing of core-level electronic transitions provides a sensitive tool for studying
valence molecular dynamics with atomic, state, and charge specificity. In this report, we
employ attosecond transient absorption spectroscopy to follow the valence dynamics of
strong-field initiated processes in methyl bromide. By probing the 3d core-to-valence tran-
sition, we resolve the strong field excitation and ensuing fragmentation of the neutral ¢*
excited states of methyl bromide. The results provide a clear signature of the non-adiabatic
passage of the excited state wavepacket through a conical intersection. We additionally
observe competing, strong field initiated processes arising in both the ground state and
jonized molecule corresponding to vibrational and spin-orbit motion, respectively. The
demonstrated ability to resolve simultaneous dynamics with few-femtosecond resolution
presents a clear path forward in the implementation of attosecond XUV spectroscopy as a
general tool for probing competing and complex molecular phenomena with unmatched
temporal resolution.
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hoto-initiated dynamics in the valence shells of molecules

form the basis for understanding molecular photophysics.

These valence dynamics typically follow a geometric reac-
tion coordinate in an excited molecular state. The timescale for
such interatomic, or nuclear, motion occurs within the multi-
femtosecond time domain (>1fs)!. As a result, femtosecond
spectroscopy has become a well-established technique to probe a
range of fundamental molecular dynamics, including light har-
vesting in photosynthetic compounds®? and photocatalytic
charge transfer reactions*. Femtosecond spectroscopy has also
been applied to study the regime where the nuclear dynamics
become coupled with the electronic degrees of freedom within a
molecule, leading to non-adiabatic transitions between different
electronic states mediated by multi-dimensional conical inter-
sections®~. However, excited-state molecular dynamics can often
be quite intricate, involving numerous non-adiabatic transitions.
This complexity cannot always be captured with coarse femto-
second time resolution. Therefore, to resolve unambiguously the
complete evolution of molecular excited state wavepackets, even
finer temporal resolution is required.

Isolated attosecond, extreme ultraviolet (XUV) pulses gener-
ated through the process of high harmonic generation (HHG)!0
provide the perfect tool for investigating such short time photo-
chemical dynamics. The use of isolated attosecond pulses over the
past decade has helped to resolve non-adiabatic dynamics in both
ionic!1:12 and highly-excited neutral!®> molecules with unprece-
dented time resolution. In addition, the temporal resolution
provided by these pulses has enabled the study of electron motion
in atomic!415, molecular!®17, and solid-state!®1° systems.

In this report, we use attosecond transient absorption spec-
troscopy (ATAS) to probe the neutral excited state dynamics of
methyl bromide (CH;Br) with few-femtosecond temporal reso-
lution. Numerous previous studies have investigated the velocity
distributions of photofragments generated upon ultraviolet exci-
tation and dissociation from the o* excited A-band of
CH;Br20-22, These energy-resolved studies have found that a
conical intersection between the *Q,. and 1Q states gives rise to
a non-adiabatic transition probability of ~15-30% from the >Q-.
However, no study has directly probed these non-adiabatic
dynamics in real time for CH;Br.

To resolve these neutral excited-state dynamics with ATAS, a
few-femtosecond near infrared (NIR) pump pulse is used to
initiate a valence excited-state wavepacket in the molecule, in this
case via strong field excitation. The resulting dynamics are
probed using a time-delayed attosecond, XUV pulse resonant
with the Br Mys core-to-valence transitions, leading to the
absorption of XUV photons. These core level absorption edges
exhibit element, charge, and state specificity and can therefore
disentangle intricate, non-adiabatic dynamics. Utilizing this
scheme, we resolve the complete evolution of the excited-state
wavepacket, from the initial excitation to the ensuing fragmen-
tation. Due to the exquisite time resolution provided by ATAS,
the results provide a signature of a non-adiabatic passage
through a conical intersection, verified by molecular wavepacket
propagation simulations. In addition, we simultaneously probe
competing dynamics initiated by the strong field excitation pulse,
including the creation and evolution of a ground-state vibra-
tional wavepacket and the coherent motion of a spin-orbit
wavepacket in the ionized parent molecule. The ability to
simultaneously resolve competing molecular dynamics with
attosecond time resolution demonstrates the potential of this
unique spectroscopic technique.

Results
Probing strong field processes near the Br M, 5-edge. To initiate
and observe the strong-field valence processes in CH;Br, we use

the pump-probe scheme depicted in Fig. 1. A 4fs, carrier-
envelope phase stable NIR field is focused into a gas cell with a 2
mm path length and filled with 10 torr of CH;Br. The valence
molecular orbital configuration of CH;Br is given by (a;)%(e)*.
The intensity reached by the NIR field, I= 1.5 x 1014 W/cm?, is
sufficient to distort the molecular potential, leading to strong field
ionization of the valence (e) electron. While the NIR intensity is
well into the tunneling regime, ionization is not the only process
that can occur. Some neutral population can survive the intense
NIR field, resulting in an excited electronic (process 1 in Fig. 1)
and vibrational population (process 2). Direct tunnel ionization
of the valence electron will result in the population of the two
spin-orbit split ground states in the molecular ion, (e, /2)71)~(ZE3 /2

and (61/2)_15(2E1/2 (process 3).

To probe the transient state of the CH;Br population, we tune
an isolated attosecond XUV pulse?? to the M,s edge of Br
corresponding to the excitation of the Br 3d electron. Since the
binding energy of the Br 3d electron in CH;Br is 76.4 eV?4, the
pre-edge corresponding to core-to-valence transitions is accessed
in the energy range of 60-75 eV. A transient absorption spectrum
is collected by referencing the My s transitions with and without
the NIR-pump pulse. The quantity recorded corresponds to a
change in optical density, or AO.D.= —In[Ixyvinr(E1)/
Ixuv(E)], where Ixyy(E) is the attosecond pulse spectrum
transmitted through the CH3Br gas cell, Ixyv nmr(E7) is the
transmitted attosecond pulse spectrum in the presence of the NIR
pump pulse, E is the XUV energy, and 7 is the time delay between
the NIR-pump and XUV-probe pulses. The transient absorption
spectrum recorded at 7= 50 fs is shown on the right side of Fig. 1
along with the spectrum, Iyyv(E), of the isolated attosecond pulse
(inset) used in the experiment.

Three main features are observed in the transient absorption
spectrum corresponding to each of the strong-field initiated
processes mentioned above. The lowest energy band below 65 eV
(process 1) comprises a set of absorption lines arising from the
excitation of a 3d electron to fill a valence hole in the o* excited
neutral molecule. At the highest energy (process 2), we observe a
broad negative absorption peak around 71 eV corresponding to
the excitation of the 3d electrons to fill the lowest unoccupied
molecular orbital (LUMO). The absorption occurs in the ground
state of the molecule and is negative due to depletion of the
ground state by the strong NIR field resulting in decreased
absorption. The middle absorption band (process 3) is composed
of a set of three absorption lines corresponding to the excitation
of the 3d electron to fill the valence hole in the ionic ground state
of CH;Br™.

To probe how these strong-field initiated processes evolve over
time, we record the transient absorption spectrum as a function of
time delay between the NIR-pump and XUV-probe fields. The
resulting experimental ATAS trace is shown in Fig. 2a for a NIR
pump intensity of I'=1.5x 104 W/cm?2, revealing rich time
dependence in each absorption band. Further, the instrumental
response time of the excited neutral absorption feature is
measured to be 2.0 £ 0.2 fs [Fig. 2b], demonstrating the exquisite
temporal resolution provided by the strong field, ATAS pump-
probe experiment.

Process 1: Passage through a conical intersection. The energetic
location of the absorption features we label as process 1 are delay
dependent, converging to asymptotic values at large time delays,
as shown in Fig. 3a. The asymptotic location of these absorption
features arise from M,; transitions in atomic Br at 65.0eV
[Br* (P1/2 — D3/2)], 64.4eV [Br (Pg,/z — D5/2)]25, and 64.1eV
[Br* (Py; — Dsp)], implying that molecular dissociation has
taken place. While the transition at 64.1eV is strictly dipole
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Fig. 1 Attosecond Transient Absorption Spectroscopy (ATAS) Pump-Probe Scheme in CH3Br. A 4 fs NIR pulse with an intensity of / =1.5 x 1014 W/cm? is
used to launch multiple valence wavepackets in CH3Br, including (1) a neutral excited-state wavepacket, (2) a ground-state vibrational wavepacket, and (3)
an ionic spin-orbit coupled wavepacket. The evolution of these wavepackets are probed using ATAS to follow the delay-dependent M, 5 transition of Br,
corresponding to the excitation of the Br 3d electron to various valence orbitals. The right-hand plot presents the transient absorption spectrum of CHsBr at
a delay between the NIR-pump field and XUV-probe field of =50 fs. The spectroscopic signatures for each wavepacket can clearly be observed from this
transient absorption plot. The isolated attosecond XUV spectrum is plotted in the inset as a reference
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Fig. 2 Experimental Attosecond Transient Absorption Spectroscopy (ATAS). a The delay-dependent ATAS trace labeling the time-dependent
spectroscopic signatures for each valence wavepacket process listed in Fig. 1 [i.e., (1) a neutral excited-state wavepacket, (2) a ground-state vibrational
wavepacket, and (3) an ionic spin-orbit coupled wavepacket]. b An energetic sum over process 1 (experimental sum over 62.5-65.2 eV, black curve),
corresponding to the neutral excited state wavepacket, yields a corresponding instrumental response time of 2.0 £ 0.2 fs (red-dashed curve, corresponding

fit). The shaded curve represents the measured uncertainty in A O.D

forbidden in the atomic limit due to spin-orbit selection rules, in
the molecule, the Br atom can couple to an unpaired electron in
the methyl group, lifting the transition restriction. Based on the
location of the absorption lines at time zero, these atomic features
are assigned to fragmentation from the neutral excited A-band of
CH;Br corresponding to the excitation of a valence electron into
a 0* molecular orbital.

From previous studies??-2, it is known that the excited state
spectrum of CH;Br is primarily composed of three states: 3Q,,
1Q,, and 3Qy-. The 3Q, and 'Q, states correlate to the Br (Ps,)
atomic limit while the >Q,. state correlates to the Br*(P,,) limit.
The potential energy curves for these states are plotted in Fig. 3b.
As can be seen, a conical intersection exists between the 1Q; and
3Q,- states, which can lead to non-adiabatic population transfer
between the two states during dissociation. Previous reports have
used energy-resolved photofragments to measure both the direct

(via direct dissociation) and indirect (via non-adiabatic transi-
tions) yield of Br/Br* upon photodissociation of these A-band
states. The experimental reports estimated a non-adiabatic
transition probability between Q. to 1Q;, ranging from 0.14
to 0.3820, 0.1721, and 0.29422. The remaining photofragment yield
is expected to arise from direct dissociation of the 1Q; and *Q,.
to the Br and Br* atomic limits, respectively. As a result, in the red
wing of the excitation spectrum, the two states have fairly equal
excitation probabilities resulting in an equal branching ratio
between Br and Br*. While in the blue wing of the excitation
spectrum, the excitation is dominated by 1Q; resulting in a
primary Br yield2°.

However, it is apparent from Fig. 3a that fragmentation into the
Br* atomic limit dominates the dissociation dynamics in the
present experiment, with very little population present in the Br
atomic limit. In addition, within the experimental signal-to-noise

NATURE COMMUNICATIONS | (2019)10:3133 | https://doi.org/10.1038/s41467-019-10789-7 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

65.0

64.5

Br (P, — Dj)5)

64.0 Br* (P, = D))

Energy (eV)

63.5

63.0
0 40 80 120
Delay (fs)

(1]

65.0

64.5

64.0

Energy (eV)

63.5

Bifurcation

63.0

Delay (fs)

CHg + Br (Pg,)

T I T I T I
2.0 25 3.0 3.5 4.0 4.5

RC-Br (A)

Fig. 3 Neutral excited state dynamics in CH3Br. a Attosecond transient absorption spectroscopy (ATAS) trace corresponding to the neutral excited state
dynamics composing process 1. An additional transition, Br (P3,, — D3/,) (65.4eV), is predicted to be present, however is obscured in the present
experiment due to the ionic absorption features above 65 eV (see Supplementary Note 1 and Supplementary Fig. 2). b A collection of ground, excited, and
Rydberg state potential energy curves for CHsBr (computation described in Supplementary Note 3). The bold color curves represent the primary states that
compose the excited state band. A conical intersection exists between the 1Q; and 3Q,. excited states that can lead to non-adiabatic population transfer
between the two dissociation pathways converging to Br and Br*. ¢ Simulated ATAS dynamics for neutral excited states in CH3Br. From the results of the
simulation, we find that the ATAS dynamics are dominated by the 3Q,. state, resulting in a dominant Br* atomic yield. A signature of the non-adiabatic
transition can be seen as the emergence of Br population at greater time delays in a, ¢

ratio (SNR), only a single pair of spin-orbit, excited state
absorption features is observed at the moment of neutral
excitation. This suggests that the *Q,. state dictates the excitation
dynamics. We therefore simulate the wavepacket dynamics
assuming primary excitation to the *Q,- valence excited state
and calculate the M, 5 transitions at each time delay in order to
reconstruct a simulated ATAS spectrogram. Details of the
theoretical calculations, including the construction of a quasi-
diabatic Hamiltonian of the system, quantum nonadiabatic
dynamics simulations, and the simulation of ATAS trace are
available in Supplementary Note 3. The simulated ATAS trace of
the 2Q,+ excitation is presented in Fig. 3¢, in good qualitative
agreement with the experimental trace in Fig. 3a outside of the
pump-probe overlap region. Within the overlap region, additional
strong field effects should lead to Stark shifts in the absorption
features which are not included in the present simulation.

From the simulated wavepacket dynamics(see Supplementary
Note 3 and Supplementary Fig. 6) we find that ~20% of the >Q,.
state undergoes a non-adiabatic transition through the conical
intersection into the 1Q; state. The non-adiabatic transition leads
to wavepacket bifurcation, resulting in a weak fragmentation into
the Br atomic limit. This bifurcation is readily observed in the
simulated ATAS spectrogram as a splitting in the molecular
absorption feature into the different spin-orbit atomic limits at a
time delay of 16 fs. Experimentally, we observe the growth of Br
population at later time delays, providing a signature for the non-
adiabatic population created by the conical intersection. However,
due to the congestion of multiple line centers at early time delays
and limited signal-to-noise, it is difficult to directly observe the
bifurcation time experimentally. This quantity can be experi-
mentally measured by subtracting out the two most prominent
Br* transitions in the data and measuring the rise of Br yield (see

Supplementary Note 1 and Supplementary Fig. 3). Such an
analysis yields a bifurcation time of 7, =15.0+0.4fs, in near
agreement with the simulated result. Further, this measured
bifurcation time is also in remarkable agreement with bifurcation
time of 13 fs measured by Corrales et al.? for the same excited
states probed in a different methyl halide molecule, CH;I. While
contributions from the excitation and direct dissociation of the
1Q, state cannot be unambiguously ruled out in the Br atomic
yield, the remarkable agreement with the simulated dynamics and
prior work strongly suggests that the wavepacket dynamics are
directly associated with the presence of the conical intersection.
Further experiments with increased energy resolution and better
SNR should prove to be illuminating in directly resolving these
weak non-adiabatic transitions in the time domain without post-
processing.

The contrasting excitation behavior in the present experiment
is suspected to arise due to a strong field depletion mechanism,
characterized by a Keldysh parameter of y = 0.8. It is known from
previous strong field ionization experiments?’ that CH;Br is
preferentially ionized perpendicular to the C-Br axis. Therefore,
excitation to both the Rydberg and ionization continuum
dominate perpendicular transitions and greatly deplete the
population available for excited states prepared perpendicular to
the molecular axis, i.e. the 3Q; and 1Q, states. However, the
parallel transition to >Q; is largely unaffected by this strong field
depletion mechanism. Further, we find that the calculated M, 5
transitions in the Rydberg states (arising from perpendicular
excitations) are substantially weaker than in the *Q,. state.
Therefore, the *Q,. state is the most visible state dictating the
neutral excited state dynamics in the ATAS experiment.

Finally, it is important to note that the energy dependence of
these neutral features is not a direct measure of the excited state
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Fig. 4 Ground State Vibrational Wavepacket in CH3Br. a Zoom into the portion of the attosecond transient absorption trace depicting the ground-state
vibrational wavepacket from process 2. A clear center-of-energy oscillation is visible in the transient absorption spectrum (vibrational period of T=53.9 =
0.2fs) due to the wavepacket motion of the Rc_g, bond. b Qualitative picture demonstrating how the time dependence of the Rc_g, bond can trace out

different My 5 transition energies

dynamics. Instead it is a measure of the slight differences in
potential energies between the initial and final states in the core-
to-valence transitions. From the simulation we find that the
transient change in absorption energy observed within the first
40fs of the experiment actually arises due to a potential well
located in the core-excited state potential energy surface.
However, the intensity of the neutral absorption features can
serve as a direct measurement of the excited state dynamics. Since
the spin-orbit transition at 64.1eV is forbidden in the atomic
limit, the intensity of this band provides a model-independent
measurement of the photo-dissociation time of the *Q,. state,
which we measure to be 7= 68 £ 3 fs (see Supplementary Note 1
and Supplementary Fig. 4). This number falls within the
dissociation time upper limit previously estimated by Gougousi
et al.20 to be Tyr = 120 + 40 fs.

Process 2: Ground state vibrational dynamics. Next, we con-
sider the absorption feature representing process 2 in Figs. 1 and
2. An enlarged view of the transient absorption trace focusing on
process 2 is shown in Fig. 4a. The negative absorption peaks
depict a clear center-of-energy oscillation as a function of time
delay, with an oscillation period of T=153.9+0.2 fs. This oscil-
lation period agrees well with the C-Br vibrational period?? in the
neutral ground state of CH3;Br (54.6fs, or 611cm~!, corre-
sponding to the v; vibrational eigenmode), suggesting that these
dynamics arise due to a ground state vibrational wavepacket. A
coherent superposition between several v; vibrational levels in the
CH;Br ground state will result in a time-dependent C-Br bond
length, or Rc_p(f). Since the absorption peaks in Process 2 cor-
respond to an excitation to the final state (3d)~1(¢*) exhibiting
repulsive character with respect to Rc_g,, the non-stationary bond
length will trace out different M, s absorption energies as a
function of time delay, as displayed in Fig. 4b. Therefore, these
energetic shifts in the ground state absorption features sensitively
portray vibrational structure and motion in the electronic ground
state.

A ground state vibrational wavepacket can be prepared
through a few possible strong-field mechanisms, including both
thermal (e.g, Lochfraff?’) and non-thermal (e.g, bond-
softening®® and stimulated Raman) mechanisms. Due to the
low thermal population in the excited v; vibrational states and the
measured excitation phase of the wavepacket, ¢ = (0.52 +0.02)7
(sine wave), the wavepacket is most likely prepared by a non-

thermal process such as the bond-softening mechanism detailed
by Wei et al.30 (more detail in Supplementary Note 2).

Process 3: Coherent spin-orbit wavepacket in CH3;Brt. As
mentioned above, the absorption lines attributed to process 3
arise due to tunnel ionization of neutral CH;Br. The process of
tunnel ionization is capable of preparing a mixed state composed
of multiple ionic states'431:32, Here, we ionize to the pair of spin-
orbit states in the ground state configuration of the molecular ion,
resulting in the three transitions: L1, (e3,) ™1 — (3ds/2) 7! (65.6
eV); L2, (e12) 71 — (3ds2) 7! (66.2€V); L3, (e32) "1 — (3dsy) !
(66.6 eV). While ligand field splittings can give rise to additional
sub-peaks in these absorption features33, they are not discernible
in the present experiment. Gaussian fits to the L1 (red), L2
(orange), and L3 (green) absorption spectra are shown in Fig. 5a.
Previous reports have demonstrated that a mixed state prepared
by tunnel ionization can exhibit a measurable degree of coherence
in atomic systems when the ionizing field fulfills one of two
conditions!434: (i) the pulse duration of the ionizing field is less
than the electronic period of the mixed state, Ty, =2mh/E;,,
where Ej, is the energy splitting between the two levels com-
posing the mixed state’* or (ii) E,, overlaps with a harmonic of
the ionizing field frequency®. The energy level splitting of the
ionic spin-orbit split states in CH3Br is E;, =320 meV corre-
sponding to a period of T, =129 fs. Since the driving pulse
duration in the present experiment is well below T7,, the gen-
eration of a coherent spin-orbit wavepacket in the molecular ion
is readily feasible. Further, provided that excitation of this
coherent pair of spin-orbit ionic states arrives in the same final
core-hole excited state upon XUV excitation [i.e., (3d5,)"1], a
modulation of the XUV transition probability will reveal the
wavepacket dynamics.

The linewidth of each individual spin-orbit absorption feature
is measured to be approximately 450 meV, leading to spectral
blurring of the absorption lines. This makes the direct observation
of a spin-orbit oscillation difficult to monitor. Therefore, in order
to measure the spin-orbit wavepacket, a sum is performed over
the L1, L2, and L3 ionic transitions in CH;Br in Fig. 2a as a
function of strong field pump, attosecond-probe time delay. The
coherent spin-orbit wavepacket is defined by an off-diagonal,
complex coherence term in the ion density matrix. This
coherence term is imprinted on a complex lineshape function
giving rise to both an absorptive and dispersive lineshape

| (2019)10:3133 | https://doi.org/10.1038/s41467-019-10789-7 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a
0.10
c
o =
&84 1
22
S g
,QE) 5 0.05
23
s & ]
'_
0.00
T T T T T
64 65 66 67 68

Energy (eV)

o

lonic absorption

0.040 T —
a E5 “
Q 0.035 - S bl
° 200 400 600
ko] Energy (meV)
= i
E‘ 0.030 4
" l

0.025 : T T

0 1 40 80 120

Fig. 5 Observation of a Spin-Orbit Electronic Wavepacket in CH3Brt. a Spectral line out of the attosecond transient absorption trace depicting the
composition of the CH3Br ionic absorption profiles corresponding to process 3. This absorption profile is composed of three spin-orbit transitions labeled as
L1 (red), L2 (orange), and L3 (green) in the manuscript. b By summing over the three spin-orbit transitions, we can uniquely measure the spin-orbit
wavepacket dynamics generated by the strong field ionization process. The shaded curve represents the measured uncertainty in A O.D. A Fourier analysis
of these dynamics (inset) clearly illustrates a spin-orbit wavepacket with a frequency of 325+ 2 meV, corresponding to a period of 12.7 fs. The qualitative
picture for this process is presented by the electron hole density screen shots for CHsBrt depicted below b, corresponding to the oscillation in electron

hole density between p, and p, character about the C-Br axis

exhibiting contrasting dynamics with respect to the coherence
term3®, As a result, the absorptive term (on-resonance) for a
contrasting pair of spin-orbit transitions oscillates in phase while
the dispersive term (off-resonance) oscillates out of phase. By
summing over all spin-orbit transitions, the in-phase contribu-
tions of the absorption features are coherently averaged to reveal
the spin-orbit wavepacket dynamics shown in Fig. 5b. This sum
exhibits a pronounced oscillation corresponding to a beating
frequency of 325+ meV, in good agreement with the predicted
spin-orbit splitting of CH;3Br". The qualitative picture for the
electron hole dynamics in such a spin-orbit wavepacket is shown
below Fig. 5b, corresponding to the oscillation in electron
hole density between p, and p,, character about the Br atom (i.e.,
e32 and ey).

Discussion

We have demonstrated the utility of ATAS in probing non-
adiabatic transitions arising due to a conical intersection during
the photo-fragmentation of excited CH;Br. The superb resolution
provided by the strong field excitation and attosecond probe is
essential for resolving these weak non-adiabatic signatures. Future
experiments with increased spectral resolution and SNR should
prove to be illuminating for directly probing the bifurcation of an
excited-state wavepacket due to these non-adiabatic intersections.
In addition, we resolved competing strong field initiated
dynamics giving rise to coherent vibrational and electronic
motion in both the neutral and molecular ion respectively. The
ability to simultaneously probe these disparate and intricate
molecular dynamics reflects the potential of ATAS as a general
tool to resolve valence reactions in a host of interesting chemical
and bio-chemical systems, with timescales ranging from attose-
conds to nanoseconds. Finally, the extension of this technique to
the soft X-ray regime3’-3° should allow the simultaneous probing
of oxygen, nitrogen, and carbon edges, resulting in unprecedented
ultrafast studies of organic matter at the attosecond timescale.

Methods

Experimental set-up. The experimental set-up for the generation of a few-cycle,
NIR pump pulse and the isolation of an XUV, attosecond probe pulse is detailed in
ref. 23, Briefly, femtosecond pulses are generated from a carrier-envelope phase
(CEP) stable Ti:Sapphire oscillator and amplified to a pulse energy of 2 m]J at 1 kHz.

6

The CEP is stabilized to ~100 mrad within the amplifier at a pulse duration of 27 fs.
The CEP-stable pulses undergo nonlinear, spectral broadening within a Ne-filled
stretched hollow-core fiber and are then compressed using both a set of broadband
chirped, multi-layer mirrors to compensate for the second-order dispersion and a
1 mm thick ammonium dihydrogen phosphide (ADP) crystal to compensate for

the third-order dispersion after non-linear broadening, yielding a compressed pulse
duration <4 fs.

For the pump-probe experiment, the few-cycle pulses are divided into a pump
and probe arm using a 50:50 beamsplitter. The NIR-pump pulse travels through a
delay stage and is focused into a 2 mm path length gas cell filled with 10 torr of
CH;Br. The NIR beam is focused to a beam radius of w, =70 pm, resulting in a
peak intensity of I =1.5 x 104 W/cm?, sufficient to launch multiple strong-field
initiated dynamics. The XUV-probe pulse is generated by focusing the few-cycle
NIR pulse in the probe arm into a 2 mm path length gas cell backed with ~30 torr
of Ar. Through the process of HHG, the NIR light is up-converted into higher-
order harmonics in the XUV energy regime. Single attosecond pulses are isolated
from the XUV spectrum by employing the amplitude gating technique beyond the
Cooper minimum of Ar?. The residual NIR light is filtered out of the probe arm
with a 200 nm thick Al filter. A toroidal mirror is then used to focus the isolated
attosecond pulse into the CH;Br gas cell where it probes the excited state molecular
ensemble. The delay between the NIR-pump and XUV-probe arms is actively
stabilized to <100 as using an in-line interferometer at 405 nm. Finally, the pump
NIR field is removed from the beam path after the CH;Br gas cell using a second
200 nm thick Al filter. The attosecond pulse spectrum is spectrally dispersed with a
gold coated, XUV grating and measured with an X-ray camera. A beam shutter is
programmed to block the NIR pump arm every other shot in order to reference the
CH;Br XUV absorption spectrum with and without the NIR pump pulse and
measure the change in optical density, AO.D.

The average single-shot, standard deviation in AO.D. across the ATAS
spectrum (60-72 eV) is 0o p, = 0.07, in good agreement with the uncertainty of
0op. = V2(AI/I) = 0.07 calculated from the 5% fluctuation experimentally
measured in the XUV amplitude. Therefore, in order to reduce the uncertainty, the
transient absorption spectrum is averaged over 200 frames, resulting in an average
standard deviation of oo p = 0.005. However, this still accounts for a significant
fraction of the transient absorption amplitude in the neutral excited state portion of
the spectrum. One of the major sources of noise in the present experiment is the
CEP instability of the few-cycle NIR pulses, which can give rise to (i) center-of-
energy jitter and (ii) amplitude fluctuations in the isolated attosecond pulse
spectrum. This CEP noise will translate into both a (i) linear and (ii) DC
background in the transient absorption spectrum, respectively. To remove the
contribution of this CEP noise, a linear background is subtracted from the transient
absorption spectrum at each time delay between two spectral points that are
expected to exhibit zero absorption signal, specifically 62 and 67.4 eV. An example
of this analysis is presented in Supplementary Fig. 1 comparing the raw transient
absorption spectrogram against the transient absorption spectrogram after the
linear subtraction.

Simulation details. The potential energy surfaces for valence and Rydberg states of
neutral CH;Br were calculated using State-Averaged Complete Active Space Self-
Consistent Field (SA-CASSCF) theory using Molpro*’(see Supplementary Note 3
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and Supplementary Fig. 5). The active space consisted of Br p lone pair orbitals,
C-Br ¢ bonding and antibonding orbitals and the 5 s Rydberg orbital. The aug-cc-
pVTZ-pp basis set and the associated Relativistic Effective Core Potential (RECP)*!
were used for Br and the aug-cc-pVTZ basis for all other atoms. Additional diffuse
functions were added to improve the description of Rydberg states. Spin-orbit
couplings were obtained from the RECP. Analytic coupled quasi-diabatic potentials
were constructed along the C-Br dissociation coordinate from a grid of ab initio
data points. Diabatization was achieved by diagonalizing the R* quadrupole
operator within each symmetry block*2. Nonadiabatic quantum dynamics simu-
lations were performed on the 1-D coupled potentials using split-operator fourier
transform®? method with 4096 grid points spanning from 2.0 a.u. to 20.0 a.u (see
Supplementary Fig. 6). In each simulation, the ground vibrational wave packet of
the ground electronic state was lifted to a different excited-state and propagated for
169 fs using time steps of 0.048 fs.

The core excitation process was calculated at Restricted-Active-Space
Configuration Interaction (RASCI) level of theory, also using Molpro. The orbitals
were obtained from SA-CASSCF calculation of the valence states and during the
final configuration interaction step the total occupation of 3d orbitals was restricted
to 10 for the valence states and 9 for the core-excited states. Spin-orbit couplings
were obtained from RECP on Br. A total of 12 valence and 20 core-excited spin-
orbit states were calculated in the RASCI calculations, along with transition dipole
moments between all pairs of states. Excitation energies and transition dipoles on a
grid along the 1-D reaction coordinate were interpolated to yield analytic functions.
These were then combined with the time-dependent densities obtained in the
nonadiabatic dynamics simulations to generate the simulated ATAS signals of the
dominant 3Q,, state in 3 (computational details described in Supplementary
Note 4 and combined signals of all initial excitations in Supplementary Fig. 2).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes used to simulate the wavepacket and ATAS dynamics are available from the
corresponding authors upon request.
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