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Abstract
Frequency tuning in the cochlea is determined by the passive mechanical properties of the basilar
membrane and active feedback from the outer hair cells, sensory-effector cells that detect and
amplify sound-induced basilar membrane motions. The sensory hair bundles of the outer hair cells
are imbedded in the tectorial membrane, a sheet of extracellular matrix that overlies the cochlea’s
sensory epithelium. The tectorial membrane contains radially-organised collagen fibrils imbedded
in an unusual, striated-sheet matrix formed by two glycoproteins, Tecta and Tectb. In Tectb−/−

mice the structure of the striated-sheet matrix is disrupted. Although these mice have a low-
frequency hearing loss, basilar membrane and neural tuning are both significantly enhanced in the
high-frequency regions of the cochlea, with little loss in sensitivity. These findings can be
attributed to a reduction in the acting mass of the tectorial membrane, and reveal a novel role for
this structure in controlling interaction along the cochlea.

The cochlea is the mammalian organ of hearing, a sensory organ that detects sound stimuli
and converts them into electrical signals. It is a coiled, fluid-filled tube that is divided along
its length by the basilar membrane, a strip of collagen-based extracellular matrix. The basilar
membrane is graded in stiffness along the length of the cochlea and vibrates in response to
sound induced movements of the cochlear fluids1, 2. These vibrations are detected by hair
cells located in the organ of Corti, a sensory epithelium that sits upon and runs along one
edge of the basilar membrane. There are two types of hair cells in the organ of Corti, the
inner and outer hair cells (IHCs and OHCs respectively). The mechanosensory hair bundles
of these cells project up from the sensory epithelium’s apical surface, the reticular lamina,
towards the overlying tectorial membrane, a unique, ribbon-like extracellular matrix
structure that contains different types of collagen and three non-collagenous glycoproteins
that are only expressed at high levels in the inner ear; α-tectorin (Tecta), β-tectorin (Tectb)
and otogelin3.

The hair bundles of the OHCs are firmly imbedded in the tectorial membrane, and are
stimulated by the shear motion that develops between the tectorial membrane and the
reticular lamina in response to sound-induced vibrations of the basilar membrane. The
basilar membrane is very sharply tuned to different frequencies along its length, and the
sharpness of tuning depends not only on the membrane’s passive mechanical properties but
also upon active feedback from the OHCs, sensory-effector cells that detect and influence
mechanical interactions between the tectorial membrane and the reticular lamina 4. OHCs
deliver electromechanical feedback to the cochlea at frequencies close to the characteristic
frequency of their location on the basilar membrane. OHC feedback amplifies responses to
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low-level characteristic frequency tones, compresses them at high-levels, and determines the
large dynamic range, exquisite sensitivity and frequency tuning of the cochlea2, 5. The IHCs
appear to be purely sensory4. Their hair bundles are free standing and not directly imbedded
in the tectorial membrane. In vivo measurements of IHC receptor potentials6, 7 indicate that
their hair bundles respond through fluid coupling to the velocity of the basilar membrane at
low frequencies. In vitro measurements of hair bundle motion reveal that the hair bundles of
IHCs are stimulated by relative shear between the reticular lamina and the tectorial
membrane, probably as a consequence of complex fluid movements in the narrow
subtectorial space8, 9, 10.

Due to its inaccessible location and susceptibility to changes in its unique ionic
environment11, the precise role played by the tectorial membrane in hearing has been hard to
determine. The function of the tectorial membrane has, however, been the subject of a
number of theories12-16. Recent studies with in vitro models9, 10, 17 -20 have provided
invaluable information and evidence17, 18 for the radial resonant properties of the tectorial
membrane originally proposed by Zwislocki13 and Allen12. Although evidence for a second
resonator has not been seen in most in vivo studies of basilar membrane motion5, it has been
observed in the basal, high-frequency cochlear turns of the mustached bat and mice19-22 as
predicted from in vitro measurements of tectorial membrane stiffness, which indicate the
tectorial membrane has a stiffness comparable to that of the basilar membrane loaded with
the organ of Corti23. If the tectorial membrane and the organ of Corti provide a significant
load on the basilar membrane, they will be able to affect the macromechanics and the
motion of the basilar membrane 24,25.

The tectorins, Tecta and Tectb, are proteins that are exclusively restricted, within the
cochlear duct, to the tectorial membrane and are thus ideal targets for the selective and
specific transgenic manipulation of this matrix. Studies with mice carrying a functional null
mutation in Tecta (TectaΔENT/ΔENT)21 have confirmed the in vitro findings17,18, showing
that the tectorial membrane has a resonance in vivo and acts as an inertial load against which
OHCs can interact at the characteristic frequency of the basilar membrane. In addition, these
mice have revealed that the tectorial membrane plays a key role in ensuring OHCs are
displacement coupled, operating in the most sensitive region of their transfer functions, and
therefore able to deliver feedback to the basilar membrane with optimal gain and timing21.
Mice heterozygous for a missense mutation in Tecta (TectaY1870C/+) have provided evidence
that the tectorial membrane also plays an essential role in driving the IHCs, specifically at
their characteristic frequency 22.

It is widely understood that frequency resolution in the cochlea is determined by the
travelling wave of the basilar membrane and its enhancement through cochlear feedback2.
Here we report that in the frequency region of the cochlea above 20 kHz, the loss of Tectb
from the tectorial membrane causes an increase in the sharpness of cochlear tuning with
little or no loss in sensitivity. This novel role for the tectorial membrane in determining the
frequency resolution of the cochlea can be attributed to a reduction in the strength of
longitudinal mechanical coupling within the tectorial membrane.

RESULTS
Loss of striated-sheet matrix in Tectb−/− mutant mice

The core of the tectorial membrane is composed of radially-oriented collagen fibril bundles
that are imbedded in sheets of non-collagenous matrix with a striated appearance26. Striated-
sheet matrix is completely absent from the residual, detached tectorial membranes of mice
with a functional null mutation in Tecta21, and the structure of this matrix is largely
unaffected in otogelin null mutant mice27 indicating Tecta is a major constituent of this non-
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collagenous component of the tectorial membrane. We used gene targeting in embryonic
stem cells to delete exons 1-4 of the Tectb gene (Fig.1a,b). Although a truncated mRNA was
still expressed from the remaining exons (Fig. 1c), Tectb was not detected in the tectorial
membranes or epithelia of mice homozygous for this deletion (Figs. 1d and 2a,b). The global
distributions of Tecta and otogelin in the tectorial membrane were unaffected by the
mutation (Fig. 2c–f). The tectorial membrane remained attached to the spiral limbus in
homozygous Tectb−/− mutant mice and extended laterally across the surface of the organ of
Corti, as in wild type mice or in mice heterozygous for this mutation (Fig. 2g–j). The matrix
of the tectorial membrane was less dense in Toluidin blue-stained sections of both the apical,
low-frequency and basal, high-frequency coils of the cochlea in the Tectb−/−mutant mice
(Fig. 2g–j). The cross-sectional area of the tectorial membrane in the distal end of the apical
cochlear coil of the Tectb−/− mutant mouse was approximately twice that of heterozygous or
wild type mice (11544±1130 μm2 vs. 5278±730 μm2, P = 2.46E-8) (Fig. 2g,h), but it was
not significantly different (1790±352 μm2 vs. 1845±118 μm2, P = 0.72) in the basal coils
(Fig. 2i, j). The thickness of the tectorial membrane in the apical coil of the Tectb−/− mutant
was twice that of the heterozygous or wild type mice (72.1±3.5 μm vs. 36.4±1.9 μm, P =
1.63E-11), but the radial width was unchanged (180.4±24.2 μm vs. 172.4±16.2 μm, P =
0.48). In the basal coil, neither the thickness (23.9±2.5 μm vs 21.6±2.3 μm, P = 0.14) nor the
radial width (84.7±10.5 μm vs 87.9±8.9 μm, P = 0.56) of the tectorial membrane was
significantly different in the Tectb−/− mutant. Analysis of anti-Tecta stained cryosections
also indicated there was no difference in the thickness, radial width and cross-sectional area
of the tectorial membrane in the basal cochlear coil of Tectb+/− and Tectb−/− mice (not
shown). Whilst the tectorial membrane of the Tectb−/− mutant mouse retained a peripheral
surrounding mantle composed of a covernet, marginal band and Kimura’s membrane in the
basal coil, there was a noticeable absence of Hensen’s stripe, a longitudinal ridge thought to
engage the hair bundles of the inner hair cells (IHCs)28,29 (Fig. 2i,j inserts; k,l). In the apical
end of the apical coil, the marginal band was absent and the tectorial membrane had a
markedly frayed peripheral edge in the Tectb−/− mutant (Fig. 2m,n). Analysis of
wholemount tectorial membrane preparations indicated that the frayed, disrupted margin
extends to a position located 30–40% of the length of the tectorial membrane from its
extreme apical end.

Transmission electron microscopy revealed a complete absence of striated-sheet matrix
throughout the length of the tectorial membrane in Tectb−/− mutant mice (Fig. 3a,b).
Irregular, wavy, 8–10 nm diameter fibrils were found instead between the collagen fibril
bundles in the Tectb−/− mutant, and straight fibrils of a similar diameter were observed
aligned along and between the individual collagen filaments (Fig. 3b). Scanning electron
microscopy indicated that these changes in tectorial membrane morphology did not
influence the structure of the underlying hair bundles (Fig. 3c–f). In both the apical (Fig.
3c,d) and basal (Fig. 3e,f) coils of the mature cochlea, the form, orientation and density of
the hair bundles on inner and outer hair cells were normal. Scanning electron microscopy
also revealed the presence of hair-bundle imprints, the sites of OHC hair-bundle attachment,
on the lower surface of the tectorial membrane in both wild type and Tectb−/− mutant mice
(Fig. 3g,h). Light microscopy (not shown) indicated the Tectb−/− mutant mice have an
identical morphological phenotype on the F1 hybrid backgrounds (CBA/C57, CBA/129 and
C57/129).

OHC receptor potentials are unaltered in Tectb−/− mice
We recorded extracellular receptor potentials from within the organ of Corti, very close to
the OHCs, in the basal turn of the cochlea (Figs. 4a,b). A stimulus frequency (10 kHz) was
chosen as it is above the lower-frequency limit of the mouse cochlea30, but within the range
of frequencies, 2–3 octaves below the characteristic frequency range of the basal turn, over
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which the mechanical properties of the tectorial membrane are dominated by its dynamic
radial stiffness14. Extracellular receptor potentials recorded from wild type mice21, 22, 31 are
typically symmetrical for levels below 70 dB SPL (sound pressure level re 2 × 10−5 Pa) and
this was also observed in Tectb−/− mutant mice. The symmetry of the receptor potentials
followed a general level-dependent pattern, usually becoming negatively asymmetrical for
levels below 90 dB SPL, symmetrical between 85–95 dB SPL and positively asymmetrical
for levels above this21, 31. The magnitudes (Fig. 4b) and phase (not shown) of the
extracellular receptor potentials recorded from wild type and Tectb−/− mutant mice as
functions of SPL were very similar. Assuming the loss of Tectb does not cause a
compensatory change in the sensitivity of the hair-cell’s mechanotransduction apparatus,
these results indicate that the dynamic radial stiffness of the tectorial membrane is unaltered
in the high-frequency basal region of the cochlea.

Basilar membrane tuning is sharper in Tectb−/− mice
The ability of the ear to resolve sound into individual frequency components is determined
largely by the frequency tuning of the basilar membrane 1, 5. Basilar membrane threshold
frequency tuning curves (0.2 nm criterion) were measured from the cochleae of 8 wild type
and 8 Tectb−/− mutant mice by directing the beam of a laser diode through the round
window membrane onto the 53 kHz place of the basilar membrane in the basal turn (Fig.
4a,c). The 53 kHz place is at the same location in wild type and Tectb−/− mutant mice, and is
50–100 μm from the 50 kHz location, the lowest frequency region that is just accessible to
measurements with the laser interferometer through the round window membrane. For
clarity, the error bars for the tuning curves are presented in the negative direction for data
from wild type mice, and in the positive direction for data from Tectb−/− mutants. The
thresholds at the tips of the tuning curves measured in wild type mice and Tectb−/− mutant
mice were 22.33± 6.23 dB SPL and 33.25 ± 4.72 dB SPL respectively. In Tectb−/− mutant
mice, basilar membrane vibrations at the characteristic frequency of the recording site were
therefore about 10 dB less sensitive than those of wild type mice at the tips of the tuning
curves. The bandwidths of tuning curves measured from Tectb−/− mutant mice were,
however, less broad than those of wild type mice with a mean Q10 dB (characteristic
frequency / bandwidth 10 dB from tip) of 18.9 ± 2.6 (mean ± s.d.) compared with that of 9.6
± 3.3 for wild type mice. The high and low frequency slopes of wild type tuning curves were
99 dB.octave−1 and 187 dB.octave−1 respectively, whilst those of Tectb−/− mutant mice
were 152 dB.octave−1 and 314 dB.octave−1. The low-frequency resonance (indicated by the
arrow in Fig. 4c) that has been observed in previous measurements from the mouse basilar
membrane and attributed to the tectorial membrane 21 was seen only in the tuning curves of
wild type mice. The low-frequency tail of the tuning curve from Tectb−/− mutant mice was
on average less sensitive than that of wild type mice and decreased in sensitivity with a
mean slope of 8.2 ± 1.6 dB.octave−1, compared with 14.5 ± 1.4 dB.octave−1 for wild type
mice (P < 0.001), a difference of 6.3 dB/octave from 10 kHz to 53 kHz (lowest curve in Fig.
4c).

Plots of basilar membrane phase (mean ± s.d.) relative to that of the malleus, measured at 70
dB SPL and as a function of stimulus frequency, taken from the 53 kHz place of 4 wild type
and 4 Tectb−/− mutant mice are shown Fig. 4d. The plots were similar in overall phase delay
to phase curves measured from guinea pigs, chinchillae and gerbils5 but they differed in
form with a phase lead of about 270° in the region of the low frequency resonance. In wild
type mice this phase lead occured at a frequency that is 3 kHz lower than that in Tectb−/−

mutant mice. The slope of the phase curve in Tectb−/− mutant mice (0.2904 ± 0.0077
octaves.kHz−1) was steeper than that of wild type mice (0.2171 ± 0.0151 octaves.kHz−1) (P
< 0.001). The curves were, however, coincident close to the characteristic frequency of the
measurement place. Differences in the phase of basilar membrane displacement measured at
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moderate levels (45 dB SPL, when basilar membrane vibrations are actively amplified) and
at high levels (75 dB SPL, when basilar membrane vibrations are largely passive)5 revealed
that basilar membrane phase changed more rapidly with frequency about the characteristic
frequency in the Tectb−/− mutant mice than it does in wild type mice (Fig. 4e), as would be
expected from a system with actively enhanced frequency tuning.

Neural masking tuning curves are sharper in Tectb−/− mice
Simultaneous masking neural tuning curves32 closely resemble the tuning properties of
single auditory nerve fibers33 and are more sharply tuned in Tectb−/− mutant mice than in
wild type mice (Fig. 5a and Table 1). The low-frequency slope of the tuning curves was
almost three times steeper in Tectb−/− mice, and the high-frequency slope was almost twice
as steep as that of wild type mice. Masking neural tuning curves from the different
background strains were not significantly different within the wild type and Tectb−/− mutant
groups (Fig. 5b), indicating the phenotype was faithfully expressed regardless of the genetic
background.

For frequencies within the tuning curve tip, the neural masking and the mechanical tuning
curves of wild type mice had similar Q10 dBs. The neural responses of Tectb−/− mutant mice
were, however, more sharply tuned than the mechanical responses at the tip of the tuning
curves and the low-frequency shoulder was very insensitive (Fig. 5a–c and Table 1). A
notch of insensitivity is seen in the neural masking frequency tuning32, 34 curves and in
neural tuning curves16, 33 at the frequency where the tip of the tuning curve meets the tail. In
wild type mice, the notch occurred between 1 and 0.26 octaves below the probe frequency.
In Tectb−/− mutant mice the notch occurred between 0.32 and 0.14 octaves below the probe
frequency (Fig. 5d).

Loss of low-frequency cochlear sensitivity in Tectb−/− mice
Neural audiograms, based on the detection threshold of the compound action potential
(CAP) recorded from the round windows of wild type and Tectb−/− mutant mouse cochleae,
revealed a distinct low-frequency hearing loss in the Tectb−/− mutant mice. For frequencies
above ~ 20 kHz, however, neural sensitivities in wild type and Tectb−/− mutant mice were
very similar. Neural thresholds for frequencies between 20–70 kHz were < 40 dB SPL in the
most sensitive mice and have a mean of ~ 50 dB SPL for all measurements reported in this
paper (Fig. 5e). The enhanced high-frequency tuning in the Tectb−/− mutant mice, therefore,
came at the expense of a hearing loss for frequencies below 20 kHz (Fig. 5e).

Cochlear, and in particular OHC, sensitivity can also be assessed non-invasively over the
entire frequency range by measuring distortion product otoacoustic emissions (DPOAEs),
signals that are generated by OHCs when the cochlea is stimulated by two tones, with the
most prominent DPOAE being the 2f1–f2 DPOAE35. DPOAEgrams (Fig. 5f) revealed that
DPOAEs were generated across the entire 5–60 kHz frequency measurement range in the
cochleae of wild type mice, regardless of the level of the primary tones. DPOAEs recorded
from Tectb−/− mutant mice were, by contrast, frequency-dependent. At low levels only the
high-frequency, basal region of the cochlea generated DPOAEs. With increasing levels of
the primary tones, and hence increased BM velocity, the region of DPOAE generation
extended towards the lower frequencies (Fig. 5f). Even with the highest levels of primaries
used in these experiments, DPOAE levels in the frequency region below 20 kHz were 20–30
dB less than those recorded from wild type mice (Fig. 5f).
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DISCUSSION
In this study we show that the presence of Tectb, one of the two major non-collagenous
glycoproteins of the mammalian tectorial membrane3, is essential for low-frequency
hearing. The loss of the marginal band and the gross enlargement of the tectorial membrane
cause a significant loss of cochlear sensitivity for frequencies below 20 kHz. By contrast,
the absence of Tectb from the tectorial membrane in the basal, high-frequency region of the
cochlea causes little loss in sensitivity and leads to enhanced frequency tuning.

Tecta and Tectb are the major non-collagenous glycoproteins of the mammalian tectorial
membrane3. Immunofluorescence studies indicate both proteins are, within the cochlear
duct, exclusively restricted to the tectorial membrane and distributed uniformly throughout
this matrix3. In mice with a functional null mutation in Tecta (TectaΔENT/ΔENT) the
peripherally situated covernet fibrils, marginal band, Kimura’s membrane and Hensen’s
stripe, and the striated sheet matrix within the core of the tectorial membrane, are all absent,
indicating Tecta is an essential component of the non-collagenous tectorial membrane
matrix21. The tectorial membrane of these TectaΔENT/ΔENT mice only contains randomly
oriented collagen fibrils, and is completely detached from the surface of the organ of Corti.
In the Tectb−/− mutant mice described in this study, the tectorial membrane remains attached
to the organ of Corti but it lacks any sign of organised striated-sheet matrix within its core.
Tecta is present within the tectorial membrane of these Tectb−/− mutant mice and
disorganised, 8 nm diameter filaments can be seen in the matrix between the collagen fibril
bundles, indicating that Tecta can, in the absence of Tectb, form filaments but is unable to
form organised striated-sheet matrix. Tectb is therefore essential for formation of the
striated-sheet matrix and may act as a cross-linker of Tecta-based filaments. Alternatively,
Tectb may form homomeric filaments by virtue of its ZP domain36, and these in turn may
interact with Tecta-based filaments to form striated-sheet matrix.

The absence of Hensen’s stripe in Tectb−/− mutant mice is striking. There is no evidence to
suggest this structure is uniquely Tectb based but it is, however, formed during the later
stages of postnatal development whilst the tectorial membrane is detaching from the surface
of the receding greater epithelial ridge37, in an area just above one of the three strips of cells
that express the Tectb gene, a zone of cells in the greater epithelial ridge lying just medial to
the IHCs38. A loss of the marginal band and a distinct enlargement of the tectorial
membrane are observed in the apical end of the cochlea in Tectb−/− mutant mice. As yet
undetected regional variations in the composition of the tectorial membrane matrix along its
length may account for why the loss of Tectb has a more severe effect on the gross structure
of the tectorial membrane in the apical, low-frequency region of the cochlea.

The mechanism by which forces are imparted to the hair bundles of the OHCs depends on
the relationship between the radial stiffness of the tectorial membrane and the rotational
stiffness of the OHC bundles14, 19, 39. The radial stiffness of the tectorial membrane has
been attributed to the collagen fibril bundles that run radially across this matrix, although
their contribution to the mechanical properties of the tectorial membrane has yet to be
experimentally established24, 39, 40. The distribution of these collagen fibril bundles within
the tectorial membrane in the high-frequency, basal end of the cochlea appears to be
unaffected by the loss of Tectb, despite the loss of organisation in the surrounding matrix.
Furthermore, extracellular receptor potentials recorded from OHCs in the 53 kHz region of
the cochlea in response to tones of 10 kHz, a frequency at which excitation is stiffness
dominated2, are of similar magnitude, phase and symmetry in wild type and Tectb−/− mutant
mice. The loss of Tectb and striated sheet matrix therefore has little, if any, influence on the
dynamic radial stiffness of the tectorial membrane in the basal end of the cochlea. This
conclusion is also supported indirectly by the CAP threshold audiograms. These depend
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ultimately on the sensitivity of the OHCs, and are not significantly different in wild type and
Tectb−/− mutant mice for frequencies above 20 kHz. In the apical, low-frequency region of
the cochlea, the tectorial membrane is grossly enlarged and the marginal band is disrupted.
This may prevent the tectorial membrane from properly engaging with the organ of Corti
and stimulating the OHCs.

Tone-evoked BM vibrations measured at the 53 kHz place of Tectb−/− mice exhibit
enhanced tuning; sensitivity at the tip of the tuning curve is largely preserved and the high-
and low-frequency slopes either side of the tip are steeper than those in wild type mice, and
the low-frequency tail of the tuning curve is relatively insensitive. Neural masking tuning
curves recorded from Tectb−/− mutant mice have similar characteristics. They are similar in
sensitivity, but are far sharper, with steeper high- and low-frequency slopes, than those
recorded from wild type mice. Simultaneous neural masking relies on the non-linear,
compressive, properties of the cochlea5 and interactions between adjacent OHCs41. Thus the
enhanced basilar membrane and neural frequency tuning recorded from Tectb−/− mutant
mice can be attributed to a reduction in the spread of excitation along the BM and a
diminished interaction between adjacent frequency regions in the cochlea.

Hensen’s stripe has been attributed with a role in displacing the hair bundles of IHCs28, 29.
Although this structural feature of the tectorial membrane is absent in Tectb−/− mutant mice,
the CAP threshold audiograms and the neural masking tuning curves of wild type and
Tectb−/− mutant mice are of similar sensitivity for tones greater than 20 kHz. Hensen’s
stripe is therefore not essential for exciting IHCs in the basal, high-frequency region of the
mouse cochlea, at least at the characteristic frequency. It may, however, be important for
exciting IHCs at frequencies away from the characteristic frequency, as the low-frequency
tail of the neural tuning curve in Tectb−/− mutant mice is more insensitive, and the high- and
low-frequency slopes are steeper than their counterparts in the basilar membrane mechanical
tuning curves. Hensen’s stripe may, therefore, have a role in coupling IHC hair bundles to
fluid movements in the subtectorial space that are due to tones above or below their
characteristic frequency.

The strong resonance that is evident 0.26 octaves below the tip of the basilar membrane
threshold tuning curve in wild type mice has been attributed to the tectorial membrane 21, 22.
The resonance is not apparent as a separate peak in the basilar membrane tuning curves of
Tectb−/− mutant mice, but is associated with a notch of insensitivity in the masking tuning
curves where the tip of the tuning curve meets the tail16, 22, 33, 42, 43. The notch of
insensitivity has been attributed to a minimum that would occur in the net shear between the
tectorial membrane and reticular lamina if the radial motions of the reticular lamina and
tectorial membrane were in phase at the resonance frequency of the tectorial membrane. At
this frequency, the displacement of IHC hair bundles would be minimal14, 16, 43. In wild
type mice, the notch of insensitivity is shifted closer to the tuning curve tip with increasing
frequency, as was first observed for single unit recordings in the cat16. The notch is shifted
considerably closer to the tip of the neural masking tuning curves of Tectb−/− mice, and
follows the same frequency-dependent trend16 of the tuning curve notches measured from
wild type mice. An upward shift in the tectorial membrane resonance frequency could result
from either a change in the coupling efficiency between the tectorial membrane and the
OHC hair bundles, or a reduction in the acting mass of the tectorial membrane, the mass of
the section of the tectorial membrane that responds to a particular frequency. As OHC
extracellular receptor potentials are similar in wild type and Tectb−/− mutant mice for
frequencies at which responses of the cochlear partition are stiffness limited, the stiffness of
the coupling between the tectorial membrane and basilar membrane is unlikely to be
changed by the loss of Tectb. An upward frequency shift of the tectorial membrane
resonance can, therefore, be attributed to a reduction in the acting mass of the tectorial
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membrane. The absence of a separate, clearly discernable tectorial membrane resonance
from the vibrations of the basilar membrane is also reflected in the relative insensitivity of
the basilar membrane tuning curve tail in Tectb−/− mutant mice for frequencies below the
tip. The slope of this frequency region is 6 dB.octave−1 less in Tectb−/− mutant mice than it
is in wild type mice, as would be expected if the frequency of the tectorial membrane
resonance had been shifted closer to the peak. A 6 dB.octave−1 change in slope is also
expected if the contribution of a single component (pole) in the form of the tectorial
membrane resonance has been effectively removed from the tail of the cochlea’s complex
mechanical filter and inserted close to the characteristic frequency 13, 44. The plots of the
phase versus frequency of basilar membrane motion measured at the 53 kHz point, although
having many properties in common with those obtained from other rodent species (Robles
and Ruggero, 2001), are unusual in having a sharp phase reversal at frequencies close to that
of the low-frequency resonance. These sharp phase changes are reminiscent of those
associated with the sharp cochlear resonance measured from the sparsely innervated region
of the mustached bat cochlea and have been attributed to standing waves20, 43, 45. The sharp
phase change is shifted closer to the characteristic frequency of the 53 kHz place in Tectb−/−

mutant mice and a separate low frequency resonance peak is not observed. It is possible that
the tectorial membrane resonance interacts constructively with the basilar membrane in this
frequency region, as has been proposed for the mustached bat20, to enhance the frequency
selectivity of the basilar membrane rather than being seen as a separate peak of sensitivity.

DPOAEs are only generated in the high-frequency regions of the cochlea at low sound
pressure levels in Tectb−/− mutant mice, spreading to lower frequencies with increasing
level of the primary tones (f1 and f2). This is further evidence that both the acting mass of
the tectorial membrane and the spread of excitation along the length of the cochlea have
been reduced by the loss of Tectb. As a consequence of reduced spread of excitation along
the cochlea, higher levels of primaries are necessary to ensure that the responses of the
OHCs can extend to adjacent regions of the cochlea to interact and generate DPOAEs46. The
cochlea behaves as if a critical basilar membrane velocity has to be achieved in order to
provide the shearing displacement between the tectorial membrane and reticular lamina that
is necessary to excite the OHCs. Higher levels of the primary tones are required if the
frequencies of the primary tones are reduced, as would be expected if the loss of Tectb
causes an effective reduction in the acting mass of the tectorial membrane.

Conclusion
Enhanced frequency tuning and an attenuation in the spread of excitation along the length of
the cochlea correlate with the loss of the striated-sheet matrix from the core of the tectorial
membrane and an absence of Hensen’s stripe. Whilst the absence of Hensen’s stripe could
account for the enhancement seen in the neural masker tuning curves, it is unlikely to
account for enhanced basilar membrane tuning. It can be deduced, therefore, that the striated
sheet matrix is required for mechanically coupling elements of the tectorial membrane along
its longitudinal axis. Loss of the striated-sheet matrix and a reduction in the length of the
tectorial membrane -OHC complex that responds to a particular frequency will cause a
reduction in the acting mass of the tectorial membrane. It will also reduce the ability of
OHCs in adjacent locations along the length of the cochlea to influence each other and,
hence, to respond in synchrony to effectively amplify the cochlear vibrations. We therefore
conclude that the tectorial membrane has a distinctive role in determining frequency
resolution and the spread of excitation along the length of the cochlea.
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METHODS
Gene targeting

Gene targeting in CCB embryonic stem cells was performed as described previously6 using
a targeting vector constructed with Tectb genomic clones isolated from a mouse genomic
library (Stratagene). Two independently targeted ES cell lines were used to create germ line
transmitting chimaeric mice by the injection of C57Bl6 blastocysts. Chimaeras were crossed
with S129SvEv or C57Bl6 mice to produce heterozygous F1 progeny that were interbred to
produce F2 mice on S129SvEv or mixed S129/C57 backgrounds. Both cell lines produced
mice with an indistinguishable phenotype. All experiments described were performed with
mice derived from one ES cell line. Chimaeras were also outbred on both CBA/Ca and
C57Bl6 background and heterozygous F6 and F7 mice from these lines were crossed to
produce mutants on a CBA/C57 F1 hybrid background. All mice were used before 3-4
months of age to avoid age related hearing loss known to be prevalent in many mouse
strains.

Tectb expression
Total RNA was isolated from single cochleae of Tectb+/+, Tectb+/− and Tectb−/− mice, first
strand cDNA was synthesised and used in the PCR reaction with primers for products of 816
bp spanning exons 1 to 8 of the Tectb mRNA, and 557 bp spanning exons 7 to 10 of the
Tectb mRNA. As a positive control a 615 bp product specific for Tecta mRNA was
amplified from all three mice. Negative control reactions were performed with no reverse
transcriptase and no cDNA. Total protein from the tectorial membranes of Tectb+/+ and
Tectb−/− mutant mice at P57 and the greater epithelial ridges of P2 mice were separated by
SDS-PAGE and blotted with rabbit antiserum R7 raised to full-length, native chick β-
tectorin47.

Morphology
Animals were killed by cervical dislocation and cochleae were removed and placed in PBS
for dissection. To aid fixative penetration, the oval and round windows were removed and a
small hole through to the scala media was made at the apical end of each cochlea. A small
volume of fixative (2.5% glutaraldehyde in 0.1 M sodium cacodylate, pH 7.2, containing 1%
tannic acid) was pipetted directly through the windows and the apical opening, and then the
entire cochlea was transferred into the same fixative for 2 hours. Following 3 washes in 0.1
M sodium cacodylate, cochleae were fixed in 1% osmium tetroxide in 0.1 M sodium
cacodylate pH 7.2 for 1 hr and washed a further 3 times in 0.1 M sodium cacodylate.
Cochleae were then decalcified in 0.5 M EDTA for 7 days at 4 °C, before dehydration in an
ascending ethanol series and inclusion in Epon resin via propylene oxide as an intermediate.
For light microscopy, 1 μm thick sections were taken and stained briefly in 1% Toluidin
blue containing 1% borax. Inner ears from 9 homozygote, 8 heterozygote and 7 wild type
animals on the mixed C57/S129 background ranging in age from P14 to P88 were examined
by light microscopy. For transmission electron microscopy, 100 nm thick sections were cut,
stained with lead citrate and uranyl acetate, and viewed in a Hitachi 7100 microscope
equipped with a Gatan Ultrascan 1000 CCD digital camera capturing images at a resolution
of 2048×2048 pixels. In addition, inner ears from 2 Tectb+/+, 4 Tectb+/− and 4 Tectb−/− mice
on the F1 hybrid backgrounds at ages ranging from P130-P158 were examined by light
microscopy. For scanning electron microscopy, cochleae from 2 Tectb+/+, 2 Tectb+/− and 5
Tectb−/− mice at P26 on the mixed C57/S129 background were fixed in 2.5% glutaraldehyde
in 0.1 M sodium cacodylate for 1–2 h, washed in cacodylate buffer, trimmed to reveal the
surface of the organ of Corti, dehydrated in ethanol, critical point dried from liquid CO2 and
sputter coated with gold. Specimens were examined in a Leica Leo scanning electron
microscope.
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Cryosections of cochleae were prepared using methods described previously48. Cochleae
from mature mice were decalcified at 4 °C for 1 week prior to agar-embedding and
sectioning. Primary rabbit antisera were used overnight at the following concentrations: anti-
alpha-tectorin (serum R947, 1:1000), anti-beta-tectorin (serum R747, 1:100) and anti-
otogelin (1:3000, a kind gift from C. Petit, Institut Pasteur, Paris). Primary antibodies were
visualised using FITC-conjugated swine anti-rabbit antibodies at a dilution of 1:100 for 2-3
hours. All antibodies were diluted into TBS containing 10% heat-inactivated horse serum.

To view the gross structure of the fresh, unfixed tectorial membrane, cochleae were
dissected in artificial endolypmh (140 mM KCl, 5 mM NaCl, 25 μM CaCl2, 25 μM MgCl2,
10 mM Hepes pH 7.2) to expose the organ of Corti and stained with 1% Alcian blue for 10
min. Following a brief rinse, tectorial membranes were removed with fine needles, mounted
under a coverslip on a glass slide in a drop of artificial endolymph, and photographed with a
63x oil immersion objective, NA 1.4, using Nomarski interference contrast optics.

The cross-sectional area, radial width and thickness of the tectorial membrane were
measured from Toluidin blue stained, 1 μm thick plastic mid-modiolar sections of the apical
and basal coils of the cochlea, and from anti-Tecta stained immunofluorescence micrographs
of the basal coil, using Photoshop. To determine the area, the profile of the tectorial
membrane was outlined and the pixel number was counted. Radial width was measured by
extending a straight line from the lip of the spiral limbus to the peripheral edge of the
tectorial membrane. Height was measured across the thickest region of the tectorial
membrane with a line extending perpendicular to the lower surface of the tectorial
membrane. Data for the analysis of plastic sections were obtained from 7 Tectb−/− cochlea, 5
Tectb+/− and 2 Tectb+/+ mice. Differences were not detected between Tectb+/− and Tectb+/+

so the data from these animals were pooled and compared with those from Tectb−/− mice
using Student’s t-test. For the anti-Tecta stained cryosections, cochleae from 2 Tectb+/− and
4 Tectb−/− mice were analysed.

Physiology
Mice, normally < 3 months of age, were anaesthetized with ketamine (0.12 mg.g−1 body
weight i.p.) and xilazine (0.01 mg.g−1 body weight i.p.) for nonsurgical procedures or with
Urethane (ethyl carbamate, 2 mg.g−1 body weight, i.p.) for surgical procedures. The animals
were tracheotomized, and their core temperature was maintained at 38 °C. To measure
basilar membrane displacements, extracellular receptor potentials, and CAPs, a caudal
opening was made in the ventrolateral aspect of the right bulla to reveal the round window
(Fig. 3a). DPOAEs measured before and after surgery indicate that the bulla of the mouse
can be opened without loss of sensitivity. CAPs were measured from the round window
membrane using pipettes filled with artificial perilymph with tip diameters of 50–100
microns (recording bandwidth > 30 kHz). Extracellular receptor potentials were recorded
from the organ of Corti with pipettes pulled from thin-walled quartz tubing (Sutter
Instrument Company) filled with 3 M KCl, resistance 15–20 MΩ, bandwidth 12–18 kHz
with capacitance compensation (Fig. 3a). Signals were amplified with a recording bandwidth
of DC–100 kHz.

Tone-evoked basilar membrane displacements were measured by focusing the beam of a
self-mixing, laser-diode interferometer21, 49 through the round window membrane to form a
20 μm spot on the center of the basilar membrane in the 50–61 kHz region of the cochlea
(Fig. 3a). The interferometer was calibrated at each measurement location by vibrating the
piezo stack, on which it was mounted, over a known range of displacements. Tone pulses
(rise-fall times 1 ms) during basilar membrane measurements were generated with a Phillips
PM 5193 programmable synthesizer and attenuated with digitally controlled attenuators.
Voltage responses from the interferometer were measured with a two-channel lock-in
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amplifier (Princeton 5210) and digitized at 250 kHz with a Data Translation 3010 data
acquisition board, and the peak response was stored on a PC. Experimental control, data
acquisition, and data analysis were performed using a PC with programs written in TestPoint
(CEC).

Sound was delivered via a probe with its tip within 1 mm of the tympanic membrane and
coupled to a closed acoustic system (Fig. 4a) comprising two MicroTech Gefell 1 inch
MK102 microphones for delivering tones and a Bruel & Kjaer 3135 ¼ - inch microphone
for monitoring sound pressure at the tympanum. The sound system was calibrated in situ for
frequencies between 1–70 kHz using a measuring amplifier and known SPLs were
expressed in dB SPL re 2 × 10−5 Pa. The position of the coupler was adjusted to minimize
peaks and dips in the calibration curve. White noise and tone pulses with rise-fall times of
0.2 ms were synthesized by a Data Translation 3010 data acquisition board, attenuated, and
used for sound system calibration and the measurement of electrical and acoustical cochlear
responses. Data were digitized at 250 kHz and stored on a PC. To measure DPOAEs,
primary tones were set to generate 2f1–f2 distortion products at frequencies between 1 and
50kHz. DPOAEs were measured for levels of f1 ranging from 10–80 dB SPL, with the
levels of the f2 tone set 10 dB SPL below that of the f1 tone. DPOAE threshold curves were
constructed from measurements of the level of the f2 tone that produced a 2f1–f2 DPOAE
with a level of 0 dB SPL where the frequency ratio of f2:f1 was 1.23. System distortion
during DPOAE measurements was 80 dB below the primary tone levels.

CAP tuning curves were derived from simultaneous tone-on-tone masking29 using a 10 ms
probe tone centered on a 40 ms masker tone. The probe tone was set to a level where a
stable CAP appeared just above the recording noise floor. The frequency of the masker was
set and its attenuation was adjusted until the probe tone CAP was suppressed. The masker
frequency and level was noted, a new masker frequency was set, and the process repeated.
In a second group of experiments the probe level was set to increasingly higher values to see
how the CAP tuning curves varied with probe tone level.

All procedures involving animals were performed in accordance with UK Home Office
regulations with approval from the local ethics committee.
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Figure 1.
Targeted deletion of exons 1–4 of Tectb. (a) Structure of the 5′ region of Tectb, the targeting
vector and the targeted Tectb locus. Dark bars = genomic DNA; exons = open boxes; grey
bar = homologous DNA in targeting vector; thin grey line = vector DNA. Lightly shaded
boxes = external probes A and B; the sizes of the hybridising restriction fragments are
shown. (Neo) Neomycin resistance gene; (TK) HSV thymidine kinase cassette; (S) SacI;
(EV), EcoRV; (Xh), XhoI; (Ac), Acc65I. (b) Southern blots of SacI or EcoRV digested
genomic DNA probed with external probes. (1) Wild type control: probe A hybridises to a
1.6 kb SacI band, probe B hybridises to a 9.8 kb EcoRV band. (2, 3) Homologous
recombinants: probes A and B hybridise to wild type bands, in addition probe A hybridises
to a 3.4 kb SacI band and probe B hybridises to a 6.2 kb EcoRV band. (c) RT-PCR of total
RNA from Tectb+/+ (+/+), Tectb+/− (+/–) and Tectb−/− (−/−) mice with primers for an 816
bp product spanning exons 1 to 8 of the Tectb mRNA (Tectb 5′), a 557 bp product spanning
exons 7 to 10 of Tectb RNA (Tectb 3′), and a 615 bp product specific for Tecta (Tecta). C1,
no reverse transcriptase control; C2, no cDNA control. (d) Western blots of P57 tectorial
membranes and P2 cochlear epithelia from Tectb+/+ (+/+) and Tectb−/− mutant (−/−) mice
probed with anti chick β-tectorin. Arrow indicates the 45 kDa Tectb band.
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Figure 2.
Tectorial membrane morphology and composition in mature Tectb+/− and Tectb−/− mutant
mice. (a–f) Cryosections from the basal coils of Tectb+/− (a,c,e) and Tectb−/− mutant (b,d,f)
mice stained with antisera specific for Tectb (a,b), Tecta (c,d) and otogelin (e,f). The
tectorial membranes from Tectb−/− mutant mice stain strongly for Tecta and otogelin but are
negative for Tectb. (g–j) Toluidin blue stained sections from the apical (g,h) and basal (i,j)
coils of the cochleae of adult Tectb+/− (g,i) and Tectb−/− (h,j) mice. Insets in i and j show a
region of the lower surface of the tectorial membrane that lies just above the inner hair cells.
Hensen’s stripe is visible in i (arrowhead in inset). The tectorial membranes in Tectb−/−

mice have a less dense structure compared to those of heterozygotes. (k–n) Wholemount
preparations of Alcian blue stained tectorial membranes from Tectb+/− (k,m) and Tectb−/−

(l,n) mice photographed with Nomarski interference contrast optics. (k,l) Basal region, HS =
Hensen’s stripe. (m,n) Apical region, MB = marginal band. Bar in f = 100 μm and applies to
a–f, bar in j = 50 μm and applies to g–j, bar in n = 20 μm and applies to k– n.
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Figure 3.
Fine structure of the tectorial membrane and hair bundles. (a,b) Transmission electron
micrographs of apical-coil tectorial membranes from adult Tectb+/− (a) and Tectb−/− (b)
mice. In Tectb+/− mice (a), the tectorial membranes show the typical pattern of striated-sheet
matrix (SM) and collagen fibrils (COL). In Tectb−/− mice (b), the tectorial membranes lack
striated sheet matrix, and have irregular 8 nm diameter filaments (arrowheads) and straight
filaments (arrow) between the collagen fibrils. (c–f) Scanning electron micrographs showing
the apical surface of the organ of Corti in the apical (c,d) and basal (e,f) cochlear regions of
Tectb+/− (c,e) and Tectb−/− mice (d,f). In panel c, the arrow indicates the single row of inner
hair cell hair bundles, and the arrowheads indicate the three rows of outer hair cell hair
bundles. (g– h) Scanning electron micrographs revealing the presence of OHC hair-bundle
imprints (arrows) in the lower surface of the tectorial membranes of Tectb+/− (g) and
Tectb−/− (h) mice. Bar in b = 200 nm and applies to a–b, bar in f = 5 μm and applies to c–f,
bar in h = 2 μm and applies to g–h.
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Figure 4.
Electrical and mechanical recordings from the cochleae of wild type (red) and Tectb−/−

(blue) mice. (a) Set up for recording from the mouse cochlea. The round window is accessed
via a caudal opening in the ventrolateral aspect of the bulla and the sound system probe tip is
within 1 mm of the tympanum. Cochlear cross-section showing the organ of Corti, the
tectorial (TM) and basilar (BM) membranes, the location of the recording pipette, and the
laser diode beam used for measuring basilar membrane vibrations. (b) Magnitude and form
of OHC extracellular receptor potentials in response to a 10 kHz tone as a function of level.
Each record is an average of 10 presentations. (c) Iso-response displacement frequency
tuning curves (mean ± s.d., n = 8 for each genotype) response criterion 0.2 nm, 53 kHz
location). Arrow, low-frequency resonance. Black symbols: difference between wild type
and Tectb−/− tuning curves. Dotted line, 6 dB.octave−1. (d) The phases of basilar membrane
(BM) responses (mean ± s.d., n = 4 for each genotype) to 70 dB SPL tones as a function of
frequency. Vertical dashed lines indicate frequencies of the low-frequency resonance (43
kHz) and the characteristic frequency (CF) (53 kHz). (e) Phase difference (in degrees, mean
± s.d., n = 4 for each genotype) between basilar membrane displacements at 45 and 75 dB
SPL. Zero crossing slopes: wild type 33.28° kHz−1, Tectb−/− mice 61.75° kHz−1.
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Figure 5.
Neural and acoustical recordings from the cochleae of wild type (red) and Tectb−/− (blue)
mice. (a) Simultaneous masking tuning curves (n = 30, mean ± s.d) of compound action
potentials in response to 10, 20, 35 and 54 kHz probe tones. The levels and frequencies of
the probe tone are indicated by stars. Dotted lines indicate SPLs of 30 and 100 dB. (b) The
means (n = 10) of masking tuning curves for a 20 kHz probe tone for individual mice from
each of 3 different F1 hybrid families (C37:CBA/Ca f6 × C57/BL6 f5; C41: CBA/Ca f6 ×
129SvEv; C42: C57/BL6 f7 × 129SvEv). (c) Neural masking tuning curves (n = 30 for each
genotype) for 20 kHz (upper) and 35 kHz (lower) probe tones. Masker frequency is
expressed as a ratio of the probe tone frequency, stars indicate the notches of insensitivity.
(d) Notch frequency in octaves below the tuning curve tip-frequency as a function of probe-
tone frequency. (e) Mean ± s.d. (n = 10) of the CAP detection threshold as a function of tone
frequency. Grey shading indicates +s.d. of wild type and –s.d. of Tectb−/− data. (f) Mean ±
s.d. (n =10) of the magnitude of 2f1–f2 DPOAEs as functions of f2 frequency. Levels of f2/
f1 tones in dB SPL are shown in the upper left of each panel.
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