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Abstract: Recent advancements in telecommunications and the tactile Internet have paved the way
for studying human senses through haptic technology. Haptic technology enables tactile sensations
and control using virtual reality (VR) over a network. Researchers are developing various haptic
devices to allow for real-time tactile sensation, which can be used in various industries, telesurgery,
and other mission-critical operations. One of the main criteria of such devices is extremely low latency,
as low as 1 ms. Although researchers are attempting to develop haptic devices with low latency,
there remains a need to improve latency and robustness to hand sizes. In this paper, a low-latency
haptic open glove (LLHOG) based on a rotary position sensor and min-max scaling (MMS) filter is
proposed to realize immersive VR interaction. The proposed device detects finger flexion/extension
and adduction/abduction motions using two position sensors located in the metacarpophalangeal
(MCP) joint. The sensor data are processed using an MMS filter to enable low latency and ensure
high accuracy. Moreover, the MMS filter is used to process object handling control data to enable
hand motion-tracking. Its performance is evaluated in terms of accuracy, latency, and robustness to
finger length variations. We achieved a very low processing delay of 145.37 µs per finger and overall
hand motion-tracking latency of 4 ms. Moreover, we tested the proposed glove with 10 subjects
and achieved an average mean absolute error (MAE) of 3.091◦ for flexion/extension, and 2.068◦ for
adduction/abduction. The proposed method is therefore superior to the existing methods in terms
of the above factors for immersive VR interaction.

Keywords: immersive VR interaction; haptic open glove; rotary position sensor; MMS filter; hand
motion capture; human computer interaction

1. Introduction
1.1. Motivation and Challenges Definition

In the past decade, the influence of tactile and haptic technologies has increased
significantly. Haptic technologies enable users to sense, control and manipulate objects
through a virtual reality environment. Moreover, they provide tactile or haptic feedback to
users through tactile actuators. Compared to other available technologies at present, tactile
Internet remains in the innovation phase. One of the enabler technologies of the tactile
Internet is haptic communication. However, with haptic communication, extremely low
latency, high reliability, and adaptability are required to provide a smooth virtual reality
experience. Researchers have determined that to enable a smooth haptic communication
experience, an end-to-end latency of 1 ms is required in some scenarios [1–4]. Numerous
haptic gloves have been developed to deliver haptic sensation and allow for controlling and
manipulating objects in real time over a network. However, these gloves do not consider the
delay caused by data processing, which adds to the latency in the haptic communication
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loop. Moreover, most of these gloves are not open-hand type, which degrades their
robustness and adaptability because the gloves can be worn by users with different hand
sizes and hand lengths. The present study addresses these challenges by proposing a
low-latency haptic open glove. The proposed glove uses two small rotary position sensors
placed in the metacarpophalangeal (MCP) joints to detect finger flexion/extension and
adduction/abduction. The acquired data are then processed using min-max scaling (MMS)
filter to provide tactile experiences through virtual reality.

1.2. Related Work and State of the Art

Immersion can be defined as the perception of being physically present in a virtual-
world domain (VWD), where users can fully interact with different objects. The content
expressed through the transmission of the information that causes users to become im-
mersed is called immersive content [5]. In recent years, immersive content has been used in
various applications; typically, it is used in extended reality applications, including virtual
reality (VR) and mixed reality (MR) [6,7]. Notably, immersive content provides realism
because next-generation media closely resemble the real-world domain (RWD). Many VR
technologies use head-mounted displays (HMDs) to provide RWD interaction in the VWD.
HMDs actively provide VR content as immersive content and have evolved to provide im-
mersion beyond the virtual domain [8]. However, these interface devices must minimize the
gap between the target content and the RWD reproduced in the HMD to provide a smooth
immersion experience. VR interface devices connect the VWD and the RWD, and users can
use natural user interfaces (NUI) such as voice, touch, motion, and even brain waves to
operate these devices [9]. Researchers are exploring different technologies such as Leap
Motion, and Ultra-Leap Motion to provide virtual immersion [10,11]. Masurovsky et al.
and Luimula et al. explore the possibility of controller-free virtual immersion using Leap
Motion technology [12,13]. Alakhawand et al. introduced a biomimetic tactile fingertip
to measure haptic stimuli in mid-air [14]. Jorge Cardoso presents Leap Motion-based VR
locomotion techniques as to alternative to gamepad and gaze detection-based locomotion
techniques [15]. However, the proposed techniques require more effort than the gamepad
controller. Moreover, the performance of the Leap Motion-based VR locomotion technique
is not up to the level of the gamepad. Nevertheless, the proposed technique is preferable
for some activities. Although the Leap Motion technology is promising, it has significant
latency in tracking the human hand. This has been proved by Silva et al. [16]. Leap Motion
controllers also work on a line-of-sight theory. It cannot detect hand gestures when users
move their hands out of range, which affects these devices’ robustness for a wide area of
application. It also cannot distinguish between different fingers when the fingers are very
close to each other and vulnerable to occlusion [10,17]. Ultra-Leap ultrasound devices also
have vulnerabilities such as noise, physiological limitations, precision, and safety issues.
These devices have a very short range of focal points which affects the spatial resolution of
these devices [18]. Moreover, the use of surgical gloves during telesurgery or teleopera-
tion may cause the precision of the ultrasound haptic devices [19]. Moreover, long time
exposure to the ultrasound wave may cause different medical conditions such as hearing
loss [20,21]. On the other hand, haptic gloves do not have these shortcomings as most of
the haptic gloves use sensors attached with hand to track angular movements of the fingers’
different joints. Moreover, life-critical applications such as telesurgery, telemedicine, teleop-
eration need very precise haptic and tactile feedback. To provide precise motion-tracking
and haptic-tactile feedback, gloves-type devices are introduced as different actuators, and
sensors can be embedded in these gloves. Gloves capable of motion detection have been
used in various VR applications [22,23]. For example, games or training materials for
improving drivers’ driving skills are provided through HMDs, where gloves are used to
represent hand movement in the VWD to create RWD immersion. However, to provide
RWD immersion, it is necessary to deliver to users virtual sensations from the VWD to
the RWD.
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Several haptic gloves and devices have been introduced over the years to deliver
virtual sensations. Perret et al. classify different types of haptic gloves present in the
commercial market based on traditional, thimbles and exoskeleton gloves [24]. The authors
also presented specifications of those haptic gloves in force-feedback, tactile feedback,
motion-tracking, etc. One of the early attempts to enable virtual sensations in the RWD
includes the development of PHANTOM [25]. This device uses a user’s hand position
through a robotic arm and provides stiffness by employing three DC brushed motors. Senso
introduced a vibration-motor-based glove to interact with fingers through a vibration motor
placed in each finger [26]. This device uses IMU sensors to measure finger movements in
space. It achieved a latency of 15 ms in virtual interaction. ContactCi introduced exotendons
and servomotor-based gloves that used flex sensors and vibration cues to provide haptic
interaction [27]. The resulting haptic interface yielded a latency of less than 10 ms. One of
the most well-known haptic gloves, called CyberGrasp, integrates conventional dataglove
and exoskeleton mechanisms to detect hand movements and implement cable-based force-
feedback systems [28]. Cybergrasp uses Ethernet as a communication method to reduce
latency. Dexta robotics introduced exoskeleton force-feedback gloves using a rotary sensor
for each finger to measure finger movement in terms of abduction and flexion [29]. This
device also uses a servo motor in its force-feedback mechanism, and its response time is
50 ms, including processing and control time delay. Haptx provides precise haptic feedback
through 100 pneumatic tactile actuators [30]. This device uses magnetic sensors to capture
sub-millimeter finger movements, allowing for the acquisition of highly detailed movement
information and the provision of precise force-feedback. Sense glove, introduced by a
Dutch company called SENSEGLOVE, uses IMU sensors to track hand motion and provide
23 degrees of freedom (DoF) [31]. Moreover, it provides both vibrotactile and kinesthetic
haptic feedback interaction. Its vibrotactile feedback uses six vibration actuators for each
fingertip, and its force-feedback mechanism uses a servo motor for each finger. The overall
haptic feedback response time is less than 10 ms, including the time required for processing
and implementing force-feedback delay.

Researchers have pointed out that an end-to-end latency of 1 ms is required to enable
tactile Internet for human-machine interaction in a teleoperation closed-loop system and
for providing various VR-based contents. Xiang et al. pointed out that roughly 0.1 ms can
be allocated to haptic devices for processing purposes to meet the rigorous requirements
of the tactile Internet [1]. Although researchers are attempting to introduce robust and
feasible haptic devices, latency reduction remains an underexplored field. Based on a
review of the above studies, it seems imperative to introduce haptic devices with extremely
low processing delay.

Most of the traditional gloves are garment-made flexible closed-type gloves [24]. In
closed-type gloves, sensors and actuators for feedback system are sewn or fixed outside
the glove. These gloves also have some drawbacks. Sensors and actuators used in these
devices need to be very small to fit under the garments. Moreover, the glove system needs
to be flexible and adjustable, or users can feel uncomfortable manipulating objects. These
devices also need to be robust to accommodate deformation because users with different
hand shapes can frequently use them. One of the main disadvantages of closed-type
devices is usability issues. People’s finger sizes are not the same; people with bigger or
smaller hand sizes than the actual gloves can feel uncomfortable wearing gloves. Moreover,
sensors and actuators are fixed in the specific place in the glove, and to be able to achieve
full immersion user’s hand needs to be fitted with gloves length. Furthermore, long time
use of closed-type gloves can also cause irritation and sweating problems. As most of the
closed-type gloves are made of garments, they can become dirty over time which causes
hygienic problems. Lastly, users with any contagious virus can be spread through gloves
because many users can wear gloves, and it is very difficult to clean the gloves due to their
structure. Although our brains can take visual presentation as the dominant information,
some life-critical applications such as telesurgery, teleoperation, telemedicine need a very
high level of sensation, high motion-tracking accuracy, low latency, haptic, and tactile
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feedback as well. Considering these factors, we have proposed an open-type glove to
achieve low processing delays with high motion-tracking accuracy.

Figure 1 shows the basic hand anatomy of metacarpophalangeal (MCP), distal in-
terphalangeal (DIP), and proximal interphalangeal (PIP) joints. MCP is the joint at the
base of the finger which connects the palm with the basic structure of the finger. Normal
flexion-extension can be measured by calculating the displacement of MCP joints. PIP is
the joint in the middle of the finger. It is also responsible for flexion-extension for more
complicated hand motion. DIP is the joint closest to the fingertip. The displacement of
this joint during flexion-extension is not as close to other joints. Different techniques are
being used in the literature to track hand motion by measuring the displacement of MCP,
DIP, and PIP joints. The technique presented in [32,33] detects motion by sensing the
degree of flexion and extension at DIP and PIP joints of the fingers using the flex sensors.
However, due to the finger’s structural restrictions, accurate motion-tracking can only be
possible if two flex sensors are wrapped with the finger. In this scenario, one flex sensor
will track DIP joints movement, and another flex sensor will track PIP joints movement.
The motion detection method presented in [34,35] collects necessary data using an inertial
measurement unit (IMU) sensor. One of the advantages of IMU sensors is that they can
be used in open- and close-type gloves, whereas flex sensors are unsuitable for open-type
gloves. Moreover, IMU sensors can detect hand movements and allow for a greater degree
of freedom than flex sensors.

Figure 1. The basic hand anatomy of humans consists of MCP, PIP, and DIP joints.

Apart from obtaining finger motion sensor data, the noise in the raw data must
be reduced to minimize tracking errors. The least mean square (LMS) and weighted
Fourier linear combiner (WFLC) algorithms, low-pass filter (LPF), and Kalman filter are
candidate noise-reduction methods. The Kalman filter can be used to reduce the motion-
tracking noise of a glove for VR applications [36,37]. The Kalman filter shows good
compatibility with IMU sensors in terms of accuracy and noise reduction. However,
this filter requires a relatively long processing time compared to the LPF [38] because of
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its structural characteristics that necessitate recursive use of the prediction and update
stages. Weill–Duflos et al. compared different advanced filters to reduce noise in velocity
estimation of haptic feedback system [39]. The authors found out a realistic model of the
Kalman filter can reduce latency. However, this method requires accurate identification
of mechanical parameters, and it also adds latency in achieving the best estimation in
accuracy. An LPF can reduce the processing time, albeit at the cost of accuracy. Moreover,
LPFs also have a phase difference delay, which adds to the latency associated with data
processing. Furthermore, the delay caused by an error in the sensing or processing part
data required for correction may hamper users’ immersion.

1.3. Contribution of the Present Study

The problems faced in motion detection and reducing latency can be solved using the
proposed rotary position sensor and the MMS filter. In this paper, we propose a low-latency
haptic glove that can process data with extremely low latency and accurately track hand
motions. If a haptic interaction is performed with both motion detection and tracking,
which is the same as the VWD, the difference in motion or position between the hands in
the RWD and the VWD and the latency must fulfill the haptic communication requirements
to provide immersion. The MMS filter helps the proposed LLHOG system reduce errors
due to differences in glove users’ finger/hand size in a VR system. The open-type glove
eliminates the inconvenience caused by sharing gloves with other people.

Table 1 describes the features of the proposed haptic gloves and conventional haptic
gloves to enable VR immersion. Conventional haptic gloves include flex sensor + LPF
and IMU sensor + Kalman filter, whereas our proposed haptic glove is based on rotary
position sensor + MMS filter. Conventional gloves can be open or closed, and our proposed
glove is open to accommodate a finger length variant. The flex sensor-based gloves require
two sensors per finger to track hand motion. Likewise, the IMU sensor-based gloves
require at least one sensor per finger to track hand motions. By contrast, the proposed
glove uses two small rotary position sensors per finger to track hand motions accurately.
The flex sensor-based gloves cannot track adduction/abduction, whereas the IMU sensor
and rotary position sensor-based gloves can accurately measure flexion/extension and
adduction/abduction. Latency in terms of data processing is shorter in the case of flex
sensor-based gloves. The IMU sensor-based gloves have a longer data processing latency.
On the other hand, the proposed glove has the shortest data processing latency among the
gloves mentioned above. The proposed glove has strong robustness to the finger length
variance than the conventional gloves. In the current manuscript, we provide an overview
of the architecture of the proposed LLHOG using the MMS filter. Then, we present the
LLHOG for the immersive VR interaction in more detail, followed by an evaluation of its
performance in terms of its accuracy, processing delay, and the effect of finger length on
the performance.

Table 1. Features of the conventional method and the proposed Haptic glove.

Conventional Method Proposed Method

Flex Sensor + LPF 9-DoF IMU Sensor +
Kalman Filter

Rotary Position
Sensor + MMS Filter

Glove type Closed Open or Closed Open

Number of sensors
required 2 EA/finger 1 EA/finger 2 EA/finger

Motion detection
accuracy

Neither adduction
nor abduction

detection
Accurate Accurate

Latency Shorter Longer Shortest

Robustness to finger
length variance Weak Weak Strong
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The remainder of this paper is organized as follows. Section 2 presents an overview
of the proposed glove, along with the proposed calibration and filtering method. In
Section 3, the performance evaluation results obtained in this study are discussed, along
with processing delay and hand motion accuracy. Finally, our concluding remarks are
presented in Section 4.

2. System Overview

Figure 2 illustrates an overview of the working principle of the proposed glove.
The hardware part includes the hardware design and the sensor system. The hardware
architecture of the glove is designed to fulfill three requirements. First, the glove hand
surface should be open so that users can wear the glove comfortably. Second, accurate
motion detection must be enabled with two position sensors per finger; therefore, it should
be designed with a joint DoF structure. Third, it must be implemented in a form that can
respond to the haptic feedback data received from the VWD. The sensor system of the
proposed glove includes two 3382H-1-103-rotary position sensors placed in MCP joints. It
detects finger motion and represents the magnitude of finger motion in terms of a resistance
value. Both sensors are connected to the Arduino Nano 33 BLE development board. The
MMS filter is implemented on the Arduino development board to scale the obtained sensor
value between 0 to 1 for reducing noise and increasing the motion-tracking precision. The
MMS filters increase the accuracy of motion-tracking in the VWD. The processed signal is
sent to Unity software via BLE communication to create an immersive experience, where
users can interact with and manipulate virtual objects.

Figure 2. System overview of the proposed haptic glove.

2.1. Rotary Position Sensor

A rotary position sensor measures the displacement of any object and represents the
displacement as electrical signals. The working principle of a rotary position sensor is iden-
tical to that of a potentiometer. The position sensor contains a section composed of carbon
through which electricity can flow, and when a current flows, the carbon section acts as a
resistor, and the sensor resistance changes as the length of the carbon section changes [40].
Park et al. used two linear potentiometer sensors to measure finger motions [41]. How-
ever, there are significant errors in measuring the motions of the fingers. Moreover, the
linear potentiometer sensor is suitable for closed hand gloves and cannot be used in open
or exoskeleton-based gloves. By contrast, Othman et al. demonstrated that a rotary po-
tentiometer sensor could be used to measure finger flexion [42]. They proposed that a
rotary potentiometer sensor can be placed in finger joints to measure finger displacement.
Moreover, they compared the rotary sensor with a flexible bend sensor and found that the
rotary potentiometer sensor yields accurate values, while the accuracy of the bend sensor
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decreases gradually. In the case of haptic gloves, it is important to determine finger motion
extremely accurately; hence, we have used the 3382H-1-103 rotary position sensor in our
proposed gloves. It is a 10-kΩ small potentiometer, and it consumes minimal amounts of
power, which is essential for haptic gloves. As the resistance acts over the length of the
carbon through which the current flows, the resistance increases gradually as the length of
the carbon section increases. When such a sensor is located at the glove’s MCP joint, the
resistance changes according to the degree of bending of the finger. Figure 3a–c show the
body of the haptic glove, which measures the flexion/extension and adduction/abduction
through the rotary position sensors placed in the MCP joints. Figure 3a shows one rotary
position sensor is placed on the upper side of the glove structure and attached to an ex-
oskeleton structure. The exoskeleton structure itself is attached to the fingertip, such that
when a user performs flexion/extension, the inner section of the position sensor moves in
tandem with the finger’s angular movement. In this study, the range of angular movements
for flexion/extension is 0◦ to 90◦. Figure 3b shows another rotary position sensor placed
in the lower part of the glove structure to measure adduction/abduction. The sensor is
attached to the exoskeleton structure with a knob, such that when a user performs the
adduction/abduction, the sensor’s inner section moves according to the angular movement
produced by the adduction/abduction. In this study, the range of angular movements for
adduction/abduction is set to 0◦ to 40◦, which can be seen in Figure 3c.

Figure 3. Proposed haptic glove with rotary position sensor placed in MCP joints. (a) rotary
position sensor placed in the upper structure of the glove connected with exoskeleton hand to
measure flexion/extension. (b) another rotary position sensor placed in the lower structure of the
proposed glove connected to the exoskeleton hand with knob to measure adduction/abduction.
(c) demonstration of performing adduction and abduction ranging from 0◦ to 40◦.

Using the structure shown in Figure 3, the movement can be accurately identified
with only two small position sensors, as opposed to the flex-sensor-based glove structure
that requires the hand to be wrapped. Differences in finger lengths across users of VR
applications do not affect the wearability of the proposed glove.

It models the hand motion in the VWD using sensing data that varies depending
on the joint position and angle that changes in the gloved hand. The accurate detection
of finger motions, such as flexion, extension, adduction, and abduction, enables most
finger movements to be accurately modeled. Figure 4a,b show the motions of flexion
and extension, and the LLHOG senses the data necessary for modeling from the position
sensors located in the MCP joints. The MCP joint is the joint where the finger and palm are
connected. Humans can perform flexion up to 90°, and the angle of the active extension is
0°, which are considered the input values of the MMS filter when it is applied to the raw
data of the position sensors.
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Figure 4. Flexion and extension movements with proposed haptic glove. (a) demonstration of flexion
movements of 90◦ which is considered to be the maximum flexion value in the proposed haptic glove.
(b) demonstration of extension movements of 0◦ which is considered to be the extension value in the
proposed haptic glove.

Figure 5a,b show the adduction and abduction motions required for modeling. The
sensor data required for modeling these motions were measured from another position
sensors located at the MCP joints. The range of adduction motion is considered from 0° to
a maximum of 40° [43] in terms of angular displacement.

Figure 5. Adduction and Abduction movements with proposed haptic glove. (a) demonstration of
adduction movements of 0◦ which is considered to be the base adduction value in the proposed haptic
glove. (b) demonstration of abduction movements of 40◦ which is considered to be the maximum
abduction value in the proposed haptic glove.
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2.2. MMS Filter

The MMS filter scales and translates each signal in a range of 0 to 1. Moreover, the
MMS filter is employed to normalize datasets in machine learning. The raw data obtained
from the position sensor contain noise. If these data are used to perform modeling in the
VWD without post-processing, the model accuracy will decrease. The two most widely
used noise-reduction filters are the low-pass filter (LPF) and the Kalman filter. The LPF is
mostly used for flex sensors, and the Kalman filter is used for IMU sensors. Each filter has
advantages and disadvantages, and the flex sensor data through the LPF are subject to an
additional calibration process according to the size of the user’s finger/hand, which reduces
the accuracy compared to that when using a Kalman filter. By contrast, the processing of
IMU sensor data with the Kalman filter easily guarantees accuracy. However, this method
is unsuitable for real-time interaction due to the processing time required. The MMS filter
provides a method for equally correcting a modeling result that varies according to each
user’s finger length. For example, scaling is performed to provide a constant output value
of the position sensor when the joint’s degree of bending is the same for different finger
lengths. The formula of the min-max filter that enables scaling is as follows:

Scaling value =
Xt −min

max−min
(1)

The max and min values of the MMS filter correspond to the flexion/extension and
adduction/abduction values. The flexion value of 90◦ output by the sensor is considered
the min value of the MMS filter, and the extension value of 0◦ is considered the max value
of the MMS filter. As for adduction/abduction, 0◦ adduction is considered the min value of
the MMS filter, and 40◦ abduction is considered the max value of the MMS filter. Current
sensor readings are stored to Xt, and the scaling value is calculated with the same result in
the range of 0 to 1 for the same flexion angle for any user’s sensor data.

2.3. Calibration with MMS Filter

Two rotary position sensors were placed in the MCP joints to detect finger flex-
ion/extension and adduction/abduction movements. The user was asked to do flexion
and extension movement for five seconds to acquire value maximum and minimum value
of the position sensor placed on each finger’s MCP joints. The maximum value was used as
the flexion value, and the minimum value was used as the extension value for each finger.
The same process was repeated to acquire adduction/abduction values. The user was
asked to do abduction and adduction movements for five seconds to acquire the position
sensor’s maximum and minimum value placed on each finger’s MCP joints. The MMS
filter was applied to the acquired data to scale the values from 0 to 1 to accommodate finger
length variance. The proposed Algorithm 1 for calibration with the MMS filter uses the
flexion/extension sensor data Fraw and adduction/abduction sensor data Araw as the input.
The output includes flexion/extension filtered data Ff il , and adduction/abduction filtered
data A f il .

We first initialize sensor variables and assigned analogRead to the variable. Then we
set Fmin, Amin value to 9999 and Fmax, Amax to 0 for calibration purposes. Calibration time
for flexion/extension Fthres and adduction/abduction Athres is set 5 s and 10 s, respectively.
After powering up the haptic gloves, the first 5-s window is used as the calibration time
for flexion and extension. After that, another 5-s window is used as the calibration time
for abduction and adduction. The millies() function is used to facilitate the calibration as
the millies() function calculates the times in ms after powering up the glove. The millies()
function facilitates the division of the calibration time into 5-s windows. The calibration
of flexion and extension starts by comparing the millies() and Fthres. While the millies()
is less than Fthres; If the Fraw is greater than Fmax, the system assigns the value of Fraw to
Fmax, which will be used as the extension value. If the Fraw is less than Fmin, the system
assigns the value of Fraw to Fmin, which will be used as the flexion value. While the millies()
is less than Athres; If the Araw is greater than Amax, the system assigns the value of Araw
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to Amax, which will be used as the adduction value. If the Araw is less than Amin, the
system assigns the value of Araw to Amin, which will be used as the abduction value. After
calibration, the system implements the MMS filter by minimizing Fraw to Fmin and dividing
them by minimizing Fmax to Fmin for flexion/extension. The same procedure is also used for
adduction/abduction. However, the output of the MMS filter is a floating value between 0
and 1, which adds to the complexity of modeling hand motions in Unity and causes delay.
Therefore, we converted the floating points to an integer value to better represent data and
reduce the processing delay.

Algorithm 1: Proposed calibration method with the MMS filter.
Input : flexion/extension Sensor reading ; Fraw, adduction/abduction sensor

reading ; Araw
Output : filtered flexion/extension data ;Ff il , filtered adduction/abduction data ;

A f il
1 Fraw, Araw ← analogRead
2 Fmin, Amin ← 9999
3 Fmax, Amax ← 0
4 Fthres, Athres ← 5s, 10s
5 while millies() < Fthres do
6 if Fraw > Fmax then
7 Fmax ← Fraw
8 if Fraw < Fmin then
9 Fmin ← Fraw

10 end
11 while millies() < Athres do
12 if Araw > Amax then
13 Amax ← Araw
14 if Araw < Amin then
15 Amin ← Araw
16 end
17 Ff il ← Fraw−Fmin

Fmax−Fmin

18 A f il ← Araw−Amin
Amax−Amin

Figure 6 shows the raw values of the position sensor and the filtered sensor value.
As the filtered value ranges from 0 to 1, it is not easy to plot both of them in the same
graph. To facilitate the plotting filtered sensor value, it was multiplied by 100 and was
added 50 for each sensor reading. It can be seen that the output value of the MMS filter
has minimal processing delay and looks stable. The raw value of the rotary position
sensor has low noise due to good resolution. The MMS filter is used to scale and typecast
floating-point values to integer values to ensure fast data processing for VR in Unity and
low processing/communication delay. We have observed that the filtered sensor value is
more stable than the raw data for facilitating motion-tracking in VR.

2.4. Object Handling CONTROL Data

The glove presented in this paper uses an interface that enables interaction between
the RWD and the VWD. It is essential for any virtual reality environment to accurately
track real-time hand motions so that the same motions can be reproduced in VWD. We
have used Unity software to resembles the RWD hand motion in VWD. We transferred the
real-time hand motion data processed with the MMS filter to Unity to reproduce virtual
hand motions.

Figure 7a,b show hand motions in the real-world domain and the virtual-world
domains, respectively. The user was asked to perform horn symbol motion RWD, which
can be seen in Figure 7a, and real-time hand motion was reproduced in Unity virtual
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environment, which can be seen in Figure 7b. Figure 7 demonstrates that accurate hand
motion can resemble in VWD with our proposed glove.

Figure 6. Raw and filtered values of the proposed calibration method with the MMS filter. The x-axis
represents the time in microseconds and y-axis represent the analog output value from sensors before
and after applying MMS filter.

Figure 7. (a) Motion in real-world domain; (b) modeling result in the virtual-world domain which
was done in Unity Software.

3. Performance Evaluation

Performance evaluation of the proposed haptic gloves was divided into two parts:
processing time and accuracy from the perspective of different hand sizes. Brief descriptions
of these parts are as follows:
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3.1. Processing Time

Figure 8 compares the existing methods’ filtered output value with our proposed
method for flexion and extension. The x-axis represents the time in microseconds, and
the y-axis represents the filtered value of the analog reading from the sensor. The filtered
value was multiplied by 100 and was added 50 for each sensor reading to facilitate the
plotting. We have used IMU, flex sensors for the evaluation process because these sensors
are frequently used in the haptic glove for hand motion-tracking in VR. The method used
in this paper includes IMU sensors + Kalman filter filtered value and flex sensors + LPF
filtered value. We have used the Kalman filter library from Arduino documentation was
used for Kalman filter-based method. Process noise variance for the accelerometer and the
gyro bias was set to 0.001 and 0.003, respectively. Moreover, measurement noise variance
was set to 0.03. As for LPF-based method, we have used the first order LPF and have used
4 Hz as the cutoff frequency. Data processing with MMS filter was done on an Arduino
Nano 33 BLE microcontroller board and transferred to python 3.6 scripts through pyserial
library to plot the processed data. Figure 8a shows the filtered value of the three methods
used to evaluate performance. The user was asked to perform flexion and extension within
2000 milliseconds, and the raw value was processed and plotted against the time. It can be
seen that method 1 and the proposed method have similar filtered values with little noise
than method 2. Moreover, the user was also asked to perform the flexion and extension
five times within 2000 milliseconds. Figure 8b shows the filtered value of fast flexion and
extension with the same three methods. The proposed method works better in the fast
movement, and the noise level is less than the other two methods.

Figure 9 compares the existing methods’ filtered output value with our proposed
method for adduction and abduction. The experimental setup was the same as for flex-
ion/extension measurement in Figure 9. The x-axis represents the time in microseconds,
and the y-axis represents the filtered value of the analog reading from the sensor. The MMS
filter’s output value is in the range of 0 to 1, so the filtered value was multiplied by 100 and
was added 50 for each sensor reading to facilitate the plotting. Figure 9a shows the filtered
value of the three methods used to evaluate performance. The user was asked to perform
adduction and abduction within 2000 milliseconds, and the raw value was processed and
plotted against the time. It can be seen that method 1 and the proposed method have
similar filtered values with little noise, whereas the filtered value of method 2 produces
greater noise, which is not suitable for a virtual environment. The user was also asked
to perform the adduction and abduction five times within 2000 milliseconds. Figure 9b
shows the filtered value of fast adduction/abduction with the same three methods. The
proposed method works better in the fast movement, and the noise level is less than the
other two methods. However, it should be noted that the MMS filter is not a traditional
noise cancelling filter. It scales the data from 0 to 1 and presents the data in a floating-point
number. In the proposed glove, we have converted the floating-point output value to the
integer value to enable data to use in VR and achieve low latency. The use of MMS filter
with sensors with significant noise can affect the accuracy in motion-tracking.



Sensors 2021, 21, 3682 13 of 21

Figure 8. Comparison of the filtered flexion/extension value in terms of noise reduction with
method 1(IMU sensor + Kalman filter) and method 2(flex sensor + LPF). (a) noise-reduction com-
parison for normal flexion/extension movements. (b) noise-reduction comparison for fast flex-
ion/extension movements.
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Figure 9. Comparison of the filtered adduction/abduction value in terms of noise reduction with
method 1(IMU sensor + Kalman filter) and method 2(flex sensor + LPF). (a) noise-reduction com-
parison for normal adduction/abduction movements. (b) noise-reduction comparison for fast
adduction/abduction movements.
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Latency is significant for a haptic glove, which is used in the virtual environment to
manipulate objects. In some environments, the latency requirement is as low as 1 ms, so
making haptic gloves with less processing delay for virtual interaction is crucial. Table 2
lists the average processing delay of the IMU sensor, flex sensor, and rotary position
sensor data processed with the LPF, Kalman filter, and MMS filter for index finger. All
measurements were conducted 100 times, and the average processing time was calculated
with 100 sensor readings. For the IMU sensor, we only used the Kalman filter because it
is hard to derive the standard output value with LPF and MMS filter, owing to the gyro
drift phenomenon that occurs when processing the raw data of the 9-DoF IMU sensor
that uses the gyro sensing value. We observed that IMU sensor data processed with the
Kalman filter have an average processing delay of 1920.36 µs, which is very high. The
reason behind the high processing delay is the complexity of the calculation algorithm for
processing and predicting values. The flex sensor data processed with the Kalman filter,
LPF, and MMS filter have a processing delay of 738.02 µs, 280.02 µs, and 145.64 µs. Here,
we can also see that data processing of flex sensor with Kalman filter takes longer than
other filters. LPF takes considerably less time than Kalman filter to process data because of
the algorithm’s simplicity. We can see that the flex sensor processed with the MMS filter
has less processing delay than the other two filters because the MMS filter scales the data
from 0 to 1 in floating points and converts the data into the integer. One potential reason
could be requiring a lower complexity algorithm in scaling and cutting off floating points.
We have also implemented the Kalman filter, LPF, and the MMS filter on our proposed
glove, and the processing delays are 370.95 µs, 280.69 µs, and 145.37 µs, respectively. We
have observed a similar processing delay for the flex sensor and rotary position sensor
with the MMS filter because they share the same sensing principle.

Table 2. Comparison of processing delay of the proposed glove with conventional method.

Kalman Filter Low-Pass Filter MMS Filter

IMU sensor 1920.36 µs N/A N/A

Flex sensor 738.02 µs 280.02 µs 145.64 µs

Rotary Position sensor 370.95 µs 280.69 µs 145.37 µs

3.2. Finger Motion-Tracking ACCURACY

Finger motion-tracking-based haptic gloves are crucial in almost every application
involving immersive interaction, rehabilitation, and teleoperation [44–46]. Researchers
are trying to develop robust haptic gloves with very high accuracy in finger and hand
motion-tracking. Lu et al. developed a 3-D finger measurement system with strain sensors
placed in interphalangeal (IP), MCP, and carpometacarpal (CMC) joints to measure finger
movement accuracy [47]. They measured the estimated error for flexion-extension and
adduction-abduction movement and observed a mean error of less than 3.5◦ across all
movements. Li et al. presented a hand motion measurement system with 14 custom-made
bending sensors and an IMU sensor [48]. Experiments were conducted on six subjects with
different hand sizes, and they were asked to execute nine grasping motions. The mean
absolute error (MAE) of the proposed system was 6.35◦ ± 0.92◦. Jun et al. also propose a
wearable real-time hand measurement algorithm for different hand sizes. They used fiber
Bragg grating (FBG) strain sensors and 3D printed hand replica with different hand sizes
to measure hand motions [49]. They Measured the angle error for DIP, PIP, and MCP joints
and observed a mean error angle of 0.47◦ ± 2.51◦ and a MAE of 1.63◦ ± 1.97◦. Gajdosik and
Bohannon stated that the allowable mean error of finger movements should be less than
5◦ [50]. This paper uses 5◦ as a standard error value and compares it with our proposed
haptic gloves motion error in terms of flexion/extension and adduction/abduction. In this
paper, we measured the hand motion for index fingers of ten participants and compared
the MAE with the finger’s actual angular movements.
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Ten healthy participants with different hand sizes were selected to measure the hand
motion accuracy of the proposed glove. Finger sizes were measured from the MCP joints
to the fingertips using a scale, and the finger sizes were 68.9 ± 3.3 mm. In this paper,
we evaluate the mean error for index fingers of all participants. First, the participants
were asked to wear and calibrate the gloves for 10 s. Then, they were asked to perform
flexion and extension movements over the range of 0◦ to 90◦. After flexion and extension,
participants were asked to move their finger to 20◦, 40◦, 60◦, and 90◦ to measure the angle
and compare it with the real angle. Then, we calculated the mean error with respect to the
real angle. Figure 10 shows the mean error of the different finger length sizes in terms of
flexion and extension. For 20◦ movements, the participant with the index finger size of 69.5
mm had a large error of 0.68◦ + 4.32◦. For 40◦ movements, the participant with the index
finger size 67.8 mm had a large error of 0.38◦ + 6.5◦. However, the mean error was very
high when participants were asked to move their fingers to 60◦. Participants with hand
sizes of 69.5 mm and 67.3 mm had the greatest mean errors of 0.58◦ + 7.36◦. Lastly, the
participant with the index finger size of 69.5 mm had a large mean error of 0.38◦ + 6.5◦ for
90◦ movement.

Figure 11 shows the mean error for the different finger lengths for adduction and
abduction. The participants were asked to perform adduction and abduction over the
range of 0◦ to 40◦. Then participants were asked to perform abduction to 10◦, and the
largest mean error was observed 0.38◦–3.62◦ in the case of the participant with the finger
length of 69.5 mm. At 20◦, the mean errors were low for all the participants, and the
largest mean error was 0.50◦ + 1.50◦. However, we observed that the largest mean error
among all the participants occurred when they performed abduction to 30◦. The largest
mean error observed was 0.50◦–4.50◦, in the case of the participant with a finger length of
69.5 mm. Finally, the largest mean error in the case of 40◦ abduction was 0.68◦ + 4.32◦ for
the participant with a finger length of 67.3 mm.

Figure 10. Mean error for flexion and extension in terms of real angle and measured angle.
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Figure 11. Mean error for adduction and abduction in terms of real angle and measured angle.

Table 3 shows the individual MAE for all participants in terms of flexion-extension
and adduction-abduction. The largest MAE for flexion and extension was 4.50◦, and the
participant who contributes to the error had a finger length of 67.8 mm. The least MAE for
flexion and extension was 2.25◦, and the participants who contributed this error had finger
lengths of 70.5 mm and 65.6 mm. By contrast, the largest MAE for all the participants in
terms of adduction and abduction was 3.00◦, and the participant who contributes to this
error had a finger length size of 67.3 mm. The least MAE for adduction and abduction was
1.75◦, and the participant who contributed this error had a finger length of 70.5 mm. We
calculated the average MAE for flexion-extension and adduction-abduction as 3.091◦ and
2.068◦, respectively.

Table 3. MAE of flexion/extension and adduction/abduction for different hand sizes.

Finger Length 70.5 69.5 67.8 65.6 67.3 67.6 72.2 71.0 69.5 70.5 MAE

Flexion and Extension 2.25 4.25 4.50 2.25 4.25 3.75 3.00 4.25 3.00 2.50 3.091

Adduction and Abduction 1.75 2.75 2.25 2.00 3.00 2.25 2.00 2.50 2.00 2.25 2.068

Table 4 shows the comparison of different glove motion-tracking errors with the pro-
posed glove. Lu et al., in their paper, used strain sensors to track finger motion, and the
authors observed a mean error of 3.5◦ for all movements [47]. On the other hand, Jun et
al. used the FBG strain sensor to track hand motion, and they observed a mean error of
1.63◦ ± 1.97◦ [49]. Li et al. have used the IMU sensor to track hand motion; however,
they observed a more significant mean error than other gloves, which is 6.35◦ ± 0.92◦ [48].
Gu et al., in their glove, have custom rotational sensors and observed a mean error of 0.5◦ in
hand motion-tracking, which is very promising and has higher accuracy than other meth-
ods [29]. BeBop developed fabric bend sensor-based data gloves to track hand motion for
commercial use, and they claim that they have observed±1.5◦ error in tracking motion [51].
Our proposed gloves use rotary position sensors to track hand motion, and we have ob-
served a MAE of 3.091◦ for flexion-extension and 2.068◦ for adduction-abduction. It can be
seen that the motion-tracking with rotary position sensor achieved considerable accuracy
along with other methods. However, this error can be minimized by placing a sensor in
the DIP and PIP joints to track finite fraction joint displacement through a rotary position
sensor. Although the glove proposed by Gu et al. has a very low motion-tracking error of
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0.5◦, the allowable motion-tracking accuracy error specified by Gajdosik and Bohannon is
5◦. Our proposed glove has achieved a motion-tracking error of 3.091◦ and 2.068◦, which is
under the 5◦ threshold. The motion-tracking accuracy of the proposed glove can be im-
proved using more rotational sensors in the PIP and DIP joints of the finger. Moreover, the
rotational sensors for flexion-extension and adduction-abduction movement are placed on
the upper structure of the glove, and the structure has empty spaces between the joint and
sensors. In the future, we plan to shorten the gap between exoskeleton and rotary axis hole
of sensor to measure the precise movement of flexion-extension and adduction-abduction.

Table 4. Comparison of motion-tracking error with other methods found in the literature.

Sensors Angle Error

Lu et al. [47] strain sensor <3.5◦

Li et al. [48] IMU sensor + bend sensor 6.35◦ ± 0.92◦

Jun et al. [49] FBG strain sensor 1.63◦ ± 1.97◦

Gu et al. [29] rotational sensor 0.5◦

BeBop [51] fabric bend sensor ±1.5◦

Proposed glove rotary position sensor 3.091◦ and 2.068◦

Table 5 shows the comparison of latency of different VR gloves with the proposed
glove. Lu et al., in their paper, used strain sensors to track finger motion, but the author did
not calculate the latency of data sensing and motion-tracking [47]. Li et al. have used the
IMU sensor and bend sensor, and they have observed a response time of 24.35 ± 1.54 ms
for bending sensor output [48]. Jun et al. used the FBG strain sensor to track hand motion,
and they found out that it takes 20–40 ms to track the finger joint [49]. Gu et al. have used
custom rotational sensors to measure the finger’s bending and observed delay 20–40 ms,
including data acquisition, data processing, and force-feedback unit system [29]. BeBop
data gloves have used a fabric bend sensor to track finger movement and achieved a
response time of 6 ms for tracking finger movement [51]. In our proposed gloves, we
have used rotary position sensors to track finger motion, and we have achieved a very low
latency of 145.37 µs, which includes data acquisition and processing delay for one finger.
We have also calculated the data processing latency for the whole hand, which is less than
1 ms. In the experiment, BLE communication is used to transfer the data from Arduino
to PC to resemble hand motions in the VR environment. A latency of 4 ms in tracking
hand motion in VR has been observed which includes data acquisition, data processing,
data transmission and motion-tracking in Unity. However, the latency can vary in the case
of using WiFi or 5G infrastructure, which can be one millisecond to tens of milliseconds.
Although the proposed glove’s motion-tracking accuracy is a little lower than some of
gloves mentioned in Table 4, our proposed glove has a very low latency of 4 ms, which is
suitable for seamless VR immersion.

Table 5. Comparison of Latency with other methods found in the literature.

Sensors Latency

Lu et al.[47] strain sensor N/A

Li et al. [48] IMU sensor + bend sensor 24.35 ± 1.54 ms

Jun et al. [49] FBG strain sensor 20–40 ms

Gu et al. [29] rotational sensor 20–40 ms

BeBop [51] fabric bend sensor 6 ms

Proposed glove rotary position sensor 4 ms
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4. Conclusions

Immersive VR applications require that immersion be guaranteed through fast inter-
action between the VWD and the RWD through wearable peripherals. To this end, we
proposed a low-latency haptic open glove (LLHOG), which enables real-time interaction
between the RWD and the VWD through a wearable five-finger glove. The LLHOG senses
hand and finger motions using rotary position sensors placed in the MCP joints. The
position sensors and the MMS filter of the LLHOG are used to achieve low latency, high ac-
curacy, and robustness to finger length. The proposed glove achieved 145.37 µs processing
delay per finger and 4 ms hand motion-tracking delay for whole hand, which is superior
to other methods. The average MAE for flexion and extension was 3.091◦, and the average
MAE for adduction and abduction was 2.068◦, which means that the LLHOG is suitable
for use in any immersive interaction. Our results confirm that the LLHOG is robust to
variations in finger length. This study is done to achieve low processing delay and higher
hand motion-tracking accuracy. Although the experiments suggest that the proposed glove
is suitable for motion-tracking in VR interaction, the MMS filter can perform well when
a sensor has very low noise. Using the proposed MMS filter which is not a pure noise
filter with sensors with significant noise may affect the motion-tracking accuracy. The
MCP joints displacement angle of the proposed glove from 0º to 90º may be disputable
as some researchers suggested that it can be from 0º to 100º. In addition, to manipulate
virtual objects in VR, the hand’s absolute position in the space is crucial. In the future, we
will incorporate the IMU sensor and professional controller for VR (HMDs) so that the
absolute position can be calculated in the space for virtual object manipulation. Moreover, a
haptic feedback system can be implemented along with the proposed gloves for improved
immersive interaction.
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21. Smagowska, B.; Pawlaczyk-Łuszczyńska, M. Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review. Int. J.
Occup. Saf. Ergon. 2013, 19, 195–202. [CrossRef]

22. Blake, J.; Gurocak, H.B. Haptic Glove With MR Brakes for Virtual Reality. IEEE/ASME Trans. Mechatron. 2009, 14, 606–615.
[CrossRef]

23. Kumar, P.; Verma, J.; Prasad, S. Hand data glove: A wearable real-time device for human-computer interaction. Int. J. Adv. Sci.
Technol. 2012, 43, 15–26.

24. Perret, J.; Vander Poorten, E. Touching Virtual Reality: A Review of Haptic Gloves. In Proceedings of the ACTUATOR 2018; 16th
International Conference on New Actuators, Bremen, Germany, 25–27 June 2018; pp. 1–5.

25. Massie, T.H.; Salisbury, J.K. The PHANTOM Haptic Interface: A Device for Probing Virtual Objects. Proc. ASME Winter Annu.
Meet. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst. 1994, 55, 295–300.

26. Inc, S.D. Senso Glove. 2017. Available online: http://www.sensoglove.com/en/ (accessed on 22 May 2021).
27. CI, C. Maestro Glove. 2018. Available online: http://maestroglove.com/ (accessed on 22 May 2021).
28. Turner, M.; Gomez, D.H.; Tremblay, M.R.; Cutkosky, M. Preliminary Tests of an Arm-Grounded Haptic Feedback Device in

Telemanipulation. ASME IMECE Haptic Symp. 1998, 64, 145–149.
29. Gu, X.; Zhang, Y.; Sun, W.; Bian, Y.; Zhou, D.; Kristensson, P.O. Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton

for Motion Capture and Force Feedback in VR. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1991–1995.

30. Rubin, J.A.; Crockett, R.S.; Goupil, M.Y.; D’Amelio, J.D.; Rojanachaichanin, B.L.; Sjoberg, K.C.; Piller, P.; Bonafede JR., N.J. Haptic
Feedback Glove. 2018. Available online: https://patents.google.com/patent/US20180335842A1/en?assignee=haptx&oq=haptx
(accessed on 22 May 2021).

31. SENSEGLOVE. Sense Glove. 2018. Available online: https://www.senseglove.com/ (accessed on 22 May 2021).
32. Saggio, G.; Riillo, F.; Sbernini, L.; Quitadamo, L.R. Resistive flex sensors: a survey. Smart Mater. Struct. 2015, 25, 013001.

[CrossRef]
33. Saggio, G. A novel array of flex sensors for a goniometric glove. Sens. Actuators A Phys. 2014, 205, 119–125. [CrossRef]

http://dx.doi.org/10.1145/3145534
http://dx.doi.org/10.1007/978-3-319-68059-0_20
http://dx.doi.org/10.1109/ICAwST.2019.8923551
http://dx.doi.org/10.3390/s19051072
http://www.ncbi.nlm.nih.gov/pubmed/30832385
http://dx.doi.org/10.1109/TOH.2020.3018754
http://www.ncbi.nlm.nih.gov/pubmed/32833644
http://dx.doi.org/10.3390/mti4040091
http://dx.doi.org/10.1109/CogInfoCom50765.2020.9237818
http://dx.doi.org/10.1145/2993369.2996327
http://dx.doi.org/10.1016/j.trit.2016.03.010
http://dx.doi.org/10.1002/admt.201900042
http://dx.doi.org/10.23919/SICE.2018.8492582
http://dx.doi.org/10.3813/AAA.919395
http://dx.doi.org/10.1080/10803548.2013.11076978
http://dx.doi.org/10.1109/TMECH.2008.2010934
http://www.sensoglove.com/en/
http://maestroglove.com/
https://patents.google.com/patent/US20180335842A1/en?assignee=haptx&oq=haptx
https://www.senseglove.com/
http://dx.doi.org/10.1088/0964-1726/25/1/013001
http://dx.doi.org/10.1016/j.sna.2013.10.030


Sensors 2021, 21, 3682 21 of 21

34. Abualola, H.; Ghothani, H.A.; Eddin, A.N.; Almoosa, N.; Poon, K. Flexible gesture recognition using wearable inertial sensors. In
Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United
Arab Emirates, 16–19 October 2016; pp. 1–4. [CrossRef]

35. Lee, H.J.; Lee, S.J.; Kim, J. MANOVIVO: Design of Smart Glove for Measuring Rheumatoid Arthritis’s Hand Function. Available
online: https://repository.hanyang.ac.kr/handle/20.500.11754/161252 (accessed on 22 May 2021).

36. Chan, T.K.; Yu, Y.K.; Kam, H.C.; Wong, K.H. Robust Hand Gesture Input Using Computer Vision, Inertial Measurement Unit
(IMU) and Flex Sensors. In Proceedings of the 2018 IEEE International Conference on Mechatronics, Robotics and Automation
(ICMRA), Hefei, China, 18–21 May 2018; pp. 95–99. [CrossRef]

37. Hilman, M.; Basuki, D.K.; Sukaridhoto, S. Virtual Hand: VR Hand Controller Using IMU and Flex Sensor. In Proceedings of the
2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Bali, Indonesia, 29–30
October 2018; pp. 310–314. [CrossRef]

38. Du, J.; Gerdtman, C.; Lindén, M. Noise Reduction for a MEMS-Gyroscope-Based Head Mouse. Stud. Health Technol. Inform. 2015,
211, 98–104. [CrossRef]

39. Weill-Duflos, A.; Mohand-Ousaid, A.; Haliyo, S.; Régnier, S.; Hayward, V. Optimizing transparency of haptic device through
velocity estimation. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM),
Busan, Korea, 7–11 July 2015; pp. 529–534. [CrossRef]

40. Ponticelli, R.; Gonzalez de Santos, P. Full perimeter obstacle contact sensor based on flex sensors. Sens. Actuators A Phys. 2008,
147, 441–448. [CrossRef]

41. Park, Y.; Lee, J.; Bae, J. Development of a finger motion measurement system using linear potentiometers. In Proceedings of the
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 8–11 July 2014; pp. 125–130.
[CrossRef]

42. Othman, A.; Hamzah, N.; Hussain, Z.; Baharudin, R.; Rosli, A.D.; Ani, A.I.C. Design and development of an adjustable angle
sensor based on rotary potentiometer for measuring finger flexion. In Proceedings of the 2016 6th IEEE International Conference
on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 25–27 November 2016; pp. 569–574. [CrossRef]

43. Bundhoo, V.; Haslam, E.; Birch, B.; Park, E.J. A shape memory alloy-based tendon-driven actuation system for biomimetic
artificial fingers, part I: design and evaluation. Robotica 2009, 27, 131–146. [CrossRef]

44. Ma, Y.; Jia, W.; Li, C.; Yang, J.; Mao, Z.H.; Sun, M. Magnetic hand motion tracking system for human-machine interaction. Electron.
Lett. 2010, 46, 621–623. [CrossRef]

45. Kim, D.H.; Yoon, S.J.; Park, Y.S.; Jeon, K.W.; Park, S.H. Design and Implementation of a Wearable Hand Rehabilitation Robot for
spasticity patient. In Proceedings of the 2014 Korean Society of Computer Information Conference , Seoul, Korea, 2–4 July 2014;
pp. 21–24.

46. Fattahi Sani, M.; Abeywardena, S.; Psomopoulou, E.; Ascione, R.; Dogramadzi, S. Towards Finger Motion Tracking and
Analyses for Cardiac Surgery. In Proceedings of XV Mediterranean Conference on Medical and Biological Engineering and
Computing—MEDICON 2019, Coimbra, Portugal, 26–28 September 2019; pp. 1515–1525.

47. Lu, S.; Chen, D.; Liu, C.; Jiang, Y.; Wang, M. A 3-D finger motion measurement system via soft strain sensors for hand
rehabilitation. Sens. Actuators A Phys. 2019, 285, 700–711. [CrossRef]

48. Li, X.; Wen, R.; Shen, Z.; Wang, Z.; Luk, K.D.K.; Hu, Y. A Wearable Detector for Simultaneous Finger Joint Motion Measurement.
IEEE Trans. Biomed. Circ. Syst. 2018, 12, 644–654. [CrossRef] [PubMed]

49. Kim, J.S.; Kim, B.K.; Jang, M.; Kang, K.; Kim, D.E.; Ju, B.K.; Kim, J. Wearable Hand Module and Real-Time Tracking Algorithms
for Measuring Finger Joint Angles of Different Hand Sizes with High Accuracy Using FBG Strain Sensor. Sensors 2020, 20, 1921.
[CrossRef]

50. Gajdosik, R.; Bohannon, R. Clinical Measurement of Range of Motion Review of Goniometry Emphasizing Reliability and
Validity. Phys. Ther. 1988, 67, 1867–1872. [CrossRef] [PubMed]

51. sensors, B. BeBop Sensors Announces World’s First Haptic Glove Designed Exclusively For Oculus Quest™ Forte Data Glove
with Oculus Quest Controller. 2019. Available online: https://bebopsensors.com/bebop-sensors-announces-worlds-first-haptic-
glove-designed-exclusively-for-oculus-quest-forte-data-glove-with-oculus-quest-controller/ (accessed on 22 May 2021).

http://dx.doi.org/10.1109/MWSCAS.2016.7870143
https://repository.hanyang.ac.kr/handle/20.500.11754/161252
http://dx.doi.org/10.1109/ICMRA.2018.8490559
http://dx.doi.org/10.1109/KCIC.2018.8628594
http://dx.doi.org/10.3233/978-1-61499-516-6-98
http://dx.doi.org/10.1109/AIM.2015.7222588
http://dx.doi.org/10.1016/j.sna.2008.05.029
http://dx.doi.org/10.1109/AIM.2014.6878066
http://dx.doi.org/10.1109/ICCSCE.2016.7893640
http://dx.doi.org/10.1017/S026357470800458X
http://dx.doi.org/10.1049/el.2010.0220
http://dx.doi.org/10.1016/j.sna.2018.12.004
http://dx.doi.org/10.1109/TBCAS.2018.2810182
http://www.ncbi.nlm.nih.gov/pubmed/29877827
http://dx.doi.org/10.3390/s20071921
http://dx.doi.org/10.1093/ptj/67.12.1867
http://www.ncbi.nlm.nih.gov/pubmed/3685114
https://bebopsensors.com/bebop-sensors-announces-worlds-first-haptic-glove-designed-exclusively-for-oculus-quest-forte-data-glove-with-oculus-quest-controller/
https://bebopsensors.com/bebop-sensors-announces-worlds-first-haptic-glove-designed-exclusively-for-oculus-quest-forte-data-glove-with-oculus-quest-controller/

	Introduction
	Motivation and Challenges Definition
	Related Work and State of the Art
	Contribution of the Present Study

	System Overview
	Rotary Position Sensor
	MMS Filter
	Calibration with MMS Filter
	Object Handling CONTROL Data 

	Performance Evaluation
	Processing Time
	Finger Motion-Tracking ACCURACY

	Conclusions
	References

