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Multilayered salt water with high 
optical transparency for EMI 
shielding applications
Duy Tung Phan & Chang Won Jung*

Electromagnetic interference (EMI) shielding for visual observation applications, such as windows 
utilized in military or aerospace, is important but difficult to realize due to conventional materials 
having difficulty in achieving sufficient transparency and EMI shielding simultaneously. In this paper, 
we present multilayered structures based on salt water for simultaneous highly optical transparency 
(OT) and EM shielding effectiveness (SE) performance. In the proposed structures, planar acrylic and 
glass were used as two types of clear substrates to hold salt water. The measured OT of both acrylic/
salt water/acrylic and glass/salt water/glass structures was higher than 90% with a nearly uniform 
light transmission, which introduced a negligible impact on optical observation. Furthermore, both 
simulations and experimental results demonstrated that the SE of the multilayer structure was 
higher than 20 dB in the X-band from 7.5 to 8.5 GHz. Moreover, the SE was significantly enhanced 
by increasing the thickness of the salt water layer. Especially, both OT and SE of the multilayered 
structures were improved simultaneously by increasing the salinity of the salt water. These proposed 
structures demonstrate great potential in EMI shielding observation applications.

With the successful development of electronics and wireless communication technology, electromagnetic inter-
ference (EMI) from microwave radiation is becoming a new and serious global pollutant source that affects 
health, the military, factories, and commerce1–4. Thus, EMI shielding has assumed vital importance5. However, 
the use of EMI shielding is problematic in applications where visual observation is necessary, such as in the 
optical windows utilized in military and aerospace equipment5,6. Therefore, it is highly desirable to develop a 
transparent and efficient shielding material/structure.

Over the past few decades, transparent conductive thin films (TCF) have been considered as optimum shield-
ing materials given their optical transparency and favorable EMI shielding performance. For example, indium 
tin oxide (ITO) has dominated the TCF market owing to its high transparency (85%) and low sheet resistance 
(10 Ω/sq)7. However, ITO has various limitations related to the material itself, such as its fragility and high cost, 
owing to its crystalline structure and its rare-earth indium component.

Recently, transparent electrodes (TEs) such as graphene8, graphene-polymer composites9, carbon nanotubes 
(CNTs)10, metallic nanowires (MNWs)11 and metallic mesh film (MMF)4,7 have studied as alternates to ITO. 
However, graphene and CNTs cannot achieve high transparency and strong EMI shielding simultaneously given 
that they are carbon-based materials12,13. It has also been reported that MNWs have high levels of optical haze, 
resulting in low transparency of the TE and the considerable contact resistance between the wires, leading to low 
shielding performance14. MMF can be used with printing technology to achieve low contact resistance between 
the wires, though stray light caused by diffraction superposition degrades the imaging quality15,16. Therefore, 
developing a transparent EMI shielding material or structure that exhibits all of the aforementioned excellent 
features simultaneously remains a significant technical challenge.

In this paper, we report a strategy by which to design an optically transparent multilayered structure using 
salt water that achieves excellent transmittance, covering a wide optical region and displaying typical EMI 
shielding performance. Moreover, the optical and electrical performance capabilities are tunable by controlling 
the salinity and thickness of the salt-water layer. To the best of our knowledge, no study has used salt water for 
electromagnetic shielding applications thus far.
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Optical properties
Theoretical analysis.  As in most transparent media, light is attenuated by reflection at the surface and by 
internal absorption. Therefore, the transmission of the light through media is defined by the following simple 
relationship17:

Here, T, A, and R are the transmission, absorption, and reflection coefficients, respectively. Therefore, the optical 
transparency (OT) of a medium can be determined from A and R. In this section, we present a means by which 
to determine A and R of a multilayer structure based on salt water.

Figure 1 shows a schematic (cross-section view) of the optically transparent multilayer structure based on 
salt water. The multilayer structure consists of a salt-water layer with thickness tsw, which is held between two 
identical transparent substrate layers with thickness tsub. The refractive indexes of the substrate and salt water 
are nsub and nsw , respectively.

In the multilayer structure, the mechanism of reflection is more complicated than those of single-layer 
structures owing to the multiple-reflection phenomena. As depicted in Fig. 1, the first reflection is the reflected 
wave from the transparent material surface, whereas multi-reflection arises in the form of re-reflection of waves 
reflected earlier. Typically, multiple reflections between the parallel surfaces of a multilayer structure interfere 
with each other, resulting in the net transparency of the structure being reduced. However, interference only 
occurs when the spacing between the surfaces is comparable to or narrower than the wavelength of light, which 
is a few micrometers. In the proposed multilayer structure, the thickness of each layer is several millimeters, 
which is much wider than the wavelength of light; therefore, the interference due to multiple reflections can 
be ignored. Accordingly, the reflection at this stage is the only first reflection, and it can be determined using 
Fresnel equations.

Once the light crosses the interface and enters the bulk, it will be absorbed by the transparent material. The 
amount of absorption in each layer depends on the thickness and properties of the material itself. The absorp-
tion of light in each layer can be determined using Beer-Lambert’s law, i.e., As = αt , where α is the absorption 
coefficient and t is the thickness of the layer. The total absorption of the light in the multilayer structure can be 
determined using Eq. (2).

In this equation, αsub and αsw are the absorption coefficients of the transparent substrate and salt water, 
respectively.

In the multilayer structures here, we used acrylic (poly(methyl methacrylate)) and quartz glass as two types 
of transparent substrates that correspond to acrylic/salt water/acrylic (ASA) and glass/salt water/glass (GSG) 
structures, respectively. Quartz glass is a very pure transparent substrate in which the absorption coefficient 
is very close to zero. The absorption coefficient of the acrylic has also been determined experimentally to be 
approximately 0.1%/cm16. When the total thickness of the two substrate layers is 2 mm (each layer 1 mm), the 
absorption of light in two transparent substrate layers is approximately 0.02%, which is very small. Moreover, 
as reported in the literature, the average absorption coefficient of light in seawater is 20%/m18; therefore, the 
absorption of light in a salt-water layer with a thickness of 1 mm is 0.02%. According to Eq. (2), the total absorp-
tion of light in multilayer structures would be approximately 0.04%, which is very small to the point that it can 
be ignored. This was also verified experimentally.

Given that the absorption can be ignored, the optical transparency of the multilayer structure depends only 
on the reflection. Therefore, we analyzed the optical transparency of the multilayer structures based on refractive 
index matching19. Ideal refractive index matching is achieved when two substances with the same refractive index 
are in contact, causing the light to pass from one substance to the other with neither reflection nor refraction. 
As shown in Fig. 2, the refractive index of the substrates, in this case the acrylic and glass, is a function of the 

(1)T = 1− A− R

(2)A = 2asubtsub + αswtsw
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Figure 1.   Schematic of the transparent multilayer based on salt water showing the reflections.
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radiation wavelength20,21. It can be observed that both the refractive indexes of acrylic and glass were slightly 
decreased with an increase in the wavelength. The acrylic showed a significantly higher refractive index compared 
to that of the glass in the entire visible band.

With regard to salt water, the refractive index depends not only on the light wavelength but also on the salin-
ity, temperature, and salt-water pressure. In relation to this, numerous data sets have been provided through 
various experiments1,22–24. Researchers have reviewed previous studies of the refractive index of salt water and 
have presented an extensive summary of experimental data as well as interpolations and extrapolations.

In this study, we determined the refractive index of salt water as a function of the salinity and radiation 
wavelength at room temperature (25 °C) and atmospheric pressure conditions using the empirical equation 
presented by Quan and Fry24

where S is the salinity in parts per thousand (ppt), T is the temperature in degrees Celsius, and � is the radiation 
wavelength in nanometers. These coefficients are provided by Quan et al.24.

Figure 2 shows the refractive index of the salt water as a function of the radiation wavelength ( � ) and salinity 
at room temperature, i.e., 25 °C. As in the case of acrylic and glass, the index of salt water decreased slightly with 
an increase in slightly wavelength, especially in the visible band (400–700 nm). Furthermore, the refractive index 
of salt water increased significantly with an increase in the salinity, and this trend was in good agreement with 
previous results in the literature1,22–24. This analysis of the refractive indexes of the salt water and transparent 
substrate can be used to explain the measured OT results of the multilayered structures.

Experimental results
The transparency of the multilayer-based salt water was carefully analyzed in the experiment. OT measurements 
were conducted using a T60 UV/VIS spectrophotometer. First, the OTs of the transparent substrates (quartz and 
acrylic) were measured to confirm the measurement accuracy, as their OTs are well known.

Figure 3a shows the measured OTs of acrylic and quartz versus the wavelength, which ranged from 300 to 
800 nm. It can be observed that in the visible range (400 to 700 nm), the quartz glass shows a higher OT than 
acrylic. This result is consistent with the theoretical analysis discussed above, where the refractive index of 
quartz glass as compared to acrylic is closer to 1 (the refractive index of air); therefore, glass has better refractive 
index matching with air than with acrylic. The average OTs of the acrylic and quartz glass in the visible range 
were 93.5% and 94.7%, respectively. Figure 3b shows the measured transmittance, reflectance, and absorbance 
spectrum of the ASA structure. We found that the absorbance is very small compared to the transmittance and 
reflectance. This result confirms the theoretical prediction, where the absorbance was ignored.

Figure 4 depicts the OT spectrum of the ASA structure with a different salinity level in comparison with the 
acrylic/air/acrylic (AAA) structure. It was found that the ASA displayed a higher OT than the AAA structure in 
the visible band. Moreover, we observed that the OT of the ASA structure increased with an increase in the salin-
ity. This confirmed the above theoretical prediction, which stated that salinity increases lead to an increase in the 
refractive index and therefore better refractive index matching between the acrylic layers and the salt-water layer.

As shown in Fig. 5a,b, the glass/salt water/glass multilayer structure exhibited high optical transparency, 
whereas the ASA multilayer structure demonstrated slightly lower transparency. This may be due to the refrac-
tive index of the glass being closer to that of salt water than acrylic. Therefore, the GSG structure achieved bet-
ter refractive index matching than the ASA structure. This can be further proved by the measurement results 
depicted in Fig. 6. The GSG structure has excellent OT, which can reach 95% with the average value in the visible 
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Figure 2.   Refractive indexes of transparent substrates versus the wavelength.
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Figure 3.   (a) Measured OT of transparent substrates and (b) measured transmittance, reflectance, and 
absorbance spectrum of the ASA structure.

Figure 4.   Measured optical transparency of the ASA structure with different salinity levels of salt water in 
comparison with the OT acrylic/air/acrylic structure.

Figure 5.   Photograph of the fabricated multilayer-based salt-water samples over text: (a) acrylic/salt water/
acrylic (front view and cross section view), (b) glass/salt water/glass (front view).
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band being 94.2%. Furthermore, the OT of the ASA structure can reach 94% with the average OT in the visible 
band being 93.2%.

EMI shielding of multilayered salt water.  Electrical characterizations.  In this section, we analyze the 
electrical properties of the multilayered structure in terms of the sheet resistance (RS), which can be determined 
from the conductivity (σ) and thickness (tsw) of the salt-water layer as Rs = 1/(σ tsw) . The salt water is an electro-
lyte solution that produces positive and negative ions that contribute to the conductivity of salt water. Therefore, 
the conductivity of salt water is a function of the salinity (S) and the temperature of the solution. It should be 
noted that both the ASA and GSG structures have an identical value of RS.

As shown in Fig. 7a, we changed the salinity from 30 to 200 ppt, and it was observed that the conductivity 
of salt water increased with an increase in the salinity. The measured conductivity levels of the salt water were 
5, 10, and 20 S/m, which correspond to salinity levels of 35, 80, and 200 ppt. In actuality, the conductivity of 
salty water cannot be as high as 100 S/m, as the salt would be saturated in the water. Figure 7b shows the RS of 
the multilayered structure as a function of S and tsw. It was observed that RS decreased with an increase in the 
thickness of the salt-water layer. Moreover, RS decreased with an increase in the salinity of the salt water due to 
the increased conductivity, as depicted in Fig. 7a.

In Table 1, we summarize the optical and electrical properties and the figure of merit (FoM) of the proposed 
structures, i.e., ASA and GSG. Moreover, other TEs from the literature, in this case those of ITO, graphene, 
carbon nanotubes (CNTs), and silver nanowire, are shown for comparison. In this research, the FoM of each TE 
is calculated from its sheet resistance and optical transparency using Haacke’s method, as expressed by Eq. (4):

(4)FoM =
OT10

RS

Figure 6.   Measured OTs of multilayer structures with different substrates; the salinity of salt water is fixed at 
200 ppt.
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Figure 7.   (a) Measured conductivity of salt water versus salinity at room temperature and (b) sheet resistance 
of the ASA structure as a function of the salt-water salinity and thickness.
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The proposed structures together with the graphene and silver nanowire show excellent OTs that exceed 90%, 
much higher than that of the CNT. Despite the fact that the proposed structures have moderate RS, they show 
the best combination between optical and electrical performance, making their FoM highest among the TEs.

EMI SE of multilayered structures.  The EMI shielding effectiveness (SE) of the transparent multilayered 
structure was investigated in a simulation and then verified by measurements. First, we simulated the SE of the 
ASA structure at different salinity levels and thicknesses of the salt-water layer to study the effects of these key 
parameters on the SE of the multilayered structure. Second, we simulated the SE of the ASA and GSG structures 
at a salinity level of 200 ppt for a comparison of the two types of substrates. Finally, SE measurements of the ASA 
and GSG structures at a salinity level of 200 ppt were conducted to verify the simulated results.

In the simulation, the multilayered structure is placed between two wave ports to determine the power 
transmission coefficient from port 1 to port 2 (S21), as shown in Fig. 8. We found that the E-field distribution 
of the incident EM wave was much stronger than the transmitted wave, which confirmed the strong SE of the 
multilayered structure to block EM waves.

The salinity of the ASA structure changed from 30 to 200 ppt, whereas the thickness of both the acrylic and 
salt-water layers was fixed at 1 mm. The results revealed that the SE of ASA structure increased as the salinity 
increased as shown in Fig. 9a. By combining the results in Figs. 4a and 9a, it can be concluded that higher con-
ductivity leads to better shielding performance achieved for the ASA structure.

In Fig. 9b, we investigate the SE of the ASA structure as a function of the salt-water layer thickness in the 
X-band from 7.5 to 8.5 GHz. In this simulation, we fixed the salinity at 200 ppt and changed the thickness of the 
salt-water layer to investigate the behavior of the SE. The ASA structure’s EMI SE increased with an increase in 
the salt-water layer thickness.

Finally, the SE and OT of the ASA structure as a function of the salinity and thickness of the salt-water layer 
are summarized in Fig. 10. The SE was simulated at 8 GHz, whereas the optical performance was the average OT 
(OTavg) in the visible band with a wavelength ranging from 400 to 700 nm. It was observed that when the salinity 
increased from 35 to 200 ppt, both the OTavg and SE increased simultaneously. However, the OTavg and SE of the 
ASA structure were slightly affected by the variation in the salinity. On the other hand, when the thickness of 
the salt-water layer varied from 1 to 5 mm, the OTavg remained nearly unchanged, whereas the SE of the ASA 
structure significantly improved.

To confirm the simulated results, the SE values of the ASA and GSG structures in the X-band frequency range 
were measured using the setup schematically depicted in Fig. 11a. The sample under test was fabricated using 
1-mm-thick acrylic ( ε = 2.7, tanδ = 0.001 ) and 1-mm glass ( ε = 4.3, tanδ = 0 ) as substrates and 200 ppt salt 
water (@σ = 20 S/m) as the conductive layer (ASA and GSG structures). The total thickness of the multilayered 
structures was 5 mm; therefore, we used copper tape to block this gap to avoid leakage waves.

The measured and simulated EMI SE outcomes of the transparent multilayered structures are shown in 
Fig. 11b, showing good agreement between them. The ASA demonstrated a slightly higher SE compared to that 
of GSG. This can be explained by the loss tangent of the quartz glass, which is close to zero, allowing the EM 

Table 1.   Summary of OT, Rs and FoM of the proposed structures in comparison with other TEs.

Refs TE OT RS FoM
7 ITO 85 10 19.7
8 Graphene 97 2100 0.35
9 CNTs 70 86 0.32
13 Silver nanowire 91 13 30

This work ASA 94 16.67 32.3

This work GSG 95 16.67 35.9

Figure 8.   EMI SE simulated schematic of the multilayered structure using Ansys HFSS R 2019.1.
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Figure 9.   EMI SE of the ASA structure as a function of (a) the salinity and frequency and (b) the thickness of 
the salt-water layer and the frequency.

Figure 10.   OT and SE of the ASA structure as a function of the salinity and thickness of the salt-water layer.
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Figure 11.   (a) SE measurement setup of multilayered structures and (b) measured SE of multilayered structures 
(S = 200 ppt, tsw = 3 mm) in comparison with the simulated results.
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wave to propagate through without any loss. The ASA with a loss tangent greater than zero also contributes to 
the total loss of the incident EM wave and therefore introduces a higher SE. The measured SE outcomes of the 
ASA and GSG structures at 8 GHz were 25.1 dB and 24.1 dB, respectively.

Conclusion
In conclusion, we demonstrated a high-performance transparent multilayer structure composed of salt water 
and a clear substrate (acrylic and glass). The experimental results are in good agreement with the theoretical 
predictions. Specifically, the multilayer structures displayed an average optical transparency (OT) level that 
exceeded 90% with uniform light transmission and an efficient SE of over 20 dB in the X-band, with salinity of 
200 ppt. Moreover, the OT and SE could be tuned by changing the thickness and salinity of the salt-water layer. 
We found that the SE and the OT increased simultaneously when the salinity of the salt water was increased. 
Moreover, the SE could be significantly improved by increasing the thickness of the salt-water layer while the 
OT remained nearly unchanged. With major advantages of a low cost, high transparency, efficient SE, and flex-
ible performance, salt water with the proposed multilayer structure can be considered as a good solution for 
transparent EMI shielding in visual observation applications.

Methods
Materials.  We prepare the salt-water solution by dissolving salt in pure water at room temperature (25 °C) 
in the following two steps: (1) pouring 100 ml of water (@100 g) into a glass beaker, and (2) adding salt to the 
beaker and stirring it. The amount of salt is calculated to achieve the desired salinity via the relationship of 
ms = 100S/(1000—S), where ms is the amount of salt in grams and S is the desired salinity of the salt water solu-
tion in parts per thousand (ppt). The OT outcomes of the proposed structures were measured using a UV/VIS 
spectrophotometer (T60 model, PG Instruments Limited Co., UK) connected to a computer.

Simulation.  The EMI SE simulation of the multilayered structure was conducted using the software pack-
age Ansys HFSS R 2019.1. As shown in Fig. 8, the multilayered structure is placed between two wave ports to 
determine the power transmission (S21) from port 1 to port 2. The simulated SE is determined from S21 (in dB) 
as SE = |S21|.

Measurement.  The measured σ of the salt water was carried out using a portable electrical conductivity 
meter (model HI8633, Hanna Instruments Co., US), whereas the RS values of the proposed structures were 
determined from the measured σ and tsw as Rs = 1/(σ tsw) . The experimental EMI SE of the multilayered struc-
tures in the X-band was determined using two waveguide-to-coaxial adapters connected to ports 1 and 2 of 
a vector network analyzer (model E5071B, Keysight Technologies Co., US), as shown in Fig. 11a. The open-
ing cross-section of the adapters was 22.5 mm × 10 mm, corresponding to a bandwidth ranging from 6.5 to 
10 GHz. The sample under test (SUT) was identically in size to the outer part (cover flange) of the adapters 
(45 mm × 45 mm). The SUT was fabricated using 1-mm-thick acrylic ( ε = 2.7, tanδ = 0.001 ) and quartz glass 
( ε = 4.3, tanδ = 0 ) as substrates and 3-mm-thick salt water ( S = 200ppt@σ = 20S/m ) as the conductive layer 
(corresponding to the ASA and GSG structures). The total thickness of the SUT was 5 mm; therefore, we used 
copper tape to block the gap to avoid leakage waves. The measurement procedure of the SUT had two steps: (1) 
connecting the two adapters directly and measuring the transmission coefficient S210 and (2) separating the two 
adapters by the SUT and measuring the transmission coefficient S21S. The measured SE of the SUT was deter-
mined from the measured transmission coefficients as SE = |S21S| − |S210|.
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