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Just as atmospheric layers surround the earth, all types of living
cells are girdled with extracellular substances including matrix and
vesicles, which maintain cellular functions. We herein focus on two
types of shared-component intercellular carriers, exosomes and
microexosomes, specifically their functions based on their discrete
structures.

Exosomes, one group of extracellular vesicles, function as a
carrier in intercellular transportation typically from tumorigenic
cells to neighboring normal cells [1]. The exosomes transport
selectively incorporated substances such as proteins, lipids, and
ribonucleotides, including microRNA to target cells [2,3] (Fig. 1a).
The exosomes have great potential as therapeutic drug-delivery
tools owing to their capacity for cell type-specific transportation
to target cells [1]. The exosomes are rich in proteins belonging to a
membrane protein family, termed tetraspanin [4]. The members of
the tetraspanin family have two extracellular loops (EC1 and EC2)
and a unique motif, cysteine-cysteine-glycine (CCG), in the larger
extracellular loop (EC2) [5]. Since commercially available anti-
tetraspanin antibodies recognize the 3-dimensional structure of
the CCG-containing region [6], immunoblotting is performed under
non-reduced conditions. EC2 can be further divided into a constant
region containing conserved helices, and a variable region con-
taining sites for specific proteineprotein interactions [7]. Structural
analysis of tetraspanin uroplakin indicates close packing of four
transmembrane domain helices and an overall rod-shaped
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structure, which is suitable for the docking of partner proteins,
implying that target-cell specificity probably depends on the vari-
ety of tetraspanin members located on the plasma membrane of
exosomes.

Meanwhile, a well-known exosomal component, tetraspanin
CD9, regulates sperm-egg fusion in mice [8e10]. In mammals,
membrane protrusions, termed microvilli, on the egg plasma
membrane are believed to promote sperm-egg fusion. Since CD9 is
involved in this fusion, this protein may organize the formation of
microvilli. In fact, Cd9 deficiency strikingly reduces the number of
microvilli on the egg plasma membrane [11]. However, immunoe-
lectron microscopic analysis revealed that CD9 is incorporated into
small structures (microexosomes), which are released from the
eggs during ovulation, presumably cumulus expansion [11]. Since
the microexosomes have no overt lipid bilayers and are small units
less than 5 nm in diameter [11,12], they are structurally different
from exosomes (Fig. 1b). Notably, the microexosomes restore sperm
fusion competency with fusion-incompetent Cd9-deficient eggs
with impaired microvilli [11], which means that microexosomes,
but not microvilli, are essential for the sperm-egg fusion. Other-
wise, microexosomes are observed inside the uterus, and
contribute to uterine repair after parturition in mice and humans
[13].

On the other hand, Cd9-deficient macrophages are strongly
activated in vitro and cause enhanced lung inflammation in vivo
when they are stimulated with lipopolysaccharide in mice [14].
Furthermore, double deficiency of Cd9 and Cd81 causes systemic
dysfunction in mice, specifically in lung epithelia and osteoclasts,
leading to chronic obstructive pulmonary disease-like symptoms,
viz., pulmonary emphysema, weight reduction, osteoporosis, and
muscular atrophy [14,15], implying that a loss of microexosomes
may weaken homeostasis of normal tissues. These phenomena
imply that two types of shared-component intercellular carriers,
microexosomes and exosomes, are released from cells, which
widely regulate biological and pathological events.

As mentioned above, exosomes structurally differ from micro-
exosomes, because typical lipid bilayers are formed in the exo-
somes but not in the microexosomes, indicating that their
formation processes are expected to differ. The exosomes are
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Fig. 1. Distinct pathways of exosomes and microexosomes. Exosomes have typical lipid bilayers and contain cytoplasmic proteins (cytoskeleton, heat shock proteins, metabolic
enzymes, and membrane tracking factors) and also carry microRNA (a). The minimal unit of microexosomes is predicted to have monolayered lipids, but not lipid bilayers (b). These
units gather and form aggregates. Both structures share the member of tetraspanin family, but structurally differ.
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formed as a consequence of fusion of multivesicular late endo-
somes with the plasma membrane [1,3] (Fig. 2). The initial step
in the formation of exosomes is endocytosis, during which the
plasma membrane is endocytosed into the cytoplasm to produce
endosomes. In turn, small vesicles are formed inside the endo-
somes by membrane invagination of the endosomes, which are
turned into multivesicular bodies. The multivesicular bodies then
fuse to the plasmamembrane and release themembrane vesicles as
exosomes into the external environment.

On the other hand, microexosomes are predicted to be directly
released from the plasma membrane without an endosomal
pathway (Fig. 2). First, selected membrane components, including
lipids, are extracted from the plasma membrane, presumably by
lipid bilayer deformation [11,16]. In turn, these components are
released into the external environment, and concurrently, micro-
villi are formed on the plasma membrane. From the findings of
electron microscopic analysis of the egg plasma membrane [11],
tetraspanin is thought to play a role in the process of lipid bilayer
Fig. 2. Distinct formation processes of exosomes and microexosomes. The exosomes
are formed as a consequence of fusion of multivesicular late endosomes with the
plasma membrane. The initial step in the formation of exosomes is endocytosis. Small
vesicles are formed inside the endosomes by membrane invagination of the endo-
somes, which are turned into multivesicular bodies. The multivesicular bodies then
fuse to the plasma membrane and release the membrane vesicles as exosomes.
Otherwise, microexosomes are predicted to be directly released from the plasma
membrane without an endosomal pathway. First, selected membrane components,
including lipids, are extracted from the plasma membrane, presumably by lipid bilayer
deformation. In turn, these components are released into the external environment.
deformation. When tetraspanin is absent from host cells, the for-
mation of microexosomes is arrested [11,13,16]. In contrast, we
expect that exosomes are formed structurally but the target-cell
specificity is disturbed, because the target-cell specificity might
depend on the variety of tetraspanin members located on the
plasma membrane of exosomes.

A clear understanding of the characteristics and functions of
these two types of exosomes holds great potential for elucidating
the molecular mechanisms of intercellular transportation- and
membrane fusion/membrane repair-related phenomena.
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