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The new SRS/FSRT technique 
HyperArc for benign brain lesions: 
a dosimetric analysis
Hsiu‑Wen Ho1, Ching‑Chieh Yang1,2, Hsiu‑Man Lin1, Hsiao‑Yun Chen1,3, Chun‑Chiao Huang1, 
Shih‑Chang Wang1 & Yu‑Wei Lin4*

To evaluate the potential benefit of HyperArc (HA) fractionated stereotactic radiotherapy (FSRT) for 
the benign brain lesion. Sixteen patients with a single deep‑seated, centrally located benign brain 
lesion treated by CyberKnife (CK, G4 cone‑based model) were enrolled. Treatment plans for HA with two 
different optimization algorithms (SRS NTO and ALDO) and coplanar RapidArc (RA) were generated for 
each patient to meet the corresponding treatment plan criteria. These four FSRT treatment plans were 
divided into two groups—the homogeneous delivery group (HA‑SRS NTO and coplanar RA) and the 
inhomogeneous delivery group (HA‑ALDO and cone‑based CK)—to compare for dosimetric outcomes. 
For homogeneous delivery, the brain V5, V12, and V24 and the mean brainstem dose were significantly 
lower with the HA‑SRS NTO plans than with the coplanar RA plans. The conformity index, high and 
intermediate dose spillage, and gradient radius were significantly better with the HA‑SRS NTO plans than 
with the coplanar RA plans. For inhomogeneous delivery, the HA‑ALDO exhibited superior PTV coverage 
levels to the cone‑based CK plans. Almost all the doses delivered to organs at risk and dose distribution 
metrics were significantly better with the HA‑ALDO plans than with the cone‑based CK plans. Good 
dosimetric distribution makes HA an attractive FSRT technique for the treatment of benign brain lesions.

Stereotactic radiosurgery (SRS) or fractionated stereotactic radiotherapy (FSRT) has been demonstrated over the 
past decades to be a valuable modality in the management of patients with benign intracranial  tumors1. The rate 
of local control after either SRS or FSRT is 80–95% at 5–10 years, with a low incidence of long-term  toxicity2–5. 
Treating benign intracranial lesions with FSRT is advantageous because it provides a theoretical radiobiologi-
cal benefit and a lower rate of symptomatic edema than single-fraction  SRS1,6–8. In general, FSRT is delivered 
via a linear accelerator (Linac) with either cone-based or multileaf collimator (MLC)-controlled delivery. The 
CyberKnife (CK, Accuray Inc., Sunnyvale, CA, USA) stereotactic radiotherapy system is a frameless, image-
guided method for delivering radiation to a precisely targeted volume using multiple noncoplanar beam angles 
with a steep surrounding-dose  gradient9,10.

Recent radiotherapy developments, such as volumetric modulated arc therapy (VMAT), have made it feasible 
to apply such techniques to treat large, complicated, or multiple brain lesions through multiple arcs. RapidArc 
(RA, Varian Medical System, Palo Alto, CA, USA) is an isocentric coplanar/noncoplanar VMAT technique that 
can deliver highly conformal, intensity-modulated radiation doses in a single rotation or multiple rotations of 
the linear accelerator  gantry11. RA enables higher-quality treatment plans than multifield intensity modulated 
radiation therapy (IMRT) while reducing the treatment time per fraction in the FSRT  setting12. HyperArc (HA, 
Varian Medical System) is a new isocentric VMAT technique explicitly developed for noncoplanar, MLC-based 
stereotactic radiotherapy with automated optimizations and  delivery13,14. The current study aimed to evaluate the 
feasibility of the HA technique by comparing its dosimetric measurements with those of other FSRT techniques, 
coplanar RA and cone-based CK (G4 model), for a single deep-seated, centrally located benign brain lesions.

Methods
Ethics approval and consent to participate. The Institutional Review Board approved this study at Chi 
Mei Medical Center. The institutional review board waived the participants’ need for written informed consent 
because this was an electronic treatment plan-analysis study. This study was performed following the relevant 
guidelines and regulations.
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Study groups. Sixteen patients who had undergone CK from 2018 to 2021 for a single deep-seated, centrally 
located benign brain lesions were enrolled. The 16 delivered CK treatment plans were replanned using for the 
corresponding coplanar RA and HA plans. The characteristics of the 16 benign brain lesion patients are shown 
in Table 1. In this study, two groups of FSRT treatment plans are the homogeneous and inhomogeneous delivery 
groups. Traditionally, the characteristics of the MLC-based Linac treatment plan is a more homogeneous dose 
 distribution15,16. The homogeneous delivery group (keeping the maximal dose of the treatment plan less than 
110%) was generated for each patient to meet the same corresponding CK treatment plan criteria by using HA 
with SRS normal tissue objective (SRS NTO) optimization algorithm (HA-S) and coplanar RA techniques. The 
inhomogeneous delivery group was designed to increase the dose of PTV and emulate the inhomogeneous CK 
isodose distributions (the maximal dose of the treatment plan between 111 to 120%) by using HA with the auto-
matic lower dose  objective17 (ALDO) optimization algorithm (HA-A).

Contouring and essential treatment plan criteria. The CTV was defined as the volume of the benign 
brain lesion. The PTV was extended from 0 to 2 mm from the boundaries of the CTV. The prescription dose of 
each of the sixteen enrolled patients was 25 Gy in 5 fractions. The details of the planning objectives for the tar-
gets and OARs are listed in Table 2. The coverage of clinical target volumes (CTVs) and planning target volumes 
(PTVs) was determined by the proportion of the CTV or PTV that received 100% of the prescription dose. A 
minimum of 95% of the prescription dose was assumed to cover 95% of the PTV after normalization to an 80% 
(or higher) isodose line. The OARs are the spinal cord, brainstem, optic pathways (including eyes, optic nerves, 
optic chiasma, and lens). No margin was added to a OAR to define a planning OAR volume (PRV). The priority 
of the treatment planning was sparing of OARs, followed by target coverage. Brain (including target volumes) 
Vx reflected the volume receiving greater than or equal to a dose of x  Gy18.

CyberKnife treatment plans. The CK treatment plans of the sixteen patients who had been treated by CK 
(G4 cone-based model, Accuray Inc., Sunnyvale, CA, USA) were generated. In brief, all patients were immobi-
lized in a supine position with a premolded U-frame mask. CT simulations were performed with 1-mm-thick 
slices at a resolution of 512 by 512 pixels. All treatment plans were generated with MultiPlan software (version 
2.2.0, Accuray Inc.) with 6 MV flattening-filter-free photon beams using cone collimators. A nonisocentric beam 
arrangement was applied in all cases. The numbers of cones and beam nodes were arranged to optimize the tar-
get volume coverage and the sparing of OARs. A simplex optimization algorithm was used to optimize the MU 
production per beam. The radiation dose was calculated with the ray-tracing algorithm.

HyperArc treatment plans. Computed tomography data sets and target/OAR contours from the sixteen 
enrolled patients were transferred from the CK system to the Eclipse treatment planning system (version 15.5, 
Varian Medical System Inc.). The corresponding HA plans were then generated according to the corresponding 
CK treatment plan’s dose prescription and OAR constraints. The HA plans were designed using 6 MV flattening-
filter-free photon beams and a 1400 MU/min dose rate from Varian TrueBeam (Varian Medical System Inc.) 
equipped with a high-definition 120-leaf multileaf collimator (with a dynamic beam aperture and a spatial reso-
lution of 2.5 mm leaf width × 32 pairs at the center, 5 mm width × 28 pairs in the peripheral leaves, and maximum 
static field size 40 cm × 22 cm). The Eclipse system automatically arranged arc fields: one full or half coplanar 
arc with a couch rotation of 0° and up to three partial noncoplanar arcs with couch rotations of 315°, 45°, and 
90° (or 270°)17,19. The collimator angle and field size were optimized to maintain the coverage of the targets and 
reduce the radiation dose to OARs. The photon optimization algorithm for the homogeneous delivery group 
and the inhomogeneous delivery group was SRS NTO and ALDO (version 15.5.11, Varian Medical System Inc.). 
The calculation algorithms of Acuros XB (version 15.5.11, Varian Medical System Inc.) were applied for all cases.

RapidArc treatment plans. The details of the RA treatment plans were similar to those of the HA treat-
ment plans, as described above. The isocenter in the RA plan was set to be the same as in the HA plan. The two-
coplanar-arc technique (counterclockwise rotation from 179° to 181° and clockwise rotation back to the starting 
position) was applied for all RA treatment plans. For all RA plans, the optimization algorithm and the calcula-
tion algorithm were the Photon Optimizer and Acuros XB algorithm. The normal tissue objective optimizer for 
RA was the automatic NTO (version 15.5.1, Varian Medical Systems).

Plan evaluation statistics. The parameters used to evaluate the quality of the planned dose distributions 
for these FSRT plans (HA-S, coplanar RA, HA-A, and cone-based CK) were target coverage, sparing of OARs, 
and the main dosimetric parameters, including the point maximal dose (Dmax), which defined as 0.0035 c.c. or 
less, recommended by the report of AAPM Task Group  10120. For CTV and PTV, D2% was used to evaluate the 
near-maximum dose and D98% for evaluating the near-minimum  dose15.

Dosimetric parameters. The treatment plans were evaluated by comparing the dosimetric parameters 
derived from the DVHs for target coverage and sparing of OARs. The conformity index (CI) that previously 
described by  Paddick21:

CI =
TVPIV2

TV × PIV
,
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where  TVPIV is the target volume covered by the prescription isodose volume, TV is the target volume, and PIV 
is the prescription isodose volume. The higher the CI is, the more conformity the plan. A CI value of 1 stands 
for the ideal conformity.

The homogeneity  index15 (HI) was determined as:

An HI of zero indicates that the absorbed-dose distribution is almost homogeneous.

Dose gradient. The dose spillage has been introduced to reflect the dose falloff outside the target. The lower 
isodoses outside the PIV volume may cover significant amounts of normal tissues and can be responsible for 
complications, especially when the target is in proximity to critical structures. For estimation of dose falloff out-
side the target, the metrics evaluated include intermediate dose spillage and high dose spillage.

Intermediate dose  spillage22,23 is calculated as:

For high dose  spillage24,25 evaluation, volume of 105% isodose volume outside the PTV is estimated as a ratio 
of the volume of PTV.

The gradient radius, measured in cm, was calculated as the difference between the equivalent sphere radii 
of the volume of 50% of the prescription isodose curve and the prescription isodose  volume26. A low gradient 
radius indicates a low dose spread outside the lesion and a sharp dose falloff.

Statistical analysis. The dosimetric endpoints of the target volumes (CTV and PTV) and OARs, CIs, HI, 
intermediate and high dose spillage, gradient radius, and MUs were analyzed using the Wilcoxon signed-rank 
test (SPSS Statistics, Version 19, IBM, NY, USA). All tests were 2-tailed, with a P-value < 0.05 considered to be 
statistically significant.

HI =
D2% − D98%

D50%

.

Intermidate dose spillage =
The volume receiving 50% of prescription dose

PTV volume
.

High dose spillage =
The volume of 105% isodose volume outside the PTV

PTV volume
.

Gradient radius =
3

√

3V50%

4π
−

3

√

3V100%

4π
.

Table 1.  Characteristics of benign brain lesion patients. CTV clinical target volume, PTV planning target 
volume.

Parameters Patient

Patient number 16

Disease

Pituitary adenoma 5

Meningioma 4

Cerebellopontine angle tumor 3

Cavernous malformation 1

Neurilemoma 1

Cival chodosarcoma 1

Arteriovenous malformation 1

GTV (c.c.)

Median 5.25

SEM 0.83

Range 0.77–13.32

PTV (c.c.)

Median 8.29

SEM 1.27

Range 0.77–19.52

Fractions 5

Prescription dose (Gy) 25
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Ethics approval. The institutional review board waived the need for written informed consent from the 
participants because this was a retrospective electric treatment plan-review study.

Results
A detailed comparison of dosimetric parameters for the HA-S, coplanar RA, HA-A and cone-based CK plans 
for the benign brain lesion patients is shown in Table 3. All the constraints for organs at risk (OARs) were met 
in the HA-S, coplanar RA, HA-A, and cone-based CK plans. The isodose curves and dose-volume histograms 
(DVH) for the applied HA-S, coplanar RA, HA-A and cone-based CK plans for the patient were presented in 
Figs. 1 and 2, respectively.

For homogeneous delivery: noncoplanar HA‑S vs. coplanar RA. Target coverage. The HA-S and 
coplanar RA plans produced similar CTV and PTV coverage without any significant difference (CTV: HA-S, 
99.22%; coplanar RA, 98.61%; PTV: HA-S, 97.64%; coplanar RA 96.19%).

Sparing of organs at risk. Under the same constraints, the mean doses for the brainstem generated by the HA-S 
plans were significantly lower than those generated by the coplanar RA plans (HA-S plan vs. coplanar RA plan, 
P = 0.001*). The brain V24, V12, and V5, surrogate dose levels for SRS and  FRST18, were significantly smaller 
with the HA-S plans than with the coplanar RA plans (V24: 6.02 c.c. in the HA-S plans, 6.77 c.c. in the coplanar 
RA plans; V12: 16.03 in HA-S; 28.05 in coplanar RA; V5: 61.61 in HA-S; 122.69 in coplanar RA). The maximal 
doses to the optic nerve and chiasma were similar in the HA-S and the coplanar RA plans. The maximal doses to 
the bilateral eyes and lens were significantly lower with HA-S plans than with the coplanar RA plans. In Fig. 1, 
30% of the prescription isodose line (the prescription dose, 25 Gy) was confined around the target region in the 
HA-S plan. However, in the coplanar RA plan, 30% of the prescription isodose line was spread out in the copla-
nar-lateral direction, which might increase the excess doses delivered to OARs, such as the brainstem and brain.

Dosimetric parameters. Figure  3 shows the distributions of the dosimetric parameters of high/intermedi-
ate dose spillage, conformity index (CI), gradient radius, and homogeneity index (HI) for the four treatment 
approaches. The HA-S plans achieved a significantly higher CI (0.88 (HA-S) vs. 0.80 (coplanar RA), P < 0.001) 
and gradient radius than the coplanar RA plans (0.59 (HA-S) vs. 0.88 (coplanar RA), P < 0.001). In addition, the 
HA-S plans generated significantly lesser high and intermediate dose spillage than the coplanar RA plans (0.01 
(HA-S) vs. 0.05 (coplanar RA), P = 0.041; 3.65 (HA-S) vs. 6.06 (coplanar RA), P < 0.001, respectively). There were 
no significant differences in high dose spillage or MU production between the HA-S and coplanar RA plans.

For inhomogeneous delivery: noncoplanar HA‑A vs. noncoplanar CK. Target coverage. The 
HA-A and cone-based CK plans exhibited higher coverage of the CTVs, with statistically significant difference 
(HA-A plans vs. cone-based CK plans, 99.70% vs. 98.85%, P = 0.008); moreover, the HA-A plans exhibited sig-
nificantly greater PTV coverage than the cone-based CK plans (HA-A plans vs. cone-based CK plans, 98.70% 
vs. 96.87%, P = 0.001).

Sparing of OARs. We analyzed the volume-dose parameters of OAR sparing. All the critical organ-dose 
requirements were satisfied in the HA-A and cone-based CK treatment plans; however, the HA-A plans consist-
ently achieved better sparing of all OARs than the cone-based CK plans, except for the mean brainstem dose, the 
maximal dose of the brainstem and right optic nerve, as shown in Table 3. The mean brain doses were 1.61 Gy 
and 1.85 Gy for HA-A and cone-based CK, respectively (P = 0.005). The brain V24, V12, and V5 were signifi-
cantly smaller with HA-A plans than with cone-based CK plans (V24: 6.09 c.c. in HA-A vs. 6.71 c.c. in cone-
based CK, P = 0.011; V12: 14.97 in HA-A vs. 19.88 in cone-based CK, P < 0.001; V5: 57.134 in HA-A vs. 118.51 in 
cone-based CK, P < 0.001). The volumes of brain V24, V12, and V5 of the HA-A plans were reduced by 9%, 24%, 
and 35%, respectively, compared with the cone-based CK plans.

Significant differences in the maximal doses of the optic apparatus (optic nerves, left; optic chiasm; eyes, right 
and left; lenses, right and left) were observed between the HA-A and cone-based CK plans. As shown in Fig. 1, 

Table 2.  Planning objectives for the target and organs at risk. Dmax the maximal point dose (0.0035 cc or less) 
of the structures, V23 the volume of the organ at risk that receiving more than 23 Gy.

Structures Dose-volume constraints Priority

PTV
Dmax ≤ 120% of the prescription dose 3

95% of the prescription dose cover 95% of the PTV 2

Spinal cord
Dmax < 30 Gy

1
V23 < 0.35 c.c.

Brainstem
Dmax < 30 Gy

1
V23 < 0.5 c.c.

Optic pathway
Dmax < 25 Gy

1
V23 < 0.2 c.c.

Lens Dmax < 4 Gy 3



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21029  | https://doi.org/10.1038/s41598-021-00381-9

www.nature.com/scientificreports/

the 30% prescription isodose line (prescription dose, 25 Gy) was compact to the target in the HA-A plan. The 
radiation dose in the cone-based CK plan was spiculated and spread out because of the multiple beam angles 
(200–300 beam nodes).

Dosimetric parameters. The HA-A plans, using the ALDO optimization algorithm to improve dose gradients, 
resulted in all dose distribution metrics (CI, HI, high dose spillage, intermediate dose spillage, and gradient 
radius) of the HA-A plans were significantly better than those of the cone-based CK plans (P < 0.05) (Fig. 1, 
Table 3). Moreover, the HA-A plans resulted in 82% fewer MUs than did the cone-based CK plans (HA-A, 9181 
MU; cone-based CK, 53470 MU).

Discussion
Data from published literature indicate that either SRS or FSRT is a crucial component in the management of 
benign brain lesions with excellent long-term tumor  control27–32; however, advantages and disadvantages of the 
different stereotactic fractionations in the management of patients with benign brain lesions and their optimal 
indications are still a matter of debate. In general, for benign brain lesions, the rationale of SRS or FRST is to 
control the growth of the lesion without damage to the brain or other OARs; therefore, the prescription dose is 
relatively lower than malignant lesions, and fractionating the prescription doses make it more tolerable to the 
OARs. Radiation-induced brain necrosis is one of the common toxicities after the SRS/FSRT treatment. The 
radiation-induced brain necrosis risk correlated with brain dose/volume metrics. Studies have demonstrated 
the importance of brain V12 in predicting the necrosis toxicity risks after a SRS  treatment18. And the use of 
FSRT appears to reduce the risks of radiation-induced brain necrosis for larger treatment volumes relative to 

Table 3.  Comparison of dosimetric parameters for HyperArc, RapidArc, virtual CyberKnife and CyberKnife 
for the benign brain lesions. CTV clinical tumor volume, the volume of the benign brain lesion, PTV planning 
target volume, SEM standard error of the mean, Dmax the maximal point dose (0.0035 c.c. or less) of the organ 
at risk, HA-S HyperArc technique with SRS NTO optimization, RA RapidArc technique, HA-A HyperArc 
technique with ALDO optimization, CK CyberKnife technique. *Statistically significant, P < 0.05.

Groups The homogenous delivery group The inhomogeneous delivery group

Parameters
HA-S
Mean (SEM)

RA
Mean (SEM)

P value
HA-S vs. RA

HA-A
Mean (SEM)

CK
Mean (SEM)

P value
HA-A vs. CK

Target

CTV coverage (%) 99.22 (0.34) 98.61 (1.02) 0.767 99.70 (0.19) 98.85 (0.53) 0.008*

D2 (Gy) 26.45 (0.08) 24.86 (1.59) 0.196 28.81 (0.17) 28.72 (0.18) 0.134

D98 (Gy) 25.36 (0.12) 25.13 (0.33) 0.918 26.49 (0.12) 25.83 (0.51) 0.006*

Mean dose (Gy) 25.97 (0.07) 25.97 (0.06) 1.000 27.79 (0.13) 27.72 (0.14) 0.093

PTV coverage (%) 97.64 (0.47) 96.19 (1.09) 0.408 98.70 (0.44) 96.87 (0.67) 0.001*

D2 (Gy) 26.49 (0.08) 26.43 (0.08) 0.234 28.76 (0.17) 28.68 (0.19) 0.326

D98 (Gy) 24.84 (0.14) 24.41 (0.34) 0.438 25.32 (0.26) 24.41 (0.34) 0.030*

Mean dose 25.91(0.06) 25.89 (0.05) 0.501 27.51 (0.11) 27.49(0.11) 0.379

Organs at risk (Gy)

Brainstem (Dmax) 20.83 (1.76) 22.08 (1.50) 0.326 21.23 (1.85) 21.79 (1.79) 0.056

Brainstem (mean) 4.56 (0.51) 6.15 (0.65) 0.001* 4.80 (0.55) 5.08 (0.66) 0.679

Brain (mean) 1.73 (0.23) 1.75 (0.37) 0.109 1.61 (0.12) 1.85 (0.16) 0.005*

Brain V24 (c.c., mean) 6.02 (0.82) 6.77 (0.95) 0.004* 6.09 (0.85) 6.71 (0.96) 0.011*

Brain V12 (c.c., mean) 16.03 (1.90) 28.05 (3.54) 0.001* 14.97 (2.12) 19.88 (2.87)  < 0.001*

Brain V5 (c.c., mean) 61.61 (6.74) 122.69 (12.22)  < 0.001* 57.13 (7.28) 118.51 (22.50)  < 0.001*

Optic nerve_right (Dmax) 11.85 (2.58) 12.92 (2.64) 0.469 13.04 (2.40) 13.35 (2.52) 0.642

Optic nerve_left (Dmax) 10.86 (2.54) 12.15 (2.61) 0.179 11.10 (2.35) 13.28 (2.48) 0.003*

Chiasma (Dmax) 13.58 (2.61) 14.10 (2.48) 0.959 14.92 (2.14) 16.73 (2.01)  < 0.001*

Eye_right (Dmax) 0.43 (0.05) 1.45 (0.38) 0.001* 0.45 (0.07) 2.19 (0.43)  < 0.001*

Eye_left (Dmax) 0.41 (0.05) 0.90 (0.18) 0.006* 0.41 (0.04) 1.96 (0.38) 0.001*

Lens_right (Dmax) 0.17 (0.02) 0.34 (0.09) 0.001* 0.17 (0.02) 0.65 (0.09) 0.001*

Lens_left (Dmax) 0.20 (0.05) 0.28 (0.05) 0.015* 0.16 (0.02) 0.63 (0.09)  < 0.001*

Dose distribution metrics

Conformity index (mean) 0.88 (0.01) 0.80 (0.01)  < 0.001* 0.83 (0.02) 0.79 (0.01) 0.011*

Homogeneity index (mean) 0.06 (0.01) 0.08 (0.01) 0.605 0.12 (0.01) 0.15 (0.02) 0.007*

High dose spillage (mean) 0.01 (0.00) 0.05 (0.03) 0.041* 0.06 (0.01) 0.22 (0.06) 0.005*

Intermediate dose spillage (mean) 3.65 (0.19) 6.06 (0.40)  < 0.001* 3.46 (0.22) 3.93 (0.12) 0.007*

Gradient radius (cm) 0.59 (0.02) 0.88 (0.03)  < 0.001* 0.52 (0.02) 0.63 (0.04)  < 0.001*

Monitor units (mean) 9321 (376) 8426 (640) 0.215 9181 (474) 53,470 (4929)  < 0.001*
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 SRS18. The dose/volume tolerances of the brain for FSRT, V24 < 20 c.c., was associated with less than 10% risk 
of any brain necrosis or  edema18. In this study, we opted to report the results in terms of the volume of brain 
(included the target volume) receiving absolute levels (5, 12, and 24 Gy) of physical dose, an objective  quantity33, 
irrespectively from fractionation.

Intracranial SRS has traditionally been delivered using a cone-based and frame-based SRS platform, but the 
modern improvement of software and hardware in the MLC-based SRS/FSRT system has made an alternative 
approach  possible34. Historically, Linac-based SRS/FSRT has been performed using the static or dynamic confor-
mal arc radiotherapy technique with isocentric  irradiation35,36. Advances in the VMAT technique in conjunction 
with the new generation of high-definition MLCs (2.5-mm leaf width) fulfill the demands of SRS dose delivery 
for small targets within the  brain19.

Today, the VMAT-based SRS/FSRT technique is a new field of active research. With image-guided, VMAT-
based automatic noncoplanar FSRT of benign brain lesions becoming feasible via the newly released HA, it is 
essential to understand the dosimetric differences among different SRS/FSRT techniques. Various treatment 
platforms are now available, potentially allowing expansion of services beyond specialist units for easier patient 
 access27,37,38. Here, we analyzed the dosimetric results in sixteen patients with a single deep-seated, centrally 
located benign brain lesions by comparing automatic noncoplanar HA-S with coplanar RA for homogenous 
delivery and noncoplanar cone-based CK with HA-A for inhomogeneous delivery. Our study was prompted by 
the lack of data concerning the treatment of the deep-seated, centrally located benign brain lesion using FSRT 
and the doses received by OARs.

In general, RA can produce a high-quality treatment plan and achieve fast dosing delivery for  SRS12,39. HD 
MLC-based Linac treatments deliver doses with isocentric coplanar radiation, resulting in a homogeneous dose 
distribution and a reduction in low-dose  areas39,40. In the current study, we demonstrated that the coplanar RA 
plans consistently achieved adequate target coverages and a low radiation dose to multiple OARs. Under the same 
hardware conditions, the coplanar HA plans allowed one partial or full coplanar arc and up to 3 noncoplanar 
arcs in the isocentric plane with new optimization algorithms, SRS NTO. SRS NTO automatically generates 
virtual shells around the targets to enforce a sharp dose falloff and prevent dose bridging of adjacent disparate 
 targets13,14. These differences promoted HA-S dose conformity, intermediate dose spillage, and gradient radius 
compared with the coplanar RA plans. Another distinguishing advantage of HA-S is consistently reducing the 
radiation dose to multiple OARs, including dose to the brainstem, brain V24, V12, V5, eyes, and lens, comparing 

Figure 1.  Isodose curves for the applied HyperArc-SRS NTO, RapidArc, HyperArc-ALDO and CyberKnife 
plans. Clinical target volume: red; planning target volume: pink; brainstem: yellow. (a–c) The HyperArc-SRS 
NTO plan; (d–f) the RapidArc plan; (g–i) the HyperArc-ALDO plan; (j–l) the CyberKnife plan.
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to coplanar RA. Similar findings have been demonstrated that HA has some advantage over RA for intracranial 
brain metastasis  treatment17,19,22,23 and  extracranial41 treatment.

The CK plans in this study were generated for our institution’s fourth-generation CK, which is a cone-based 
stereotactic radiotherapy system. Cone-based CK repeatedly delivers doses with nonconformal cylinders of 
radiation, resulting in heterogeneous dose distribution. Whether dose heterogeneity is desirable when homo-
geneity with sufficient dose conformity can be achieved remains a matter of clinical  debate7,42–44. The plans for 
HA-A by ALDO optimization were designed to compare with the inhomogeneous isodose distributions of the 
cone-based CK. ALDO, the other optimization algorithm for the HA treatment plan that can cover the target 
with the prescription dose (ideally full coverage) but might create a high inhomogeneous dose within the target 
to 150% of the prescription  dose17. Here, we demonstrated that the advantage of HA-A over cone-based CK is 
that it consistently achieves better dose conformity, high/intermediate dose spillage, dose gradients, and sparing 
of all OARs. As a result of the improved CI and dose gradients of the HA-A plans compared to the cone-based 
CK plans, significantly improved target coverage was achieved using the HA-A plan without compromising the 
sparing of OARs. Therefore, HA-A can produce a high-quality treatment plan with excellent target coverages 
and dosimetric parameters under inhomogeneous delivery.

A vital factor for successful SRS/FSRT treatment of benign brain tumors is the quality of the treatment plan. 
Currently, improvements in hardware and software have made the quality of the HA treatment plan higher than 
ever. HD-MLC-based noncoplanar VAMT and the usage of flattening-filter-free beams allow high dose conform-
ity and fast dose falloff  delivery40,45. The spreading of the radiation dose is the nature of noncoplanar delivery. 
At the very least, more entrance and exit doses from the noncoplanar arcs would lead to more low-dose regions.

The HA plans optimized the collimator angle for each arc and used jaw  tracking46 to prevent excessive 
radiation doses from reaching the normal brain, and other OARs due to leakage and transmission through the 
MLC leaves. During the HA treatment plan optimization process, the application of the SRS NTO is novel and 
was designed to produce the most compact dose falloff possible, featuring steep spatial dose decay from target-
specific dose levels to low asymptotic dose levels resulting in reduced OAR exposure and minimal interaction 
between  targets19. The application of ALDO to HA maintains the similar dosimetric features of SRS NTO but 
more focusing on creating very high target coverage with acceptable inhomogeneous doses within the  target17. 
These HA advances result in very effective control of high and intermediate dose spreading while maintaining 
tumor coverage and dose conformity.

To our knowledge, no study of HA for benign brain lesions has compared it with other SRS/FSRT techniques. 
Some studies have been conducted for dosimetric analysis of multiple brain metastases. Kadoya et al. reported 
that the HA plans are comparable to the CK plans for multiple brain  metastases23. In general, there are no signifi-
cant differences between the CK and HA plans from the physicians’ viewpoint. However, the HA plans had better 
CI and brain V12 than the CK plans, while the CK plans showed better GI than the HA  plans23. Slosarek et al. 
demonstrated that the use of HA ccould significantly improve the sparing of the healthy brain while maintaining 

Figure 2.  Dose-volume histograms for the applied HyperArc-SRS NTO, RapidArc, HyperArc-ALDO and 
CyberKnife plans. (a) Clinical target volumes (CTV) and planning target volumes (PTV) of the RapidArc and 
HyperArc-SRS NTO plans; (b) brain and brainstem of the RapidArc and HyperArc-SRS NTO plans; (c) CTV 
and PTV of the HyperArc-ALDO and CyberKnife plans; (d) brain and brainstem in HyperArc-ALDO and 
CyberKnife plans; X-axis, the percentage of the prescription dose; Y-axis, the volume percentage of the OAR.
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full coverage of the target volumes, comparing to VMAT and CK in silico  study33. Thomas et al. demonstrated 
that noncoplanar VMAT, the former HA model, produces clinically equivalent conformity, dose falloff, brain 
V12, and low isodose spillage to a gamma knife  system47, along with shorter treatment time.

The current study still has some limitations. The first limitation of this study was that HA plans with highly 
precise mechanical geometry and a brand-new optimization schema were compared to routine clinical CK plans 
that had previously been delivered; this was an unavoidable feature of the study design. Our ultimate intent is 
to know whether we could use the HA system to replicate the high-quality plan that we were already achieving 
with CK and determine the limits of the HA technique.

Second, delivery at a Linac may require an increased PTV margin to account for delivery and setup errors. For 
the HA plans, we did not modify the contours of the targets and OARs, including the PTV margin. The current 
CK G4 system can achieve submillimeter (< 1 mm) accuracy and  precision48. With the improved technology, 
modern Linacs, such as the TrueBeam system, can achieve overall couch/gantry/collimator isocentric accuracy 
within 0.6–0.75  mm49,50. When they are combined with image guidance capabilities using CBCT, a targeting 
accuracy of 0.5 × 0.2 mm can be achieved for small intracranial  targets51. Due to the similar submillimeter 
accuracy of TrueBeam and CK, the same corresponding PTV margin does not seem to be a major concern in 
delivery accuracy or dose distribution.

The third limitation of our study was that the CK M6 system was unavailable for this dosimetric comparison. 
The new generation of the CK M6 system using MLC has been shown to improve the treatment plan  quality52 
based on the G4  accuracy48. The CK-MLC plans generated for the SRS treatment delivered a more homogeneous 
dose to the target than the cone-based CK plans, providing equivalent coverage, conformity, and OAR doses with 
the potential to improve treatment quality—for example, by achieving a better dose gradient in the low-dose 
 region53–55. The new CK system’s primary advantages are a 30–35% reduction in treatment time and a reduction 
in MU compared to the cone-based CK  plans53–55. The median treatment time per fraction in the fifteen enrolled 
patients treated with CK was 75 min. Although the delivery time of the new CK (VSI and M6) system has been 
improved (25–30 min per fraction)52, owing to the step-and-shoot method and the travel time of the robot 
between delivery nodes, treatment efficiency may still be a drawback compared to the continuous arc delivery 
provided Linac-based  systems52. Moreover, one of the novel features of HA is automated delivery workflow; in 
general, the average time spent on HA treatment of the first forty patients at our institution is 13.23 min, which 
is very close to the time slot (10 min) allotted for conventional fractionation in our institution.

In short, adequate sparing of OARs, proper dosimetric distribution, accuracy, and fast delivery make HA an 
attractive FSRT technique for deep-seated benign brain tumors. Further clinical studies using HA for benign 
brain lesions would be necessary to determine the long-term tumor control rates and the radiation-induced 
toxicity profiles following SRS or FSRT.
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