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Abstract: The drug repurposing of known approved drugs (e.g., lopinavir/ritonavir) has failed to
treat SARS-CoV-2-infected patients. Therefore, it is important to generate new chemical entities
against this virus. As a critical enzyme in the lifecycle of the coronavirus, the 3C-like main protease
(3CLpro or Mpro) is the most attractive target for antiviral drug design. Based on a recently solved
structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with a fragment-
based drug design (ADQN–FBDD) for generating potential lead compounds targeting SARS-CoV-2
3CLpro. We obtained a series of derivatives from the lead compounds based on our structure-based
optimization policy (SBOP). All of the 47 lead compounds obtained directly with our AI model and
related derivatives based on the SBOP are accessible in our molecular library. These compounds can
be used as potential candidates by researchers to develop drugs against SARS-CoV-2.

Keywords: COVID; SARS-CoV-2; 3C-like main protease; drug design; deep Q-learning network

1. Introduction

The emerging coronavirus SARS-CoV-2 has caused an outbreak of coronavirus disease
2019 (COVID-19) worldwide [1]. By the end of May 2022, the Johns Hopkins Coronavirus
map tracker had reported more than 527 million SARS-CoV-2 infections and over six
million deaths [2]. The number of infections and deaths is still increasing. To deal with the
threat of SARS-CoV-2, it is necessary to develop new inhibitors or drugs. Unfortunately,
since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, there has
been no approved treatment for SARS-associated coronavirus (SARS-CoV) [3], which
is similar to SARS-CoV-2. SARS-CoV-2-injected patients have also failed to respond to
repurposed drugs, such as lopinavir and ritonavir [4]. Structure-based antiviral drug design
with a novel artificial intelligence algorithm may be an effective approach to developing
SARS-CoV-2-targeted inhibitors or drugs. Owing to the efforts of many researchers, several
pieces of important information about the viral genome and protein structures are currently
available. We know that non-structural protein 5 (Nsp5), a cysteine protease, is one of
the main proteases (Mpro) of SARS-CoV-2, also known as “3C-like protease” (3CLpro).
Moreover, we know that the 3D structure of 3CLpro is very similar to that of SARS-CoV
with a sequence identity of >96% and 3D structure superposition RMSDCα of 0.44 Å, as
shown in Supplementary Figures S1 and S2.

Overall, 3CLpro has been reported as an attractive target for developing anti-coronavirus
drugs for the following reasons: (1) this protease is highly conserved in both sequences and
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3D structures [5], (2) 3CLpro is a crucial enzyme for the replication of related viruses (includ-
ing SARS and SARS-CoV-2), and (3) it only exists in viruses and not in humans. Developing
specific antiviral drugs that target the 3CLpro of viruses has shown significant success; for
example, both lopinavir and ritonavir (approved HIV drugs) can completely occupy the
substrate-binding site of 3CLpro, thereby disrupting the replication of human immunodefi-
ciency virus (HIV). However, due to the large difference between HIV and SARS-CoV-2
3CLpro, lopinavir and ritonavir are ineffective for inhibiting SARS-CoV-2 [4]. On the other
hand, the substrate-binding site of 3CLpro is almost the same between SARS-CoV-2 and
SARS, as shown in Supplementary Figure S3. Therefore, the developed potential inhibitors
and drug design experience for SARS-3CLpro may also apply to SARS-CoV-2. For example,
the recently solved structure of SARS-CoV-2 3CLpro (PDB ID: 6LU7) demonstrated that
the developed inhibitor N3 [6], which is a covalent inhibitor derived from non-covalent
inhibitors against SARS, can also bind to SARS-CoV-2 3CLpro with a similar binding con-
formation (Supplementary Figure S4).

The available information from previous research can aid the design of novel targeted
covalent inhibitors (TCIs) [7] against SARS-CoV-2. A successful TCI against 3CLpro must
first be able to fit in the binding site of 3CLpro with an appropriate pose that keeps its
reactive groups close enough to Cys145, which then undergoes a chemical step (nucleophilic
attack by Cys145), leading to the formation of a stable covalent bond, as presented in the
scheme below:

3CLpro − 145CYS + TCI
k1
�
k2

3CLpro − 145CYS · TCI
k3
�
k4

3CLpro − 145CYS− TCI

In theory, TCIs usually have a longer target residence time compared with that of
non-covalent inhibitors, given the following: (1) for inhibition, k1 must be larger than
k2, and non-covalent binding is determined by the equilibrium constant k1/k2; (2) TCIs
undergo a chemical reaction with the target, where usually k3 >> k4; and (3) for TCIs, the
binding process is controlled by k1 k3/(k2 k4), which is larger than k1/k2 for non-covalent
inhibitors. In some extreme cases, k4 = 0; thus, these inhibitors covalently bind until the
target is no longer detectable [7,8].

Considering that the inhibitors of SARS 3CLpro may exert bioactivity against SARS-
CoV-2, we have created a molecular library that contains all of the reported SARS-3CLpro

inhibitors (284 molecules) [9–29]. We will also add new validated molecular structures to
this library as our research progresses. To date, there are no clinically approved vaccines
or drugs specifically targeting SARS-CoV-2. Therefore, to discover novel candidate drugs
targeting SARS-CoV-2, we combine artificial intelligence (AI) with fragment-based drug
design (FBDD) to accelerate the generation of potential lead compounds and design TCIs.

AI, especially deep learning, has been used to predict molecular properties [30–33]
and design novel molecules [34]. Table 1 lists some deep-learning-based tools and their
features. Among these tools, the tool involving recurrent neural networks relies on a large
number of training molecules with known structures to learn the context information as
the basis for molecule generation. Over time, various advanced generative tools were
proposed, including GENTRL, ORGAN, and ORGANIC. These tools were expected to
increase success rates by introducing posterior distributions and adversarial attacks as
regularizers. However, using the generative models still does not guarantee that their
outputs are valid molecules for drug discovery; to overcome such problems, Molecule Deep
Q-Networks (MolDQNs) with reinforcement learning (RL) were proposed. MolDQN can
iteratively work at the atomic level to generate molecules fitting all predefined constraints.
Hence, all outputs are chemistry-reasonable molecules.
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Table 1. Comparisons of existing deep-learning-based molecule design tools.

Representative Tool Method Training/Performance

RNNs [35] Recurrent neural networks
Extensive training data are required to learn

the context of the atom composition; may
generate many invalid SMILES

GENTRL [36] Variational-autoencoder-based models
Large training data are required to learn the
atom distribution from training SMILES; may

still produce some invalid SMILES

ORGAN [37],ORGANIC [38] Generative adversarial networks
Use adversarial attacks to enhance the
success rate; however, this still cannot

guarantee valid SMILES

MolDQN [39] Reinforcement-learning-based models Employ self-learning without training data
and all generated SMILES are valid

Considering the advantages of MolDQN, we combined the framework with more
fragment-based rules to optimize the generated molecules in this study. In contrast to
earlier deep-learning molecular design by adding a single atom one at a time [30,34], our
approach explores new molecules by adding a meaningful molecular fragment one by one,
which is computationally more efficient and chemically more reasonable. For our AI model,
we initially prepared the molecular fragment library by using the collected SARS-CoV
3CLpro inhibitors (284 molecules) targeting SARS-CoV-2 3CLpro, as shown in Figure 1. Then
we split this set of molecules into fragments with a molecule weight of no more than 200 Da.
Both of the collected inhibitors and the fragments can be found at [40]. Then we applied an
advanced deep Q-learning network with fragment-based drug design (ADQN–FBDD) to
generate potential lead compounds. If researchers have sufficient experience and internal
lead compounds or biased fragments, they can manually add the lead compounds and
biased fragments to the corresponding files of the ADQN–FBDD. Using the same fragments
directly from existing bioactivate molecules, our ADQN–FBDD agent could easily access
the potential chemical space for the 3CLpro of SARS-CoV-2.

After the ADQN–FBDD automatically generated novel compounds targeting 3CLpro,
we obtained a covalent lead compound library with 4922 unique valid structures. A total of
47 of these compounds were selected with high scores with our AI model’s reward function.
These molecules were further evaluated through docking studies. Among the 47 lead
compounds, compound #46, with a high covalent docking score, attracted our attention,
showing a small difference between the non-covalent and covalent docking poses. After
carefully examining the interaction mode of lead #46 with 3CLpro, we believe that there
is still much space for optimization. Subsequently, we designed a series of derivatives
from compound #46 based on our chemical biology knowledge and the structure-based
optimization policy. All of the generated molecular structures are published in our code
library, https://github.com/tbwxmu/2019-nCov [40]. We would encourage researchers
interested in finding a potential treatment for COVID-19 to synthesize and evaluate some
of these molecules.

https://github.com/tbwxmu/2019-nCov
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Figure 1. Art for SARS-CoV-2 3CLpro lead compound generation.

2. Results

Integrating the double-dueling deep-Q-learning network with fixed q-targets and
prioritized experience replay allowed our agent to be stable and efficient when learning
from the chemical environment. With a combination of the state-of-the-art AI algorithm and
FBDD, as shown in Figure 2, the approach was flexible and efficient in accessing the focused
chemical space for SARS-CoV-2 3CLpro. Based on the configurations targeting SARS-CoV-2
3CLpro, the ADQN–FBDD generated a lead library containing 4922 unique molecular
structures (Supplementary Materials dataset in [40]). To narrow our focus to a smaller set
of molecules for analysis, we defined the filter rules (QED > 0.1 and DRL-reward ≥0.6);
detailed information on the rules can be found in the Methods section. A total of 47 unique
molecules (Supplementary Table S1) were selected for non-covalent docking and covalent
docking evaluation. These 47 virtual leads exhibited an appropriate 3D complexity with
typical characteristics of peptidomimetics and protein–protein interaction (PPI) inhibitors.
They were mainly ranked according to the covalent docking scores, considering that
covalent docking scores also include the scores of non-covalent docking [41].

To analyze the common features of these generated molecules, we used the Canvas
Similarity and Clustering tool. As shown in Supplementary Table S3, the 47 leads were
clustered into five clusters according to the clustering metric (shape). Among the five clus-
ters, all of the molecules in Cluster #1 contained R-shaped pyrrolidin-2-one structures and
may be considered optimal segments of the S2 subsite or S1 subsite. In addition, they con-
tained some substituents with hydrophobic cyclic groups, such as aromatic rings, alicyclic
rings, and aliphatic hydrocarbons. The molecules in Cluster #2 included 2-pyrrolidone
in their structures, including R-shaped, S-shaped, and S’-shaped. Furthermore, their side
chains linked to covalent targets contained large substituents (e.g., aromatic rings) and
small substituents (e.g., aliphatic hydrocarbons or aliphatic amines). Cluster #3 comprised
several straight chain-like molecules with substituted or non-substituted pyrrolidin-2-one,
which may also be regarded as optimal segments of the S2 subsite or S1 subsite. In addition,
their α-oxo aldehyde group can form a covalent bond with Cys145. Cluster #4 mainly
consisted of 2-pyrrolidone, heterocyclic rings, and heteroaromatic rings, whose polarities
were considerably higher than those of the molecules from other clusters, which may
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reduce the affinities of the protein active pockets S1 and S2. Their covalent targets included
α, β-unsaturated ketones. Each molecule in Cluster #5 had four extension directions with
different covalent targets, matching four sub-pockets of active protein-binding sites. This
could contribute to a high binding affinity; hence, molecules in Cluster #5 were the best
candidates for further analysis. We also considered the RMSD difference between the
covalent and non-covalent binding poses based on all heavy atoms. Finally, we selected
lead molecule #46 (Figure 3), with a good covalent docking score and a small RMSD value
(docking affinity: −8.722 kcal/mol, KabschRmsd 1.71 Å) in Supplementary Table S1. The
FBDD approach was further optimized to obtain a series of derivatives.
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Figure 2. (A) Framework of the ADQN–FBDD. (A) The ADQN–FBDD consists of a reinforced agent,
a prioritized experience replay algorithm, and a chemical environment to perform chemical structure
generation. The agent selects an action (insertion, deletion, or none) for the intermediate molecular
fragment at each step to generate a new molecule that can maximize the cumulative rewards. The
prioritized experience replay algorithm allows the agent to repeat the molecule generation based
on the updated maximization of rewards. The chemical environment assesses the agent’s actions
according to the predefined chemical rules and provides rewards. (B) Example of fragment-based
actions. (C) The solid lines represent taken actions, including the addition or deletion of different
fragments during an episode. The dashed lines represent actions that the RL agent was considered
but did not take. An exploratory action is represented by the red dashed line, which was taken even
though another sibling action, the one leading to S*, was ranked higher. The exploratory action did
not result in any learning; however, other actions did, resulting in updates as demonstrated by the
curved arrows where estimated values moved up the tree from later nodes to earlier nodes.



Biomolecules 2022, 12, 746 6 of 18
Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

Figure 3. Lead compound #46 generated by AI. (A) Non-covalent docking model of SARS-CoV-2 

3CLpro (brown surface) with the bound lead compound #46 (magenta sticks). The triazole ring binds 

to the S1 subsite of the active catalytic center, the covalent fragment of the α, β-unsaturated aldehyde 

binds to the S1’ subsite, the β-lactam ring binds to the S2 subsite, and 5,7-dihydroxy chromone binds 

to the S3 subsite. (B) Two-dimensional (2D) view of the non-bonding interactions of lead compound 

#46 in complex with 3CL protease based on non-covalent docking. The triazole ring, ketoamide 

group, and phenolic hydroxyl group form hydrogen bonds (H-bonds) with His163, Glu166, and 

Thr190, respectively. (C) Covalent docking model of compound #46 (green sticks) with 3CL protease 

(brown surface), similar to the non-covalent docking model. (D) Two-dimensional view of ligand 

Figure 3. Lead compound #46 generated by AI. (A) Non-covalent docking model of SARS-CoV-2
3CLpro (brown surface) with the bound lead compound #46 (magenta sticks). The triazole ring binds
to the S1 subsite of the active catalytic center, the covalent fragment of the α, β-unsaturated aldehyde
binds to the S1′ subsite, the β-lactam ring binds to the S2 subsite, and 5,7-dihydroxy chromone binds
to the S3 subsite. (B) Two-dimensional (2D) view of the non-bonding interactions of lead compound
#46 in complex with 3CL protease based on non-covalent docking. The triazole ring, ketoamide
group, and phenolic hydroxyl group form hydrogen bonds (H-bonds) with His163, Glu166, and
Thr190, respectively. (C) Covalent docking model of compound #46 (green sticks) with 3CL protease
(brown surface), similar to the non-covalent docking model. (D) Two-dimensional view of ligand
interactions between compound #46 and protease under covalent docking. The triazole ring forms an
H-bond with His163. The α, β-unsaturated aldehyde forms a covalent bond with Cys145, i.e., the key
residue in the catalytic center of the protease, resulting in covalent inhibition. The aldehyde carbonyl
group forms an H-bond with His41. The hydroxyl group of chromone at position 7 forms an H-bond
with Thr190.
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Molecule #46 was ranked first based on the covalent docking score, and its interaction
model with the binding site was carefully examined, as shown in Figure 3. Although
compound #46 had the best covalent docking score, it had an aldehyde group. Interestingly,
upon a detailed examination of #46, it was found that its interactions were similar to those
of the inhibitor 6XHO (PF-00835231) designed by Pfizer, thus demonstrating the potential of
our proposed method. Moreover, 6XHO was reported to have modest levels of irreversible
inhibition, which allowed co-crystallization in complex with SARS-CoV-2 3CL [42]. Based
on PF-00835231, Pfizer further developed Lufotrelvir (PF-07304814). The phosphate group
of PF-07304814 contributed to improved solubility and was cleaved in vitro to release
the active antiviral PF-00835231. Similar to remdesivir, PF-07304814 was administered
via intravenous infusion. Moreover, Pfizer developed the orally active 3C-like protease
inhibitor Nirmatrelvir (PF-07321332), crystallized as 7VH8. We superimposed lead #46 with
6XHO and 7VH8 and compared their 3D pose and interactions, as shown in Figure 4. Most
of their binding sites were aligned with their SARS-CoV-2 3CLpro ligands. Considering that
there is still much space for compound #46 to fill in the S1′ subsite and that α-ketoamides
may be suitable to fit into the oxyanion hole (Figure 5A) of 3CLpro [3], we replaced the
aldehyde with formamide and also replaced the 1,4 Michael acceptors with α-ketoamides.
Therefore, we optimized compound #46 to obtain compound 46–14–1 (Figure 5A,B).
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Figure 4. Co-crystal structure of the covalent adduct of (A) 6XHO (cyan) and (B) 7VH8 (magenta)
bound to SARS-CoV-2 3CLpro together with the alignment of (C) lead compound #46 (yellow), and
the detailed interactions of the complex: (D) 6LU7_#46, (E) 6XHO, and (F) 7VH8.

The non-bonding interactions between compound 46–14–1 and SARS-CoV-2 3CLpro

are mainly hydrogen bonds (H-bonds, five in total). The carbonyl group of the covalent
scaffold α-ketoamide forms H-bonds with Leu141 and Gly143 as a hydrogen acceptor or a
hydrogen donor. The hydrogen on the nitrogen atom of the triazole ring forms an H-bond
with Glu166, and Glu166 forms an H-bond with the carbonyl group on the main chain. The
oxygen of the β-lactam ring forms an H-bond with His41. To enhance the polarity of the
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compounds, sulfonic groups were introduced to replace the ketone carbonyl groups on
the main chain, and sulfonamides 46–14–2 were obtained. The covalent docking model of
compound 46–14–2 with SARS-CoV-2 3CLpro is shown in Figure 5C,D.
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Figure 5. Covalent binding models of compounds 46–14–1 and 46–14–2 in complex with SARS-CoV-2
3CLpro. (A) Covalent docking model of compound 46–14–1 (green sticks) with 3CL protease (yellow-
orange surface). The oxyanion hole formed by the segment of α-ketoamide is shown in the red circle.
(B) Detailed view of the interactions between compound 46–14–1 and 3CLpro. (C) Covalent docking
model of compound 46–14–2 with 3CL protease. Molecule 46–14–2 is shown as green sticks, and
the protein is shown as a brown surface. (D) Two-dimensional view of the interactions between
compound 46–14–1 and 3CLpro.



Biomolecules 2022, 12, 746 9 of 18

To make compound 46–14–2 fit the active pocket with a higher affinity, we added a carbon
atom to the sulfonic acid group of the original molecule, and it extended the carbon chain to
increase the molecule’s flexibility and obtained another optimized compound 46–14–3. The
mode of covalent docking with SARS-CoV-2 3CLpro is shown in Figure 6. Due to the
introduction of carbon atoms and the enhancement of molecular flexibility, the β-lactam
ring can be inserted deeper into the S2 pocket, and other fragments of the compound can
better adapt to the S1, S1′, and S3 subsites. The α-carbonyl carbon on the α-ketoamide of
compound 46–14–3 forms a covalent bond with the key residue Cys145 on the protease;
however, the primary non-bonding interaction is still an H-bond (indicated by a yellow
dash). The triazole ring mainly forms H-bonds with the Phe140 and Glu166 residues in the
S1 pocket. The α-ketoamide covalent binding fragment mainly forms H-bonds with the key
amino acid residues Cys145, Gly143, and Ser144 in the S1′ subsite, forming an oxyanion
hole in the red circle shown in Figure 5. The β-lactam side chain mainly forms H-bonds
with residues Tyr54 and AsS187 in the S2 pocket. The chromone scaffold mainly forms
H-bonds with the key residues Thr190 and Gln192 in the S3 pocket. In addition, the oxygen
on the sulfonyl group of the main chain forms an H-bond with Glu166 in the S1 pocket.
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Figure 6. Covalent binding model of compound 46–14–3 in SARS-CoV-2 3CLpro. (A) Surface repre-
sentation of SARS-CoV-2 3CLpro (brown) complexed with 46–14–3 (green sticks). (B) Stereoscopic
view of 43–14–3 in the substrate-binding pocket of SARS-CoV-2 3CLpro at 4 Å. Molecule 43–14–3
is shown as green sticks. Residues forming H-bonds are shown as yellow sticks. Yellow dashes
represent the H-bonds, and the oxyanion hole is in the red circle.

The optimized compounds (46–14–1, 46–14–2, and 46–14–3) are shown in Figure 7 that
may be further evaluated by molecular dynamics simulation to determine the binding free
energy and by quantum chemical calculation to determine the reaction energy barrier. Fur-
thermore, 46–14–1, 46–14–2, and 46–14–3 were chosen as candidates for chemical synthesis
and anti-SARS-CoV-2 activity testing, which is ongoing.
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3. Discussion

Computational approaches are particularly important for emerging diseases, given
the need to provide timely solutions. In this study, our robust and efficient computational
method and pipeline for designing compounds can provide useful drug candidates for
treating SARS-CoV-2 infections. More information about our AI model-generated leads and
derivatives can be found at [40]. These candidates or their variants have a high probability
of producing valid leads of anti-COVID-19 drugs. Nevertheless, the computational design
requires experimental validation. Although we are currently conducting experimental
validations, we hope that other researchers could use these candidates to accelerate the
development of anti-COVID-19 drugs, given the urgency of treating the disease.

FBDD has become a key technology in the pharmaceutical industry for early stage
drug discovery and development in the last two decades. Molecular fragments are always
small in size compared with intact molecules. Several fragments are especially favorable
to some protein binding pockets. For example, the α-ketoamides can form a covalent
bond with CYS145 of 3CLpro in SARS-CoV-2 and fit into the oxyanion hole, as Figure 6B
presented. These fragments with high-quality interactions with protein targets can more
likely grow up or integrate into lead compounds. During this growing or integrating
process, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties
could be easier to control than working directly on the intact molecule. Based on the above
advantages of FBDD, we believe more and more machine-learning- or deep-learning-based
molecular generative models will use FBDD to design molecules in the future.

Compared with other deep RL methods, the ADQN–FBDD has several notable fea-
tures: (1) It directly modifies and generates molecular structures without format conversion
problems; other tools, such as in silico Medicine’s GENTRL (https://insilico.com), may
generate invalid SMILES. (2) Most generative models require pretraining on a specific

https://insilico.com
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dataset and produce molecules with high similarities to a given training set. For example,
the best molecule from Insilico Medicine for the target DDR1 is highly similar to the kinase
inhibitor Iclusig (ponatinib) [43]. The ADQN–FBDD does not require any pre-training and
is capable of generating new molecules. (3) The process of generating molecules is highly
efficient, as the ADQN–FBBD is a molecular-fragment-based model with knowledge of
chemical reactions, whereas other models are all atom-based, with no rules for chemical
reactions [30,38,44]. (4) The ADQN–FBDD is highly flexible and user-friendly for medicinal
chemists, who can easily introduce their drug discovery experience into the reward func-
tion to guide novel molecule generation. Our ADQN–FBDD and related pipeline may be
used not only for designing anti-COVID-19 drugs but also for other structure-based drug
discoveries, especially for emerging infectious diseases that require timely treatment.

4. Methods
4.1. Markov Decision Process (MDP) for Molecule Generation

Intuitively, the problem of chemical structure graph generation can be formulated as
learning a reinforced agent, which performs discrete actions of chemical-reaction-based
fragment addition or removal in a chemistry-aware MDP. Formally, the components of the
MDP include M = {S, A, P, R, γ}, where each term can be defined as follows:

S = {St} denotes the state space containing all possible intermediate and final gener-
ated molecular graphs. Each st is a tuple of (s, t); s represents a valid molecular structure,
and t is the time step. For the initial state, s0, the structure may be represented as a specific
core, as demonstrated in Figure 2C, or randomly chosen from the prepared fragment library
at time t = 0. We limited the maximum number of time steps, T, in the fragment-based
MDP, which defines the set of terminal states as {st|t=T}, containing all the states, with the
number of steps reaching the maximum allowed value T.

Ac = {At} denotes a set of actions that describe the modification made on the current
molecular structure at each time step, t. Each action can be classified into three categories:
fragment addition, fragment deletion, and no modification.

P = p (st+1|st . . . s0) = p (st+1|st, at) is the basic assumption in the MDP. The state
transition probability specifies the next possible state given the current state and action at
time step, t. Here, we defined the state transition to be deterministic. For example, for S0 to
S1 (Figure 2C), by adding a 1H-1,2,3-triazol-4-yl fragment on S0, the next state S1 would be
the new structure consisting of added 1H-1,2,3-triazol-4-yl with a probability of 1.

R is the reward function that specifies the reward after reaching state St, and γε(0, 1]
is the discount factor; typically, γ = 0.9 in our study. In our framework, the state always
had a valid and complete chemical structure at each step, as shown in Figure 2C. A
reward was given not just at the terminal states but also at each step. Both intermediate
rewards and final rewards were used to guide the behavior of the RL agent. Therefore,
there was no delayed or sparse reward issue as experienced with many other reinforced
frameworks [36,45]. Additionally, to ensure that the last state was rewarded the most,
we used γT–t to discount the value of the rewards at state st. Our reward function can
directly integrate the experience of medicinal chemists. For example, given a core of interest,
medicinal chemists may add biased fragments of interest. Their input can be used to design
a reward function that gives high reward signal values to biased fragments so that the
ADQN–FBDD may have a better chance of generating the desired structures.

4.2. Chemical Environment Design

In our RL framework, the chemical environment receives action, at, from the agent
and emits scalar reward, rt, and state s′t to the agent, as shown in Figure 2A. Notably,
the definition of the environment state differed from the general approach such that the
environment state consisted of only the environment’s private representation invisible
to the agent. We defined the state of the chemical environment, s′t, as the generated
intermediate molecular structure at time step, t, as is fully observable by the RL agent.
Basically, the environment’s state, s′t, was equivalent to the agent’s state, st+1. For the task
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of molecule generation, the environment can incorporate the rules of chemistry. In our
study, chemistry rules were not only about chemical valency but also about adding and
removing the fragments of known inhibitors derived from chemical reactions. The detailed
information of 45 defined chemical reaction rules is presented in Supplementary Table S2.

4.3. Agent Design

As shown in Figure 2A, the basic model of our ADQN–FBDD was an advanced
Q-network. The goal of molecule generation was equally to fit a Q function Q(st, at) to
make the agent choose the action at at state st to maximize the expected γ-discounted
cumulative rewards with policy π. Mathematically, given the agent’s policy π, the value of
the state-action pair Qπ(st, at) and the value of state Vπ(st ) can each be defined as follows:

Qπ (st, at ) = E at∼π(st)

[
T

∑
n=t

γT−n·R(sn, an)

]
= E at∼π(st)

[
R(st, at) + γ·E at+1∼π(st+1)

(Qπ (st+1, at+1 )
]

(1)

Vπ (st) = Eat∼π(st)[Q
π (st, at )] (2)

where E at∼π(st) is the expectation within policy π on state st with at, and R(sn, an) denotes
the reward at step n. The value function Qπ(st, at) measures the value of taking action at on
state st. Vπ(st) is the value of being at state st. Vπ(st) can be seen as a part of Qπ(st, at). The
remaining part of Qπ(st, at) can be defined as the so-called advantage function Aπ(st, at) [43]
as follows:

Aπ (st, at ) = Qπ (st, at )−Vπ (st) (3)

Intuitively, the advantage value shows how advantageous selecting the action is
relative to the others at the same given state. Equation (2) can be rewritten according to
Equation (4):

Vπ (st) = Eat∼π(st)[V
π (st) + Aπ (st, at )] = Vπ (st) + Eat∼π(st)[ Aπ (st, at )] (4)

Obviously, Eat∼π(st)[ Aπ (st, at )] = 0. To avoid the issue of identifiability, we sub-
tracted the mean value from the prediction, and the Q-function of the dueling DQN can be
defined as follows:

Qπ (st, at; Θ, α, β )= Vπ (st; Θ, β) + (Aπ (st, at; Θ, α )− 1
|Ac|∑a′t

Aπ
(
st, a′t; Θ, α)

)
(5)

Note that Θ, α, and β come from the dueling Q-network, as shown in Figure 8.
Moreover, |Ac| is the size of the action space and a′tεAc. To make our RL agent more
robust for more stable learning and to handle the problem of the overestimation of Q-values,
the double Q-network [46] and fixed Q-targets [47] were also incorporated:

TD = Qπ (st, at; Θ, α, β )−
[
R(st, at) + γ·Qπ

tar
(
st+1, argmaxat+1 Qπ (st+1, at+1; Θ, α, β ); Θ′, α′, β′

)]
(6)

where TD is the temporal difference; and Qπ
tar is another dueling DQN network, as the

target network and its parameters (Θ′, α′, β′) were fixed and copied from the dueling DQN
Qπ every m step (m = 20). To update the parameters (Θ, α, β) from the dueling DQN as
shown in Figure 7, we trained our RL agent by minimizing the loss function:

l(Θ, α, β) = E[ fl(TD)] (7)

where E is the expectation. As the disadvantage of the L2 loss is the tendency to be
dominated by outliers, we used the Huber loss as the loss function fl :

fl(x) =
{
|x| − 0.5 i f |x| ≥ 1
0.5 ∗ x2 i f |x| < 1

(8)
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4.4. Prioritized Experience Replay

Prioritized experience replays [48] is a technique to enable the RL agent to remember
and reuse experiences from the past and to replay important transitions more frequently.
Prioritized experience replay is highly useful for replaying some less frequent experiences.
Here, we used the “Prioritized Replay Buffer” code from Open AI Gym (version 0.15.4) [49].
Finally, our RL agent was trained in the double-dueling deep Q-learning network with
fixed q-targets and prioritized experience replay.

4.5. Fragment Library Design

The fragment-based approach to drug discovery (FBDD) has been established as an
efficient tool in searching for new drugs [50]. The idea of FBDD is that proper optimization
of each unique interaction in the binding site and subsequent incorporation into a single
molecular entity should produce a compound with a binding affinity that is the sum of the
individual interactions. However, the widely used fragment libraries consider only the
diversity of fragments, such as the ZINC fragment database. Therefore, there is a very low
probability of achieving the desired bioactivity for a given protein.

To combine FBDD with our RL framework, we first collected and built a SARS-CoV-2
3CLpro inhibitor dataset containing 284 reported molecules. We adopted the improved
BRICS algorithm [46] to split these molecules to obtain the fragment library target on SARS-
CoV-2 3CLpro, as demonstrated in the flowchart in Figure 1 (yellow box). An elaborate
filtering cascade is accompanied by manual inspection, and the rules can be changed based
on the needs of different studies. Our fragment library contained 316 fragments with
molecular weights of <200 Da and minimum and maximum numbers of non-hydrogen
atoms of 1 and 25, respectively. The fragments that come directly from existing inhibitors
based on the chemical retrosynthetic rules are always true substructures and may have high
bioactivity in targeting 3CLpro. The quality of the designed fragment library can directly
affect the properties of the chemical environment of the ADQN–FBDD.

4.6. Core Selection

Previous studies have identified various scaffolds or core structures with advanta-
geous characteristics in terms of the activity for a particular target [51–53]. Core structure
selection is the starting point in scaffold-based drug discovery. However, choosing or
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designing a proper initial scaffold is not a simple task, and medicinal chemists may require
considerable experience. Nevertheless, there are several reported core structures targeting
SARS Mpro [54]. We chose 4-aminopent-2-enal and 3-amino-2-oxobutanal as the starting
cores (Figure 9) because both cores have been validated to generate covalent bonds with
the Cys145 of SARS or SARS-CoV-2 3CLpro.
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4.7. Reward Design

Most reported RL methods use the complete structural information of a positive drug
or inhibitor as the template [38,44]. They design a reward function for the RL agent to learn
to regenerate the template structure or generate highly similar structures to the template.
This approach may be useful in testing the performance of RL methods but may not be
suitable in real-world drug design because the complete structural information of the
novel molecule is unknown. A more practical approach is to learn the structural features
of existing drugs or inhibitors in the focused chemical space for a specific protein target.
Instead of focusing only on the diversity of molecular structures, we explored the possibility
of generating novel molecules based on the existing knowledge. Here, we designed a deep
reinforcement learning reward (DRL-reward) function consisting of the final property score
with the specific fragments (CSF) score and pharmacophore score as follows:

R(s) = wpro· fpro(s)+wcon· fcon(s)+wpha· fpha(s) (9)

fpro(s) =
{

1 i f QED(S) > 0.1
0 else

(10)

where wpro represents the weight for the quantitative estimate of drug-likeness (QED),
and its default value is 0.1; and fpro represents QED. QED values can range from 0 (all
properties are unfavorable) to 1 (all properties are favorable), calculated based on eight
molecular properties [55]. The score function fcs f of CSF is as follows:

fCSF(s) =
{

Fcs f (s) i f FCSF(s) > 0.9
0 else

(11)
FCSF(s) =

nmatch
Ntotal

(12)

The binding site of SARS-CoV-2 3CLpro (Figure 10) is commonly divided into the
catalytic activity center (His41 and Cys145; S1′) and several subsites, defined as S1 (His163,
Glu166, Phe140, Leu141, and Asn142), S1′ (His41, Cys145, Gly143, and Ser144), S2 (Tyr54,
Asp187, His41, Arg188, His164, and Met49), and S3 (Thr190, Gln192, Glu166, Met165,
Leu167, and Gln189). Each subsite may have its favorable binding fragment. When
generated structures (including intermediates) contain these favorable fragments, fcs f is
equivalent to giving an additional reward to our RL agent. Moreover, wcon controls the
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contribution of the biased fragment to the reward signal, and the default value is 0.6; nmatch
represents the number of biased fragments matched in one generated structure; Ntotal is
the number of biased fragments defined based on our knowledge from related work; and
fpha represents the score function of the pharmacophore, which mainly depends on the
ligand–protein interaction mode from the crystal structure (PDB ID: 6LU7):

fpha(s) =
{

1 i f matchs the de f ined pharmacophores
0 else

(13)
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𝑓𝑝ℎ𝑎(𝑠) = {
1     𝑖𝑓 𝑚𝑎𝑡𝑐ℎ𝑠 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑝ℎ𝑎𝑟𝑚𝑎𝑐𝑜𝑝ℎ𝑜𝑟𝑒𝑠            
0   𝑒𝑙𝑠𝑒                                                                                      
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Figure 10. Binding site of SARS-CoV-2 3CLpro. (A) Surfaces of subsites that complement the sub-
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residues of the binding site that are presented as green, red, magenta, and cyan lines (S1, S1’, S2, 

and S3). Images of the binding site were generated by using PyMol (http://www.pymol.org/). 

4.8. Molecule Generation and Selection 

Figure 10. Binding site of SARS-CoV-2 3CLpro. (A) Surfaces of subsites that complement the substrate-
binding pocket that are labeled as S1 (green), S1′ (red), S2 (magenta), and S3 (cyan). (B) Key residues
of the binding site that are presented as green, red, magenta, and cyan lines (S1, S1′, S2, and S3).
Images of the binding site were generated by using PyMol (http://www.pymol.org/).

The pharmacophore plot is shown in Supplementary Figure S5. Moreover, wpha
controls the contribution of the pharmacophore score to the reward, and the default value
is 0.4.

4.8. Molecule Generation and Selection

As discussed in Section 4.7, addressing the reward design, our reward function consid-
ered the molecular descriptor threshold (QED > 0.1), the defined pharmacophore mode, and
biased fragments. A total of 4922 unique valid structures were automatically generated, and
all matched the defined rules, using the ADQN–FBDD without any pre-training, as required
by other methods [30,36,45,56,57]. Next, all molecules with a high deep-reinforcement-
learning score (DRL score: R(S) >= 0.6) were selected (47 molecules), as they were more
drug-like, contained more favorable fragments of SARS-CoV-2 3CLpro, and covered more
pharmacophore modes compared with other candidates obtained from multiple learning
steps. These 47 unique molecules were prepared to generate at least one conformation
with local energy minimization, using the OPLS-2005 force field of the “ligand prepare”
module of Schrödinger 2015 software. The 47 unique molecules generated a total of
163 3D conformations before docking into the substrate-binding site of SARS-CoV-2 3CLpro.
Considering the balance between precision and calculation time, the stand-precision (SP)
Glide [58] was initially used to predict the possible non-covalent binding poses in this
binding site and the binding site grid centered on the original ligand N3 [59] with 20 Å

http://www.pymol.org/
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buffer dimensions. Following non-covalent docking, we also determined the covalent
docking poses and scores for the 47 molecules. We reordered the docking results mainly
based on the covalent docking score and the RMSD difference between the covalent and
non-covalent poses (Supplementary Table S1).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12060746/s1 [40]. Figure S1: Sequence alignment between
SARS-CoV-2 3CLpro and SARS-CoV 3CLpro; Figure S2: Structure superposition between SARS-CoV-2
3CLpro (PDB ID: 6LU7 shown in magenta) and SARS-CoV 3CLpro (PDB ID: 3D62 shown in cyan)
with an RMSD of 0.44 Å; Figure S3: Substrate-binding site superimposition of SARS-CoV-2 3CLpro

(PDB ID: 6LU7, magenta cartoon) and SARS-CoV 3CLpro (PDB ID: 2HOB, cyan cartoon); Figure S4:
Comparison of the ligand conformations between SARS-CoV-2 3CLpro (PDB ID:6LU7) and SARS-CoV
3CLpro (PDB ID:2HOB); Figure S5: The pharmacophore model embedded in the R function; Table
S1: Results of non-covalent and covalent docking results; Table S2: 45 rules pf different chemical
reactions; Table S3: Five clusters for the generative 47 leads.
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