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Abstract

Micro- organisms contribute to Earth’s mineral deposits through a process known as bacteria- induced mineral precipitation 
(BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the super-
saturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP 
induced by bacterial metabolism through the control of metal redox states and enzyme- mediated reactions such as ureolysis. 
However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacte-
rial activity, where minerals form as a result of metabolic by- products and surface interactions within the surrounding envi-
ronment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, 
heavy metal remediation, restoration of historic buildings and even self- healing concrete. However, these applications to date 
have primarily incorporated BIMP- capable bacteria sampled from the environment, while detailed investigations of the under-
pinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activi-
ties that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic 
processes involved. Ultimately, detailed insights will facilitate the rational design of application- specific BIMP technologies and 
deepen our understanding of how bacteria are shaping our world.

INTRODUCTION
Bacterial activity is evident in our landscapes and throughout 
the geological record, where it has helped shape Earth’s mineral 
deposits [1]. This has occurred, to some degree, via a process 
known as bacteria- induced mineral precipitation (BIMP). The 
variety of mineral deposits that are formed through bacte-
rial activity can take on the form of stalactites and stalagmites 
[2], microbialites, stromatolites and thrombolites [3, 4] as well 
as large- scale sedimentation [4]. More recently, the ability of 
bacteria to induce mineral formation has gained attention for 
biotechnological application. In particular, the precipitation of 
calcium carbonate in the form of calcite, the mineral that forms 
limestone, has been exploited in innovative technologies in civil 
engineering. The first patented application is considered to have 
been by Adolphe and colleagues in 1990 for biological treatment of 
degrading stone surfaces [5]. Since then, more technologies have 
been developed, with a lot of attention surrounding the concept 
of self- healing concrete [6–8]. Other applications of BIMP include 
soil consolidation or heavy metal bioremediation, and excellent 
recent reviews exist that cover the spectrum of such technologies 
in detail [9–14].

For the purposes of this review, BIMP is defined as a process by 
which bacterial activity indirectly induces mineral formation via 
the release of metabolic by- products and surface interactions 
with ions in the open environment [15–17]. This is in contrast 
to bacteria- controlled biomineralization, e.g. the formation of 
magnetite by magnetotactic bacteria, which is metabolically 
and genetically controlled by the bacteria and occurs in defined 
locations, e.g. magnetosomes [18–20]. The latter has been 
reviewed in detail elsewhere [15, 21] and will not be covered 
here. The minerals formed by BIMP generally have no specific 
function (aside from some potential ecological benefits) and can 
be considered an unintended and uncontrolled consequence 
of bacterial activity [22, 23]. Depending on the author, indirect 
biomineralization is sometimes subdivided further into more 
nuanced ‘bacteria- induced’ versus ‘bacteria- influenced’ mineral 
precipitation [13, 20, 24]. The boundaries between the two are, 
however, not clear cut and in this review no such division is made.

Bacteria-induced mineral precipitation
Precipitation of mineral species in an aqueous system occurs 
when the ion concentration exceeds solubility and reaches 
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a degree of super- saturation. Once the activation energy 
barrier is overcome, initial crystal nucleation occurs, in which 
metastable critical nuclei form that may dissolve back into 
the bulk phase. Subsequent aggregation of individual nuclei 
describes the process of crystal growth and precipitation 
[25–27]. Nucleation can take place either homogeneously, 
whereby nucleation occurs when critical nuclei form in the 
absence of foreign particles (via random collisions of ions or 
atoms in solution), or heterogeneously, whereby nucleation 
takes place when critical nuclei form on surfaces of foreign 
particles [25–27]. Such particles lower the activation energy 
by providing templates with spacing that enhances nuclea-
tion and thus, precipitation [25–27]. Furthermore, during the 
nucleation process foreign particles may aggregate, leading to 
the formation of mixed precipitates [28].

In BIMP, bacteria can induce biomineralization by modu-
lating precipitation- relevant parameters like local ion concen-
trations or pH in the environment and/or by bacterial cells 
themselves providing nucleation sites for crystal formation. 
In general, this bacterial process involves the attraction of 
cations to negative charges on the cell surfaces, while meta-
bolic activity provides the appropriate microenvironment 
and counter- anions so that these cations may precipitate as 
minerals [29]. The BIMP trait is common amongst bacteria 
across environments [9, 30–33], and, depending on bacterial 
species and environment, it can lead to a range of precipi-
tated minerals (Table 1). The bacteria- induced formation of 
some of these minerals can further lead to co- precipitation of 
additional divalent metal cations and anions [34–36]. Indirect 
bacterial influence on precipitation parameters of saturation 
state and nucleation catalysis can be broadly separated into 
two contributing areas: cell surface and metabolic activity, 
and our current understanding of the mechanisms of these 
will be reviewed here.

Cell surface: nucleation catalysis, saturation state 
and nucleation template
The large surface area to volume ratio of bacteria make them 
ideal crystal nucleation sites. Covered by functional groups 
with a net negative charge, their surface acts as a metal cation 
scavenger concentrating dilute cations attracted from the envi-
ronment [29, 37, 38]. Net negative surface charge is imparted 
by carboxyl (R- CO2H) and phosphate groups (R- PO4H2) of 
teichoic acids in Gram- positive bacteria, and phospholipids 
and lipopolysaccharides (LPS) in Gram- negative bacteria 
[39]. Bacterial S- layers further influence net surface charge 
depending on the presence or absence of S- layer glycol 
proteins with glycosylated long carbohydrate chains, and 
depending on the structural groups exposed within their 
lattice pores [40–42]. These bacterial surface structures are 
illustrated in Fig. 1. Extracellular polymeric substances (EPS), 
capsules, sheaths, slimes and biofilm matrices may further 
surround Gram- positive or Gram- negative bacteria. These are 
also usually associated with a net negative charge imparted 
by carboxyl and phosphate groups, which are free to interact 
with soluble cations [43].

The extent of the surface negative charge is governed by the 
deprotonation of functional groups with an increase in pH: 
carboxyl, phosphate, hydroxyl (R- OH) and sulphate (R- SO4) 
groups increase their negative charge, while amine (R- NH2) 
groups decrease their positive charge. For bacteria living in 
environments with neutral pH ranges, this means that surfaces 
tend to be negatively charged and have a high affinity for cati-
onic species [44, 45]. Carboxyl groups in particular have been 
found to contribute strongly to the metal- binding capability. 
Studies on Bacillus subtilis used chemical modification of 
phosphate and carboxyl functional groups to demonstrate 
their importance in and relative contribution to metal ion 
binding [46, 47]. More recent studies of Gram- positive cell 
walls support this role, with half the binding of calcium and 
magnesium coming from polyphosphate groups of teichoic 
acids and half from carboxyl groups of peptidoglycan [48].

Teichoic and teichuronic acids, as well as LPS are natively 
stabilized by the presence of divalent cations, providing 
starting nucleation sites for mineral formation [43]. Surface 
cation binding sites are assumed to form the centre of 
crystal growth. Mineral precipitation occurs from nuclea-
tion of cations to previously adsorbed surface cations. 
The formation of these critical nuclei is stabilized by the 
surface functional groups through a reduction of tension 
between the bulk water phase and mineral nucleus [43]. 
Once bound, supersaturation is achieved by lowering the 
free energy necessary for precipitation, often with the 
help of metabolism- induced changes in pH. Consequently 
precipitation can then occur faster than in systems without 
bacteria [49]. For example, in the precipitation of the 
calcium- magnesium mineral dolomite, the dehydration 
of the magnesium ion and subsequent carbonation are 
the rate- limiting step of nucleation [50]. In the presence 
of carboxyl groups, [Mg(H2O)6]

2+ binds and dehydrates to 
[Mg(H2O)5(R- COO)]+. This lowers the activation energy 
for subsequent carbonation and attachment of Ca2+ to form 
dolomite [CaMg(CO3)2] [50–52]. Thus, bacteria provide 
a mechanism of heterogeneous precipitation, with their 
surfaces acting as a nucleation catalyst and template, as well 
as increasing the saturation state through local attraction 
of cations.

Beyond the direct influence of bacterial surfaces, the 
microenvironment they create also plays a very important 
role in influencing ion saturation state. All submerged 
surfaces, such as those of micro- organisms, are surrounded 
by a thin- filmed water envelope called the hydrodynamic 
boundary layer [53]. Bacteria live at an extremely low Reyn-
olds number, that is, the viscous forces of the environment 
dominate over their ability to move. As a consequence, 
these bacteria experience greater viscous drag and so 
struggle to escape their thin water envelope [53]. Within 
this surrounding water envelope, concentration gradients 
of ions can form where local concentrations are higher than 
in the bulk aqueous environment. Supersaturation will vary 
with ion concentration and so precipitation will be favoured 
within the cell- surface vicinity where the concentration is 
highest. The concentration gradient is the combined result 
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Table 1. Minerals precipitated in association with bacterial activity*

Mineral Chemical formula Reference

Carbonates   

Calcite CaCO3 [30]

Dolomite CaMg(CO3)2 [111, 112]

Kutnahorite CaMn(CO3)2 [113]

Siderite FeCO3 [114]

Magnesite MgCO3 [54, 115]

Otavite CdCO3 [116]

Strontianite SrCO3 [72]

Rhodochrosite MnCO3 [117]

Cerussite PbCO3 [118]

Hydrozincite Zn5(CO3)2(OH)6 [36, 119]

Dypingite Mg5(CO3)(OH)2·5H2O [120]

Witherite BaCO3 [121]

Phosphates   

Tricalcium phosphate Ca3(PO4)2 [78]

Struvite NH4MgPO4∙6H2O [74, 113]

Bobierrite Mg3(PO4)2·8H2O [74, 122]

Baricite (MgFe)3(PO4)2·8H2O [74]

Vivianite Fe3(PO4)·2H2O [114]

Autunite Ca(UO2)2(PO4)2∙10- 12H2O [44]

Uramphite NH4UO2PO4 [101, 123]

Apatite Ca10(PO4)6(OH)2 [124]

Pb- hydroxyapatite Ca2.5Pb7.5(OH)2(PO4)6 [125]

Strengite FePO4·2H2O [126, 127]

Variscite AlPO4·2H2O [97]

Silicates   

Gehlenite Ca2Al(AlSiO7) [128]

Silica SiO2 [129]

Nontronite Na0.3Fe3+
2(Si,Al)4O10(OH)2·nH2O [130]

Chamosite (Fe5Al)(Si3Al)10(OH)8 [126]

Kaolinite Al4(Si4O10)(OH)4 [126]

Sulphides   

Mackinawite FeS [76]

Greigite Fe3S4 [76, 131]

Pyrite FeS2 [132]

Covellite CuS [133, 134]

Sphalerite ZnS [135]

Galena PbS [134]

Continued
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of cell surfaces lowering thermodynamic activation ener-
gies, sequestering cations, as well as metabolic activity 
providing anions such as HCO3

-, all of which occurs within 
the surrounding water layer [29, 54].

This principle can be extended further to other layers 
surrounding microbial surfaces such as biofilm matrices, 
slimes, sheaths, filaments, capsules and EPS secretions. 
These layers can create a microenvironment that favours 
supersaturation and thus precipitation via local changes 
in ion mobility, viscosity and nucleation kinetics (Fig. 2) 
[55]. For example, mineralization has been seen on bacte-
rial sheaths and filaments [56, 57], slimes [58, 59], biofilms 
and EPS [60]. Some findings even showed that purified EPS 
alone could contribute to mineral precipitation, while other 
studies found that EPS production was not always associ-
ated with mineral precipitation [61–63]. This emphasizes 
the complexity of the process dependent on the bacterium, 
environment, mineral formed and underlying mechanism. 
In cyanobacterial systems, EPS has been shown to inhibit 
the precipitation in the bulk phase of the environment by 
trapping large amounts of divalent cations in its sugars, 
acidic residues and negatively charged functional groups. 
Only upon degradation of EPS and liberation of the cations 
does the saturation index increase, allowing for the precipi-
tation of minerals [24, 64, 65].

Further to creating favourable conditions, the microen-
vironment is not subject to the same kinetics as the bulk 
environment and therefore also protects against inhibiting 
factors such as ion complexing and cation hydration [66]. 
Thus, bacterial surfaces and their microenvironments allow 
precipitation to occur even in unfavourable conditions such 
as acidic environments [67]. Over the course of precipita-
tion and with the eventual degradation of some extracellular 
organic components, the microenvironment is broken down 
and leaves behind a mineral organic phase encasing the cell, 
illustrated in Fig. 2. Active mechanisms by which the bacteria 
can avoid or escape such encasement are discussed later in 
this article.

Cell surface: polymorph ratio, crystal morphology, 
mineral type, and crystal size
In addition to providing nucleation sites and concentrating 
ions, surface structures can influence mineral polymorph 
ratio, crystal morphology and the type of minerals precipi-
tated. Polymorphs have the same chemical structure but 
differ in their crystal structure [68]. Calcium carbonate 
mainly encompasses the polymorphs' calcite, vaterite and 
aragonite, and their ratios can be affected by cell- surface 
chemistry. For example, the presence of carboxylic groups, 
phosphonates, sulfonates and amino acids has been found 

Mineral Chemical formula Reference

Digenite Cu9S5 [136]

Sulphates   

Gypsum CaSO4·2H2O [41, 54]

Celestite SrSO4 [72]

Barite BaSO4 [121, 137]

Oxides   

Magnetite Fe3O4 [114]

Hematite Fe2O3 [23, 138]

Ferrihydrite Fe2O3·0.5H2O [138]

Geothite α-FeO(OH) [138]

Manganite MnOOH [139]

Vernadite MnO2 [57, 140, 141]

Hausmannite Mn3O4 [142]

Todorokite (Ca,Na,K)x(Mn4+,Mn3+)6O10·3.5H2O [138]

Birnessite (Na,Ca,K)x(Mn4+,Mn3+)2O4·1.5H2O [138]

Uraninite UO2 [143–145]

Calcium Arsenate CaHAsO3 [146]

*Note that while these minerals have all been reported to be formed in association with bacterial activity, the mechanisms for their formation are 
not always known, and some minerals can be formed by multiple different mechanisms. The minerals listed and accompanying sources are non- 
exhaustive of the examples available in the literature.

Table 1. Continued



5

Hoffmann et al., Microbiology 2021;167:001049

to promote formation of vaterite [69]. The morphology of 
calcium carbonate crystals has been reported to be influ-
enced through the presence of organic matter, e.g. by an 
increase in acidity of l- amino acids and xanthan content, 
where calcite crystals transitioned from rhombohedra to 
fibro- radial spherulites, and the monocrystals that make up 
the typical vaterite crystal spheres evolved from clustered 
short needles to clustered large hexagons [58].

The type of mineral precipitated is in part determined by 
the selective adsorption of metals to certain functional 
groups. Different metals were found to bind cell- surface 
components with different affinities. For example, it was 
reported that Mg2+ bound with a higher affinity than Ca2+ 
to cell walls of the Gram- positive B. subtilis [46, 47, 70] as 
well as to cell envelopes of the Gram- negative Escherichia 
coli [71]. The selective adsorption of calcium and strontium 
cations versus that of magnesium to pores within S- layers 

of Synechococcus sp. governed the preferred precipitation of 
the sulphate minerals gypsum and celestite [72].

Cell surface or metabolism: are precipitating 
bacteria dead or alive?
Different observations have been reported regarding 
whether BIMP is strictly dependent on bacterial activity, 
specifically whether dead cells may be able to facilitate 
biomineralization. This leads to different interpretations 
of how important cell- surface structures are for the process 
of mineral precipitation. While materials science studies 
showed that precipitation can occur on functional group 
monolayers [73], absence of precipitation on dead cells 
suggests that the organic material is not simply a nuclea-
tion seed, but that metabolic activity also plays a key role 
[74, 75]. In contrast, other work found that minerals do form 
on dead cells and their debris [61, 76, 77]. This discrepancy 

Fig. 1. Schematic of the major supramolecular structures on the surface architecture of (a) Gram- positive and (b) Gram- negative 
bacteria, which provide sites for metal cation interaction. The red circles represent sites of negative charge, the grey circle represent 
sites of neutral charge, the blue circles represent positively charged cations, and dotted lines illustrate the attraction between negative 
and positive charges. Adapted from [42, 147].
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may simply be a result of the differences between bacte-
rial species, environmental conditions or methodologies 
used to prepare the dead cells, as this may affect structural 
properties [2]. Systematic studies would be required to 
determine how much of this variability in mineral precipi-
tation on live versus dead cells is genuinely due to specific 
properties of the particular species investigated, or if other 
factors of experimental design or conditions are the main 
drivers of the outcome.

While an unequivocal answer to the question is currently 
lacking, considerations of the implications of BIMP in 
bacterial communities may shed some light. As described 
above, mineral precipitation on the cell surface leads to 
encasement of the cell (Fig. 2). Therefore, if only living cells 
precipitated minerals, the whole population could run the 
risk of entombment and death. To allow for the continued 
growth of a population, precipitation might therefore be 
assumed to occur only on dead cells and/or a restricted 

number of live cells [78]. On the other hand, mechanisms 
exist for active evasion of entombment by shedding 
encrusted S- layers [41], forming mineral sheaths/capsules 
[56], forming nanoglobules to act as decoy precipitation 
targets [79, 80], or even controlling surface functional 
group distribution to control precipitation occurrence [81].

The role of metabolism in evading entombment is also 
unclear. One observation has been that induction of a 
proton motive force by metabolic activity of live cells 
reduced the cell- wall metal- binding ability [82]. Metabo-
lism as an active mechanism against entombment also has 
been proposed in cyanobacteria and suggested that dead 
cells could potentially be better at mineral precipitation 
because they retained more of their negative surface charge 
[83]. Zeta potential analysis was used to approximate the 
net surface charge of the bacteria by measuring the poten-
tial differences between the cell and fluid interface [84]. In 
these studies, metabolic activity was found to contribute 

Fig. 2. Mineral encasement of a bacterial cell. (a) Bacterial cell (green) surrounded by a microenvironment (light blue) created by 
an extremely low Reynolds number and/or sheaths, capsules, slimes, biofilm matrices or extracellular polymeric substances. (b) 
Accumulation, stabilization and slow diffusion of ions within the microenvironment close to the cell occurs from metabolism and cell- 
surface interactions creating a high local ion concentration (dark blue). (c) Within the cell- surface vicinity, at a high ion concentration, 
the equilibrium is shifted in favour of supersaturation and thus precipitation (grey shapes). (d) Onset of precipitation can lead to the 
breakdown of the microenvironment and, along with the degradation of some extracellular organic components, leaves behind a 
mineral- organic phase encasing the cell (grey shapes).
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to a more positive surface charge, likely regulated to 
attract anions for metabolism. On the other hand, dead 
cells retained a constant negative charge on their surface 
structures [84]. At a community level, i.e. a mixture of live 
and dead bacteria, one explanation for the ability of these 
bacteria to precipitate minerals on their surface may be as 
a result of cations binding to negatively charged surfaces of 
dead or inactive cells. Alternatively, a somewhat counter-
intuitive explanation might be the attraction of carbonate 
anions to metabolically active cells and letting these act 
as the seed for nucleation rather than the typical cations 
[84]. Evidence of changes in cell- surface charge between 
dead and live cells is still limited, and there is likely to be 
variability among bacterial species depending on their 
surface structures. Taking into account these observations, 
the more likely explanation is that most often both surface 
structure and bacterial metabolism are required as catalysts 
to modulate precipitation parameters by influencing satura-
tion state and nucleation ability. Precipitation should occur 
under conditions of supersaturation, when cations attracted 
to the bacterial surface react with counter anions in the 
environment. Anion concentration is in turn environ-
ment dependent or may be supplemented by metabolism, 
suggesting both live and dead bacteria may be needed.

Bacterial metabolism: pH and anions, including 
dissolved inorganic carbon (DIC)
Apart from the availability of nucleation sites, mineral 
precipitation also depends on (i) availability of anions, (ii) 
availability of cations and (iii) pH [85]. Bacterial metabolism 
plays an integral role in BIMP whereby it chemically alters 
the environment through the production of metabolites and 
by- products that influence the local pH and ion concentra-
tions (e.g. carbonate, phosphate or metal cations). Modula-
tion of these parameters ultimately affects supersaturation 
conditions and thus precipitation.

A key parameter to consider in mineral precipitation is the 
ion activity product (IAP), which for low- solubility minerals 
can be approximated as the product of the concentrations 
of the anion and cation composing the mineral, as exempli-
fied for calcium carbonate in Equation 1. Supersaturation is 
achieved when the IAP of the mineral exceeds its solubility 
product constant (Ksp), as defined in the saturation index 
(SI) (Equation 2). A system is considered supersaturated 
when SI>0 [13, 86, 87].

 IAP (CaCO3) = [Ca2+]× [CO2−
3 ]  (Equation 1)

 SI = log
(
IAP
Ksp

)
  (Equation 2)

While Ksp is a constant for a given system, IAP depends on 
effective concentrations and can be influenced by environ-
mental factors such as bacterial metabolism. The precise 
value of SI at which precipitation occurs spontaneously for 
a given system can vary, depending, for example, on the 
presence of organics that can promote precipitation or even 
inhibit it despite high saturation states [69, 86, 88–90]. In 
that regard, SI only predicts the point at which precipitation 

is thermodynamically favoured but not when it actu-
ally begins. In BIMP, the point at which precipitation is 
observed can in part depend on cell density and nucleation 
points [13, 60, 91–93], but it also critically depends on the 
effects of bacterial metabolism on IAP.

Metabolic activity is furthermore accompanied by 
changes in pH due to the production of various metabolic 
by- products. This in turn affects precipitation potential, 
with a higher pH directly contributing to the availability 
of anions through deprotonation and supersaturation. 
For example, in the case of mineral carbonates, the 
precipitation potential is dependent on both the pH and 
the carbonate anion concentration, known as the total 
dissolved inorganic carbon (DIC), which is the sum of 
the dissolved forms of CO2, HCO3

- and CO3
2-. Moreover, 

the concentration of anions is directly related to the pH 
through the dissociation constants as seen in the carbonate 
equilibrium (Equation 3) [94]. At higher pH, the carbonate 
equilibrium is shifted to the right and carbonate species 
are deprotonated. As a result, more bicarbonate (HCO3

-) 
and carbonate (CO3

2-) ions are available for precipitation. 
Similarly, phosphate groups will be subject to changes in 
protonation state, depending on environmental pH (Equa-
tion 4). Sulphate groups will typically be present in their 
deprotonated state due to their low pKa values (usually 
below 2.5) (Equation 5), which will generally be exceeded 
by environmental pH [60]. Precipitation at low pH is 
possible in theory, but mostly applies to phosphate and 
sulphate- containing minerals where the anion component 
has a lower pKa. However, in practice, low pH often leads 
to dissolution of minerals.

 CO2 + H2O
pKa 6.35←−−−→HCO−

3 + H+ pKa 10.3←−−−→CO2−
3 + 2H+

 
 (Equation 3)

 
 H3PO4

pKa 2.16←−−−→ H2PO−
4 + H+ pKa 7.21←−−−→ H2PO2−

4 + H+ pKa 12.32←−−−−→ H2PO3−
4 + H+ 

 (Equation 4)

 H2SO4
pKa−3.0←−−−−→ HSO−

4 + H+ pKa 1.99←−−−→ SO2−
4 + H+

 
 (Equation 5)
Bacterial metabolism, through a modulation in pH and the 
production of anions such as phosphates, sulphates and 
carbonates, therefore has a direct influence on IAP and can 
increase the likelihood of anions and cations precipitating 
together as minerals [87]. Which anions are produced 
ultimately also depends on the availability of nutrients and 
metabolic capabilities of the specific bacteria present. For 
example, bacteria capable of reducing sulphate can produce 
sulphide ions that can directly precipitate as minerals, while 
bacteria that break down urea or amino acids increase the 
local pH, which in turn favours formation of carbonates 
for mineral precipitation (Fig. 3). For reasons of brevity, 
however, only the key contributing factors in terms of net 
ion production and pH effects created by different meta-
bolic pathways contributing to mineral precipitation are 
discussed here. The specific physicochemical details of the 
various individual metabolic pathways that can induce 
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mineral precipitation have been reviewed elsewhere 
[33, 95].

Autotrophic metabolic pathways
Autotrophic metabolic pathways such as non- 
methylotrophic methanogenesis or oxygenic and anoxy-
genic photosynthesis utilize CO2 to produce organic matter. 
This causes a depletion in CO2 that alters the bicarbonate 
equilibrium through a shift to the left (Equation 3), leading 
to removal of H+ as bicarbonate concentration increases, 
as well as dissociation of bicarbonate ions to CO2 and OH-. 
The resulting increase in pH favours precipitation under 
conditions of low DIC but high concentrations of suitable 
cations (Fig. 3) [24, 85].

Aerobic heterotrophic metabolism
Aerobic heterotrophic metabolism can cause local 
increases in anion concentration and pH. As mentioned 
above, aerobic heterotrophs break down organic carbon 
to produce CO2 that partially converts to carbonate and 
bicarbonate and increases DIC and pH in the bulk phase 
[64, 96].

Nitrogen cycle
Dissimilatory reduction of nitrate under anoxic conditions 
and deamination of amino acids for their catabolic use both 
lead to production of ammonium and hydroxide ions and 
consumption of H+ ions. This causes an increase in pH and 
thus shifts dissociation equilibria of anions that are relevant 

Fig. 3. Metabolic pathways associated with bacteria- induced mineral precipitation. Various products of metabolism result in a net effect, 
shown on the right, that primes the environment for mineral precipitation. AA refers to anion availability, typically bicarbonate and 
carbonate. Products in green are increased and those in red are decreased as a result of metabolic activity. Adapted from [98].
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for mineral formation (Fig. 3) [96]. The role of ureolysis in 
mineral precipitation is explained below.

Sulphur cycle
Dissimilatory reduction of sulphate, carried out in anoxic 
conditions by sulphate- reducing bacteria, results in the 
production of carbonate, bicarbonate and hydrogen 
sulphide (H2S) (Fig. 3). Whether this leads to biominerali-
zation depends on the fate of the H2S produced. Excreted 
sulphide can lead to authigenic precipitation in the bulk 
phase by directly reacting with metal cations in the environ-
ment to precipitate sulphide minerals [97]. Alternatively, 
loss of H2S can occur through degassing or consumption 
by anoxygenic sulphide phototrophic bacteria that oxidize 
H2S to elemental sulphur and form intra- or -extracellular 
deposits. The removal of H2S increases the pH and thus 
favours precipitation (Fig.  3) [98]. On the other hand, 
autotrophic sulphide- oxidizing aerobic bacteria use H2S 
(and other reduced sulphur compounds, S0 and S2O3

2-) to 
produce sulphate ions that form sulphuric acid, decreasing 
the pH and dissolving precipitates [64, 98]. The balance 
between precipitation and dissolution therefore will be 
dependent on environmental conditions such as oxygen 
availability, light and pH, which serve to decouple the 
different metabolic processes in time and space and estab-
lish local conditions where net precipitation can occur [99].

Single enzyme-mediated reactions
Aside from broader metabolic pathways, specific enzymes 
can also contribute to precipitation. Acid phosphatases 
liberate phosphoryl groups, thus accelerating formation of 
phosphate mineral species, and strains overproducing this 
enzyme were shown to precipitate uranium phosphate species 
[34, 100–102]. However, not all bacteria with phosphatase 
activity can precipitate minerals, lending weight to the idea 
that specific cell- surface structures are likely required to 
provide nucleation sites for precipitation [103].

Carbonic anhydrase, catalysing the interconversion of CO2 
to HCO3

- and H+, has been suggested as a key enzyme in 
precipitation due to its effect on local HCO3

- concentration. 
The presence of extracellular carbonic anhydrase was found to 
govern the location of crystal precipitates in biofilms of Alcan-
ivorax borkumensis [96]. Indeed, carbonate precipitation was 
restricted to areas with high extracellular concentration and 
activity of carbonic anhydrase.

Ureolysis as part of the nitrogen cycle is also an enzymatically 
driven process. This enzymatic activity may potentially be 
strong enough to increase supersaturation to such high levels 
that precipitation can occur without the need for nucleation 
sites provided by bacterial cell surfaces [104]. Indeed, it was 
observed that some strongly ureolytic bacteria could induce 
calcite precipitation at a considerable distance to the bacterial 
colony [32].

While the processes described in this review, i.e. the complex 
interplay between physical properties of bacterial cells and 
their metabolic activity, explain why in BIMP one is more 

likely to encounter heterogenous precipitation, strongly 
ureolytic bacteria may, in fact, be an exception and capable 
of driving homogenous nucleation.

Cell metabolism: provision of cations
Apart from the generation of anion species needed for precipi-
tation, cation availability can also be influenced through meta-
bolic activity. As defined within the IAP, the concentration of 
the metal cation is also important for the precipitation of a 
mineral species (Equation 1). Bacteria, often via enzymatic 
activities, may reduce a mineral compound to produce diva-
lent cations that can then react with anions to precipitate as a 
different mineral [105, 106]. Some bacteria utilize metal ions 
as terminal electron acceptors in microaerobic or anaerobic 
conditions to produce cations, for example Fe2+ through 
reduction of oxidized iron (Fe3+), usually from dissolution of 
other iron oxides, as reviewed in detail elsewhere [106–108]. 
The resulting Fe2+ can subsequently interact with various 
anions to form a variety of iron minerals (Table 1). Many iron- 
reducing bacteria are also capable of reduction of manganese 
(Mn4+ to Mn2+), providing Mn2+ cations for mineral formation 
[59]. Metal oxidation can also occur under anoxic conditions 
through the activity of some phototrophic bacteria and some 
nitrate- respiring bacteria [59].

Local cation concentration can also fluctuate due to active 
bacterial processes such as intracellular metal ion homeostasis 
via ionic pumps and channels. In high- calcium environments, 
such as calcareous caves and limestone soils, the need to 
maintain a low intracellular calcium concentration is essen-
tial to ensure bacterial survival and growth [109]. Microbes 
can achieve this through active efflux of intracellular calcium 
by ATP- dependent antiporters, increasing the local calcium 
availability and pH near the cell surface and thus contributing 
to precipitation [85, 110]. Thus, active calcium efflux could 
be seen to influence biomineralization in two ways: it ensures 
bacterial growth to provide nucleation sites while simultane-
ously increasing the local cation concentration. Indeed, active 
processes of ion excretion may precede the passive precipita-
tion discussed previously and allow microbes to act as nuclei 
for subsequent crystal growth [98].

Prospects
In exploring the underlying processes enabling BIMP, a lot of 
benefit has been gained from research across multiple disci-
plines investigating the different aspects of organic- mineral 
interphases. While there are mechanistic differences in the 
way bacteria induce mineralization dependent on their surface 
architecture and metabolism, understanding the contributing 
components is important for biotechnological application. An 
additional layer of complexity is introduced when considering 
that bacteria do not occur in isolation, and that metabolic 
processes of one group of organisms are often interdependent 
with the activities of other groups. Indeed, in nature precipita-
tion results from the activities of mixed populations, which 
often grow as biofilms rather than planktonic cells [24, 98]. 
This could possibly be exploited in utilizing communities and 
biofilm growth of micro- organisms to maximize precipitation 
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potential. BIMP has seen increased applications in civil engi-
neering and biotechnology over recent years, as extensively 
reviewed elsewhere [10, 12–14, 87].

In brief, mineral precipitation mainly has two different 
roles in these technologies. For applications that include 
soil consolidation, heritage conservation and self- healing 
concrete, precipitated minerals and embedded cells and 
organic components become the ‘glue’ that binds and/or 
seals the surrounding matrix. For applications of bioreme-
diation such as of toxic heavy metals or radionuclides or in 
carbon dioxide sequestration, the elements in question are 
directly precipitated or co- precipitated, rendering them bio- 
unavailable [13, 14]. Fundamental mechanistic insight will 
therefore be important in making more informed decisions in 
choosing the appropriate bacteria for a specific application in 
terms of strain characteristics and minerals precipitated. This 
could allow for selective mineral precipitation, dependent on 
preferential surface binding and metabolic anion produc-
tion of the chosen bacterium. Additionally, one could even 
modulate the speed of precipitation through the choice of 
metabolic capability, depending on application need. In the 
future, detailed mechanistic insights may inform rational 
directed evolution or genetic engineering approaches for 
application- driven strain development. The complexity of 
BIMP and its dependency on precise bacterial properties 
may therefore even be viewed as a benefit. Nature may reveal 
a useful and versatile toolbox of different bacteria, supple-
mented by systematic strain engineering to meet future needs 
for sustainable BIMP technologies.
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