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Abstract

Background: Aging and insulin resistance have been related to reduced mitochondrial function and oxidative stress.
Muscular phosphodiesters (PDE) are comprised of metabolites of phospholipid breakdown and may reflect membrane
damage. We aimed to test the hypothesis that myocellular PDE are increased in patients with type 2 diabetes (T2D) and
correlate inversely with mitochondrial ATP turnover.

Methods: A Cross-sectional study in the Clinical Research Facility of an University hospital was performed. 10 nonobese
middle-aged patients with T2D, 10 healthy humans matched for sex, age and physical activity index (CONm) and 18 young
healthy humans (CONy) were included. Myocellular PDE and unidirectional flux through ATP synthase (fATP) were measured
with 31P magnetic resonance spectroscopy (MRS). Intramyocellular (IMCL) and hepatocellular lipid deposition (HCL) were
quantified with 1H MRS. Insulin sensitivity (Rd) was assessed from hyperinsulinemic-euglycemic clamp tests in 10 T2D, 10
CONm and 11 CONy.

Results: During fasting, T2D and CONm had 1.5 fold greater PDE than CONy (2.860.2, 2.560.2, 1.760.1 mmol/l, P = 0.004).
Stimulation by insulin did not affect PDE in any group. PDE correlated negatively with Rd (r = 20.552, p,0.005) and fATP
(r = 20.396, p,0.05) and positively with age (r = 0.656, p,0.001) and body mass (r = 0.597, p,0.001). PDE also related
positively to HbA1c (r = 0.674, p,0.001) and fasting plasma glucose (r = 0.629, p,0.001) within T2D and across all
participants.

Conclusions: Muscular PDE concentrations associate with age, lower resting mitochondrial activity and insulin resistance,
which is determined mainly by body mass and glycemia.
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Introduction

Type 2 diabetes mellitus (T2D) represents one of the world’s

greatest economic and health care challenges. T2D results from an

imbalance between insulin responsiveness and insulin secretion.

Skeletal muscle is mainly responsible for whole-body insulin

resistance and determines substrate oxidation particularly during

exercise. Reduced mitochondrial oxidative capacity, activity and/

or content have been related to aging, intramyocelluar lipid

content (IMCL) and muscular insulin resistance [1,2,3,4].

It has been hypothesized that aging-associated insulin

resistance results from cumulative free radical damage leading

to lower mitochondrial function and increased IMCL [5]. Of

note, preventing oxidative damage by overexpression of

antioxidant defense mechanisms indeed protected rodent models

from lipid-induced and age-associated insulin resistance [5,6].

However, a causal relationship between aging, mitochondria and

the development of T2D has been questioned [1,7,8]. Of note,

there is no evidence for disruption of the cellular integrity and

contractile function in skeletal muscle of T2D, while patients

with myopathies can exhibit mitochondrial abnormalities and

insulin resistance [9,10,11].

Membrane phospholipids are hydrolyzed to free fatty acids

(FFA) and phosphodiesters (PDE) which are regarded as cell

membrane degradation products [12]. Myocellular PDE are

elevated in patients with myopathies [13,14] and in elderly

[15,16] and increase in response to treatment with statins [17].

PDE may reflect fiber atrophy, accumulated sarcolemmal damage

[18] or structural and functional changes during loss of muscle

mass possibly resulting from cumulative oxidative damage [19].
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Thus, PDE may serve as marker of biomembrane integrity

[18,20]. The relationship between PDE content and mitochon-

drial function and insulin sensitivity in healthy middle-aged

humans and in patients with T2D has not yet been reported.

We hypothesized that T2D have elevated myocellular PDE

which relates to age, mitochondrial activity and insulin sensitivity.

Thus, we measured PDE, unidirectional flux through ATP

synthase (fATP) during fasting and insulin stimulation as a marker

of resting mitochondrial activity [21,22], insulin stimulated

glucose-6-phosphate (DG6P) as a marker of insulin-stimulated

glucose transport/phosphorylation, whole-body glucose disposal

(Rd) and endogenous glucose production (EGP) in T2D, non-

diabetic age-matched (CONm) and younger humans (CONy).

Methods

Ethics Statement
All studies were carried out in accordance with the most-recent

version of the Declaration of Helsinki and approved by the local

ethics committee of the Medical University of Vienna. Informed

written consent has been obtained from all participants.

Subjects
Ten T2D, 10 CONm matched for sex, age and physical activity

and 18 CONy were included. PDE content in all participants from

one study [22] and 7 controls from another study [23] are

reported. They underwent complete medical history, clinical

examination and lab tests. All participants had comparable

physical activity according to Baeckes questionnaire, refrained

from any physical exercise for three days and fasted for 12 h

before the study. T2D had neither islet cell antibodies nor signs of

neurological disorders including diabetes-related neuropathy.

Only sulfonylurea and/or metformin were allowed as glucose-

lowering medication but withdrawn three days before the study.

Four T2D and none of the healthy participants received statins,

which were not withdrawn before the study. Control subjects had

no family history of T2D.

Experimental Protocol
After baseline blood sampling, D-[6,6-2H2]glucose (98% enri-

ched; Cambridge Isotope Laboratories, http://www.isotope.com/

cil/index.cfm) was given as primed-continuous infusion [0 min to

5 min: 3.6 mg.(kg body weight)21.(fasting plasma glucose in mg/

dl)/(90 mg/dl); 2115 min to +240 min 0.036 mg.min21.(kg body

weight)21] to assess Rd and EGP from +220 to +240 min. From

0 to +240 min, hyperinsulinemic-euglycemic clamp tests were

performed in 10 T2DM, 10 CONm and 11 CONy, while 7

CONy were only examined at baseline. Insulin (Actrapid; Novo,

Bagsvaerd, Denmark) was administered as primed-continuous

infusion [40 mU.(m body surface area)22.min21] and plasma

glucose was controlled by a variable 20% dextrose infusion, 2%

enriched with D-[6,6-2H2]glucose according to the hot-glucose-

infusion protocol.

IMCL, PDE and other phosphorus metabolites were measured

at baseline and during insulin stimulation.

Magnetic Resonance Spectroscopy (MRS)
Measurements were performed on subjects lying supine inside a

3-Tesla MR spectrometer (Medspec S300-DBX; Bruker, Ettlin-

gen, Germany). The right lower leg positioned on a 10-cm circular

double resonant 1H/31P surface coil (125.6/50.8 MHz) so that the

isocenter of the magnetic field was placed ,2 cm into the medial

head of the gastrocnemius muscle [22]. Phosphorus compounds

were measured from the ratio of the integrated peak intensities and

ß-ATP resonance intensity in spectra without inversion and

saturation (pulse length 150 ms/90u, 2k data, 8 averages, repetition

time of 15 s) assuming constant ATP concentrations of 5.5 mmol/

l muscle [22]. In human skeletal muscle, the peak between

inorganic phosphate (Pi) and phosphocreatine (PCr) represents the

Figure 1. Representative 31phosphorous magnetic resonance spectrum of skeletal muscle. Phosphorus compounds were measured from
the ratio of the integrated respective peak intensities and ß-ATP resonance intensity in spectra without inversion and saturation (pulse length 150 ms/
90u, 2k data, 8 averages, repetition time of 15 s) assuming a constant ATP concentration of 5.5 mmol/l muscle.
doi:10.1371/journal.pone.0021846.g001
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signal arising from PDE which is mostly attributed to glyceropho-

spho-ethanolamine/-choline, membrane-bound phospholipid me-

tabolites (Figure 1) [24]. Measurement of PDE has been validated

against chemical analysis employing preparations of muscular

ethanol-soluble PDE and exogenous glycerol-3-phosphorylcholine,

which confirmed that MRS-measured PDE represent the peak

resonating at 0.13 ppm [24].

Myocellular fATP [mmol.(g muscle 21).min21] was measured

with 31P MRS employing the saturation transfer experiment to the

Pi/ATP exchange [22,25]. Glucose transport/-phosphorylation

was assessed from the increase in G6P during the clamp (DG6P).

IMCL in soleus muscle and liver fat content (HCL) were measured

by 1H MRS [22,26].

Analytical measurements
Plasma glucose was assessed by the glucose oxidase method

(Beckman, Fullerton, CA), FFA microfluorimetrically (Wako

Chem. USA Inc., Richmond, VA) and plasma insulin by

double-antibody radioimmunoassay (Pharmacia, Uppsala, Swe-

den). All other measurements were assessed in the routine lab.

Calculations and statistics
At baseline, rates of glucose appearance (Ra) were calculated by

dividing the tracer D-[6,6- 2H2]glucose infusion rate times tracer

enrichment by the percent of tracer enrichment in plasma and

subtracting the tracer infusion rate [27]. During the clamp, Ra was

calculated using Steele’s non-steady state equations [28]. EGP is

given as the difference between Ra and mean glucose infusion

rates.

Group data are presented as means and SD (Text) or SEM

(Figures) and compared with ANOVA and Tukey post-hoc testing

as appropriate. Within-group differences were assessed with two-

tailed t-tests. Linear correlations are Pearson product-moment

correlations. Partial correlation analysis was performed to study

the linear relationship between PDE and other variables after

excluding the effect of age, BMI or HbA1c. Differences were

considered significant at the 5-% level.

Results

All groups were matched for sex (50% female). BMI tended to

be (T2D: 2763; CONm: 2663; CONy: 2462 kg/m2) and waist

circumference was higher in T2D and CONm (9769; 92617;

8068 cm, p,0.05 T2D vs. CONy). T2D and CONm were also

matched for age (5966; 5767; 2965 years, p,0.001 both vs.

CONy). T2D had greater fasting plasma glucose (8.961.7;

5.260.4; 4.860.7 mmol/l, p,0.001 vs. both CON groups) and

HbA1c (6.960.7; 5.560.3; 5.260.2 mmol/l, p,0.001 vs. both

CON), but comparable plasma FFA (0.5760.11; 0.4460.22;

0.4860.26 mmol/l) and low-density lipoprotein (LDL: 3.460.8;

3.860.9; 2.660.5 mmol/l).

During clamp steady-state (220–240 min), mean plasma

glucose, insulin and FFA were 5.560.5 mmol/l, 514696 pmol/l

and 0.0260.01 mmol/l without differences between groups. T2D

had ,33% and ,54% lower Rd than CONm and CONy;

CONm had ,31% lower Rd than CONy (5.760.5, 8.560.8,

12.461.0 mg.kg21.min21, p,0.05, p,0.001 T2D vs. CONm

and CONy, p,0.005 CONm vs CONy). Insulin-suppressed EGP

reflecting hepatic insulin resistance was greater in T2D and

CONm (0.2360.05; 0.2260.09; 20.1460.09 mg.kg21.min21,

p,0.05 both vs. CONy).

Resting mitochondrial activity (fATP) was lower in T2D than in

CONy but comparable to CONm [22]. Stimulation by insulin

increased fATP in CONm and CONy but not in T2D and

unmasked impaired mitochondrial adaptation compared to

CONm [22].

In the fasted state, myocellular PDE contents were ,65% and

,47% higher in T2D and CONm compared to CONy, but not

different between T2D and CONm (Figure 2A). IMCL and

DG6P were comparable in all groups as reported [22] and did not

relate to PDE. Insulin stimulation did not affect PDE (basal vs.

insulin-stimulated: 2.860.8 vs. 2.960.7; 2.560.7 vs. 2.560.7;

CONy: 1.860.3 vs. 1.860.3 mmol/l), which were ,55% and

,38% higher in T2D and CONm compared to CONy (p,

0.001, p,0.05, Figure 2B). Changes in PDE did not relate to

DG6P.

PDE correlated negatively with fasting fATP (Figure 3A) and

insulin-mediated Rd (Figure 3B), but not with suppressed EGP

or insulin-stimulated fATP. PDE related positively to BMI

(Figure 3C), waist circumference (r = 0.668, p,0.001), age

(r = 0.656, p,0.001), HCL (r = 0.446, p,0.01), HbA1c

(Figure 3D) and to fasting plasma glucose (r = 0.629, p,

0.001) across all participants and within T2D (r = 0.652,

r = 0.653, p,0.05). There was no correlation between muscle

PDE and HbA1c in the pooled group of non-diabetic subjects.

PDE neither related to physical activity nor to plasma FFA, LDL

or IMCL. Correlations of PDE with fATP and Rd were

abolished after selective adjustment for either age, BMI or

HbA1c.

Figure 2. Phosphodiester (PDE; means ± SEM) content in 10
patients with type 2 diabetes (T2D, black columns), 10 age-
matched (CONm, grey columns) and 18 lean young controls
(CONy, empty columns) during fasting (A) and during insulin
stimulation (B).
doi:10.1371/journal.pone.0021846.g002
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Discussion

Myocellular PDE levels are higher in middle-aged patients with

T2D and in age-matched controls than in young non-diabetic

humans. The relationships of PDE with insulin resistance and

mitochondrial function seem to depend mainly on aging, body

mass, but also glycemia.

The greater PDE in the middle-aged humans with or without

T2D is in accordance with its positive relationship to age as

reported previously [16], but confounding factors such as insulin

resistance or mitochondrial function were not identified before

[18]. Aging-related alterations of skeletal muscle could simply

result from reduced voluntary physical activity, but PDE - in line

with previous data [29] - did not relate to physical activity index.

All groups of the present study were sedentary and matched for

physical activity, but exercise testing was not performed. PDE has

been shown to be increased in professional road cyclists [30], but

to be significantly lower in sprinters than in sedentary and long-

distance runners [31]. Accordingly, a large PDE signal has been

reported as a sign of a larger relative content of type 1 fibers, i. e.

fast-to-slow twitch muscle transformation [32]. However, this

observation does not fit with increased PDE in aging or diabetic

subjects, who rather have increased [33,34,35] or normal fast

glycolytic fiber fractions [36,37]. Also, statins have been shown to

increase muscle PDE contents [17], but only four of our patients

with T2D were on statins and their PDE content was not different

from the other patients. Alternatively, aging-associated cumulative

oxidative damage may affect mitochondrial DNA and function

and lead to muscular degenerative processes [38]. Our T2D

showed lower fATP than both control groups during insulin

stimulation, while resting fATP was similarly lower in T2D and

CONm than in CONy [22].

In vivo and ex vivo measures reported lower oxidative capacity

in exercising and resting muscle of T2D patients which result from

intrinsic impairment and lower mitochondrial content

[3,4,39,40,41]. fATP, reflecting demand-driven resting mitochon-

drial activity, is lower in insulin-resistant elderly [21,22] and non-

diabetic offspring of T2D patients [42], but can be normal in T2D

compared to carefully matched non-diabetic humans [22,43].

Alternatively, abnormalities in insulin signaling may be the

primary events leading to impaired mitochondrial function, or

both phenomena may be mutually interrelated [44]. Of note,

lower mitochondrial content could be compensated for by greater

mitochondrial activity suggesting that insulin sensitivity and

mitochondrial function are not uniformly coupled [8,45,46,47].

Nevertheless, partial correlation analysis revealed that PDE

contents relate to aging independently of BMI and physical

activity, but not independently of fATP and insulin sensitivity.

Thus, the impact of aging on PDE is likely mediated by insulin

sensitivity and fATP.

Partial correlation analysis further identified PDE contents as an

independent indicator of glucometabolic control (HbA1c and

fasting plasma glucose) in T2D. Elevated PDE as observed in

muscle damage [17], pain syndromes [29] and muscle dystrophies,

has been previously attributed to oxidative stress [18,20,48]. One

might therefore speculate that glucotoxicity-induced chronic

Figure 3. Association between fasting myocellular phosphodiester (PDE) contents and flux through ATP synthase (fATP) (A), whole-
body glucose disposal (Rd) (B), body mass index (BMI) (C) and glycemic control (HbA1c) (D) in 10 patients with type 2 diabetes
(T2D, circles), 10 age-matched (CONm, squares) and 11–18 lean young controls (CONy, triangles) during fasting.
doi:10.1371/journal.pone.0021846.g003
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oxidative stress could contribute to the greater PDE as well as to

the lower fATP and insulin sensitivity in our T2D. This study

found a weak negative relationship between muscular PDE and

fATP, which disappeared upon adjusting for age, BMI and

HbA1c. While this does not exclude any role of mitochondrial

damage for raising PDE levels, it makes such mechanism rather

unlikely. However, fATP is only one feature of mitochondrial

function and in the present study mitochondrial content and

oxidative capacity were not measured. Furthermore, fATP as

assessed from the ATP saturation transfer experiment with 31P

MRS, reflects in vivo ATP synthase flux resulting from basal

energy demand and supplying processes and is therefore a

measure of resting mitochondrial activity. [49].

Muscular PDE related negatively to whole-body glucose

disposal but not specifically to insulin-mediated glucose trans-

port/phosphorylation and did not change during insulin stimula-

tion even in insulin sensitive humans. While PDE do not seem to

directly reflect insulin-dependent metabolic processes, its tight

relationship with BMI points to obesity-associated alterations such

as fatty acid composition of membrane phospholipids which may

influence insulin binding and action [50]. While lipid-induced

insulin resistance generally arises from increased plasma FFA and

intracellular lipids [51], this study found no association between

PDE, FFA and IMCL. Nevertheless, PDE are generated by

increased activities of phospholipases [16] which also yield

ceramides and diacylglycerols (DAG), possible mediators of insulin

resistance [52,53].

Some limitations need to be taken into account. First, no

biopsies were taken so that identification of individual components

of the PDE peak is not possible. However, the analysis of

individual compounds contributing to the PDE signal is difficult,

because ischemia during tissue handling will impact on analysis of

extracted tissue [24]. Second, no indicator of oxidative stress was

determined to analyse the possible role of PDE contents as a

biomarker of oxidative stress. However, available markers of

oxidative stress rely on various assumptions and do not offer direct

measures [6,54]. Finally, our T2D cohort comprised of normal

weight (n = 4), overweight (n = 4) and obese (n = 2) Caucasians

yielding a mean BMI of 27 kg/m2, which was not significantly

different but tended to be higher than in controls. While T2D

cohorts mostly have mean BMI exceeding 30 kg/m2, other T2D

cohorts have lower mean BMI values, e. g. 28.5 kg/m2 in the

ADVANCE study [55]. Thus, our T2D group might be suitable

and representative to analyse the impact of T2D per se on PDE

contents.

In conclusion, muscular PDE are higher in middle-aged patients

with or without T2D than in young non-diabetic humans. Body

mass and glycemia mainly determine the correlations of PDE with

resting mitochondrial activity, insulin resistance and age.
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