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The random V(D)J recombination process ensures the diversity 
of the primary immunoglobulin (Ig) repertoire. In two thirds of 
cases, imprecise recombination between variable (V), diversity 
(D), and joining (J) segments induces a frameshift in the open 
reading frame that leads to the appearance of premature 
termination codons (PTCs). Thus, many B lineage cells harbour 
biallelic V(D)J-rearrangements of Ig heavy or light chain genes, 
with a productively-recombined allele encoding the functional 
Ig chain and a nonproductive allele potentially encoding 
truncated Ig polypeptides. Since the pattern of Ig gene 
expression is mostly biallelic, transcription initiated from 
nonproductive Ig alleles generates considerable amounts of 
primary transcripts with out-of-frame V(D)J junctions. How 
RNA surveillance pathways cooperate to control the noise 
from nonproductive Ig genes will be discussed in this review, 
focusing on the benefits of nonsense- mediated mRNA decay 
(NMD) activation during B-cell development and detrimental 
effects of nonsense-associated altered splicing (NAS) in 
terminally differentiated plasma cells. [BMB Reports 2019; 
52(12): 671-678]

INTRODUCTION

To ensure the fidelity of gene expression and prevent 
translation of truncated proteins, many cellular RNA 
surveillance pathways have been developed to distinguish 
between normal transcripts and those harboring premature 
termination codons (PTCs). RNA surveillance mechanisms 

have been extensively studied in lymphoid cells that naturally 
acquire PTCs at high frequencies during the error-prone V(D)J 
recombination process (1). Through the analysis of nonproductive 
(PTC＋) immunoglobulin (Ig) and T-cell receptor (TCR) tran-
scripts, it has been demonstrated that transcriptional silencing, 
splicing inhibition or suppression (SOS), alternative splicing, 
and mRNA degradation cooperate with each other to limit the 
amount of potentially deleterious truncated proteins (2-12).

The nonsense-mediated mRNA decay (NMD) pathway is 
very active in lymphoid cells. It ensures rapid degradation of 
PTC-containing mRNAs (1, 9, 13). The nearly complete 
absence of PTC＋ Ig or TCR mRNAs due to their strong NMD 
degradation can lead to the assumption that transcription of 
PTC＋ alleles is safe. Accordingly, nonproductive alleles are 
often considered as passengers in comparison with the driving 
effects of productively-rearranged Ig or TCR alleles during 
lymphoid development. Although the benefits of NMD 
activation are clearly established in lymphoid cells (14, 15), 
the impact of nonsense-associated altered splicing (NAS) with 
regard to the production of truncated Ig and TCR polypeptides 
remains unclear. The objective of this review is to summarize 
our current knowledge on the opposite effects of NMD and 
NAS during B cell development. This paradox will be discussed 
in line with our recent findings showing that NAS events can 
lead to the production of truncated Ig polypeptides that can 
blunt plasma cell (PC) differentiation (16). Challenging the 
classical antigen-driven PC differentiation model, this new PC 
checkpoint suggests that the expression of PTC＋ Ig genes can 
sometimes be disabling.

THE GENERATION OF ANTIBODY REPERTOIRE: A 
RISKY DIVERSITY

The error-prone V(D)J recombination process
Ig genes are good candidates to study nonsense RNA 
surveillance because the generation of primary Ig repertoire in 
early B-cell development and the process of somatic 
hypermutations (SHM) in germinal center B cells frequently 
generate PTCs (1). The V(D)J recombination process of Ig 
genes takes place in the bone marrow and assembles the 
variable region from germline variable (V), diversity (D), and 
joining (J) gene segments. Control of V(D)J recombination 
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occurs at several levels, including cell-type specificity, intra- 
and inter-locus sequential rearrangements, and allelic 
exclusion (17). Although DNA rearrangements in the Ig heavy 
(IgH) and light (i.e. Ig and Ig) loci occur in a precise order, 
the selection of gene segments within each locus is random. It 
allows for combinatorial diversity. The mechanism used by 
lymphoid cells to successfully rearrange their antigen (Ag) 
receptor genes requires the use of recombinase enzymes 
RAG1 & RAG2 that are only active in lymphocytes (18, 19). 
Recombinases act at early stages of lymphoid cell development 
in order to bring two segments into close proximity, forming a 
loop of intervening DNA which can then be excised. The ends 
of these segments are annealed to form a newly rearranged 
DNA sequence. To increase diversity, joining of V, D, and J 
segments is imprecise with nucleotide deletions or insertions. 
Non-template (N) nucleotide additions are introduced by 
terminal deoxynucleotidyl transferase (TdT). Palindromic (P) 
insertions occur after asymmetric hairpin opening. Random 
N-additions cannot be attributed to any other genomic 
sequences. They rarely exceed a dozen nucleotides (20, 21). 
They are polymerized by TdT which is the third lymphoid- 
specific protein involved in V(D)J recombination besides 
RAG1 and RAG2 (22-25). P insertions rarely exceed two 
nucleotides and form a palindrome with respect to the 
sequence at the end of the coding strand (26-28). Although 
nucleotide deletions and insertions greatly enlarge the 
diversity of the Ig repertoire, only one third of all V(D)J 
junctions are in-frame, while the other two thirds are 
out-of-frame due to frameshift mutations that create PTCs.

Frequency of PTC-containing Ig genes in B-lineage cells
Clonal selection implies that each B cell clone expresses a 
unique receptor. Hence, one of the two inherited Ig alleles is 
functionally rearranged. This allelic exclusion associates 
asynchronous V(D)J recombination events at Ig loci with 
receptor-mediated inhibitory feedback control (29). At the 
pro-B cell stage, VDJ recombination is initiated by biallelic D 
to J rearrangements at IgH loci, followed by a monoallelic V to 
DJ recombination. A productive VDJ junction encodes the 
variable (V) region of the  heavy chain that can associate with 
the surrogate light chain to form pre-BCR (pre-B cell receptor). 
Regulatory mechanisms mediated by pre-BCR signaling prevent 
further V to DJ rearrangements on the second IgH allele and 
initiates VJ recombination at Ig light chain loci lacking D 
segments. By contrast, when the VDJ junction on the first IgH 
allele is nonproductive, the lack of the pre-BCR inhibitory 
signal allows V to DJ recombination on the second allele. If 
this second attempt is successful, a pre-BCR-mediated 
proliferation wave will generate abundant B cell clones with 
biallelic VDJ rearrangements. Roughly half of mature B cells 
harbor biallelic VDJ-rearrangements with a nonproductively- 
recombined IgH allele (30-32). If another nonproductive VDJ 
junction occurs on the second IgH allele, cells are eliminated 
through apoptosis. As mentioned above, pre-BCR signaling 

stimulates recombination of Ig light chain genes. The presence 
of two Ig and Ig light chain isotypes permits multiple VJ 
recombination events. Again, the expression of a functional 
BCR precludes further recombination in immature B cells. In 
humans, ∼50% of mature B cells express Ig. However, in 
mice, recombination takes places preferentially at the Ig 
locus and only 5% of B cells express Ig isotypes (32). Hence, 
B cells harbor numerous nonproductive VJ-recombined Ig light 
chain alleles (Fig. 1).

After their exit from the bone marrow, alternative splicing of 
constant C and C exons ensures co-expression of IgM and 
IgD at the surface of naïve B cells (33). Upon antigen 
encounter, IgD expression is downregulated and activated B 
cells are subjected to a second wave of Ig gene diversification 
by SHM in germinal centers (GCs). Frequent nonsense 
mutations can arise during this affinity maturation process that 
requires transcription of the target region and enzymatic 
activity of B-cell-specific activation-induced deaminase AID 
(34). This process leads to the introduction of multiple 
nucleotide changes in the V exon (i.e., VDJ or VJ) and a few 
hundred base pairs in the downstream intron (35). Nucleotide 
insertions and deletions (indels) have also been observed (36, 
37). SHM leads to the expression of a secondary repertoire 
from which B cells carrying a mutated BCR with improved 
Ag-binding affinity can be selected (38). We have previously 
observed that SHM occurs at similar levels on productive and 
nonproductive VDJ-rearranged IgH alleles (39). If a nonsense 
codon appears on the productive allele, the lack of Ag-binding 
activity provokes a rapid elimination of mutated B cell clones 
within GCs (40-42). The occurrence of SHM on nonproductive 
Ig alleles can introduce additional nonsense codons, modifying 
the PTC position within the V exon. Class switch recombination 
(CSR) also occurs in germinal centers. This second round of 
IgH intragenic rearrangements replaces the C exons with a 
downstream constant gene (43). GC B cells can differentiate 
into memory cells or terminally differentiated PCs that secrete 
substantial amounts of antibody (44). The PC transcriptional 
program induces major changes including a transcriptional 
boost of Ig gene transcription and the activation of unfolded 
protein response (UPR) to ensure proper Ig folding (45). In 
PCs, the use of secreted polyadenylation signal (PAS) instead 
of downstream membrane PAS allows alternative IgH 
pre-mRNA processing to switch from membrane to secreted Ig 
isoforms (46). Taken together, the vast majority of B-lineage 
cells harbor PTC＋ Ig alleles in their genome with nonsense 
codons introduced in the V exon or in the adjacent constant 
exon during the V(D)J recombination process or SHM (Fig. 1).

Transcriptional control of PTC-containing Ig genes
The high frequency of PTC＋ V(D)J-rearranged Ig alleles in 
B-lineage cells needs additional mechanisms to downregulate 
these nonsense transcripts. A transcriptional silencing of 
PTC＋ Ig genes has been proposed as a primary mechanism 
preventing their expression. This mechanism is called 
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Fig. 1. Abundance of nonproductive V(D)J rearrangements in B-lineage cells. (A) Schematic representation of productive and nonproductive V(D)J
rearrangements during the generation of primary antibody repertoire. V(D)J recombination is initiated by a monoallelic V to DJ recombination 
at the IgH locus (biallelic D-J rearrangements are not depicted). If successful, then V to J recombination occurs at Ig light chain (IgL) loci. Successive
IgL rearrangements are possible due to the fact that there are two Ig and two Ig alleles (not depicted). Pre-B cell receptor (pre-BCR) or BCR-mediated
feedback signalling upon in‑frame rearrangement of one IgH or IgL allele (i.e., VDJ＋ or VJ＋) prevents V(D)J recombination on the second
allele (32). By contrast, a nonproductive V(D)J recombination on one Ig allele (i.e. VDJ- or VJ-) induces rearrangement on the second allele.
The imprecise nature of V(D)J junctions generates ∼1/3 of productive and ∼2/3 of nonproductive V(D)J-rearranged alleles. Hence, most B-lineage
cells harbour nonproductively-recombined Ig alleles in their genome (red parts in pie charts). If the two attempts on both Ig alleles are unsuccessful,
the cell is programmed to die by apoptosis (dashed circles). (B) PTCs introduced during the error-prone V(D)J recombination process (red stars)
or by somatic hypermutations (SHM; yellow stars) can activate different modes of NMD degradation. Frameshift V(D)J junctions can lead to
the appearance of PTCs in the variable (V) exon or in the downstream adjacent constant exon. SHM can lead to the appearance of PTCs in
the first leader exon (L1: L-part1) or in the V exon, with a greater abundance in the complement-determining regions (CDRs). For IgH mRNAs,
PTC introduced by SHM or during V(D)J recombination can elicit exon junction complex (EJC)-dependent NMD. EJCs that remain bound to
mRNAs after a pioneer round of translation are depicted (blue ovals). As good NMD candidates, PTC-containing IgH mRNAs are strongly degraded
by NMD (up to 100-fold) (1, 9, 59). However, it has been demonstrated that some nonsense codons in the 5’-half of the VDJ exon could not 
elicit strong NMD degradation (73). Similarly, PTCs close to the initiation codon are NMD resistant in other models likely due to a critical
interaction between PABPC1 with the translation initiation complex (74, 75). For nonproductive Ig alleles, PTCs are located at the end of the 
V exon or within the last constant C exon. Hence, these PTC-containing IgL mRNAs could not elicit EJC-dependent NMD degradation, although
they are likely to be targeted by a PTC-PABC1 distance-dependent mode of NMD which induces a less efficient degradation (∼2-fold) (5).
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“nonsense-mediated transcriptional gene silencing” (NMTGS). 
It involves chromatin remodelling and “heterochromatinization” 
of the PTC＋ DNA sequence. NMTGS can be inhibited by the 
overexpression of exonuclease. However, the involvement of 
siRNA like molecules has not been elucidated yet (4). NMTGS 
is also impaired upon knock-down of the main NMD factor 
UPF1, suggesting a mechanistic link between NMD and 
NMTGS (47). Although NMTGS has been demonstrated in 
Hela cells transfected with minigene constructs, the occurrence 
of such a quality control mechanism needs to be determined 
in B cells. Instead of active silencing, many studies including 
ours have shown a biallelic transcription pattern for productive 
and nonproductive Ig alleles in B cells (9, 39, 48-51). To study 
the transcription and RNA surveillance of PTC＋ IgH alleles 
during B cell development, we introduced a nonsense V exon 
in the IgH locus to specifically mark each allele in hetero-
zygous mutants. Consistent with previous observations in a 
pro-B cell line (52), productive and nonproductive IgH alleles 
exhibited equivalent transcription rates with similar RNAPII 
loading in LPS-stimulated B cells (9, 48). This also confirms 
our earlier study in germinal center B cells, demonstrating that 
the frequency of transcription-dependent SHM is similar for 
productive and nonproductive VDJ-recombined IgH alleles 
(39).

RNA SURVEILLANCE IN B-LINEAGE CELLS

The machinery of RNA surveillance is now known to include 
various pathways controlling the quality of pre-mRNA and 
mRNA to limit the translation of truncated proteins. The 
molecular mechanisms involved in the activation of RNA 
surveillance pathways have been extensively reviewed 
previously (13, 53, 54).

Accumulation of PTC-containing Ig pre-mRNAs
Despite their active transcription, PTC＋ Ig genes can be 
controlled at pre-mRNA level. Previous studies (2, 6) performed 
in Milstein’s lab have shown an accumulation of PTC＋ Ig 
unspliced or splicing intermediate RNA precursors, supporting 
the idea that nonsense codons can be recognized in the 
nucleus by a mechanism independent of protein synthesis. In a 
simplified model of Ig transcripts containing only three 
exons, splicing intermediates can eliminate the first intron 
(IVS1) but retain the intervening sequence between VJ and C 
exons (IVS2). Upon transfection of B cell lines spanning the 
main developmental stages with PTC＋ and PTC-free Ig 
minigenes, we have observed that the presence of PTC 
induces a ∼2-fold increase for each unspliced and splicing 
intermediate RNA precursors (5). Again, unspliced and partially 
spliced Ig RNAs were mainly confined in the nucleus (5). The 
accumulation of PTC＋ precursors was not affected by protein 
synthesis inhibitors (5). In agreement with these data, RNA-FISH 
experiments performed in Sp6-derived hybridoma cells further 
demonstrated that PTC＋ Ig- pre-mRNAs could accumulate 

near the site of transcription (55). Recent findings obtained in 
Drosophila have indicated that UPF1 can bind to nascent 
RNAs at RNAPII transcription sites to facilitate nuclear 
processes of gene expression (56). It has been demonstrated 
that UPF1 is needed for the release of poly(A) mRNAs from 
chromosomal transcription sites and for their export from the 
nucleus. It is tempting to speculate that these new nuclear 
scanning functions of UPF1 could be involved in the nuclear 
accumulation of nonproductive Ig RNA precursors or in NAS 
(see below). Interestingly, fluctuations in the steady state level 
of PTC＋ IgH pre-mRNAs occurs during B cell development, 
with low accumulation in PCs compared to resting B cells (9). 
These observations indicate that a high level of transcription 
precludes splicing inhibition and accumulation of PTC＋ Ig 
pre-mRNAs. Thus, efficient processing of PTC＋ Ig transcripts 
in PCs needs additional RNA quality control to prevent the 
synthesis of truncated Ig polypeptides.

NMD of PTC-containing Ig mRNAs
NMD is tightly coupled to translation. The molecular 
mechanisms of the two prevailing exon-junction complex 
(EJC)-dependent and Poly(A) Binding Protein Cytoplasmic 1 
(PTC-PABPC1) distance-dependent NMD activation models 
have been extensively characterized in the past decades (1, 
13, 53, 54, 57, 58).

According to the “50-55 nucleotides rule” for EJC-dependent 
NMD activation, the presence of a PTC more than 50-55 
nucleotides upstream from the last exon-exon junction can 
trigger efficient mRNA degradation by NMD. This mode of 
NMD activation is elicited to downregulate the level of 
nonproductively-rearranged IgH mRNA that contains PTCs in 
the V or in the first constant exon (CH1) and several constant 
exons downstream. Up to 100-fold accelerated degradation of 
these NMD candidates has been documented in B cell lines 
(59-61). Consistent with a previous study using TCR as gene 
models (62), we found that the extent of NMD was closely 
correlated to the splicing rate during B-cell development, with 
∼2 to 20-fold degradation of PTC＋ IgH mRNAs in resting 
and LPS-stimulated B cells, respectively (9). Interestingly, 
levels of nonproductive IgH mRNAs remained constantly low 
in those B cell populations, suggesting compensatory effects 
between nonsense-mediated splicing inhibition and NMD. 
Hence, qualitative changes in the RNA surveillance machinery 
occur during B-cell development. The cooperation between 
RNA surveillance mechanisms controls the amount of PTC＋ 
IgH mRNAs.

For Ig alleles, the situation is completely different because 
a frameshift at the VJ junction leads to the appearance of a 
PTC within the last C exon, or less frequently at 3 nucleotides 
upstream from the last exon-exon junction (50). Thus, the 
position of PTC on nonproductive Ig mRNAs does not meet 
the requirements for EJC-dependent NMD. Instead, it belongs 
to the PTC-PABPC1 distance-dependent NMD activation 
model. The latter pathway occurs when the 3'UTR of an 
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Fig. 2. A Truncated Immunoglobulin Exclusion (TIE) checkpoint during
terminal plasma cell differentiation. (Top) Schematic structure of the 
Ig locus showing various classes of V-J rearrangements. In-frame and
out-of-frame VJ junctions with the position of PTCs from the latter are
depicted. Any VJ recombination involving mouse J1 segments can 
lead to the appearance of PTCs in the last constant exon (C). For
other J segments, the addition of 1 nucleotide (nt) (i.e., 3n ＋ 1 nt)
at the VJ junction also leads to the appearance of a PTC in the C
exon, whereas the addition of 2 nt (i.e. 3n ＋ 2 nt) creates a PTC 
at the end of the variable (V) exon, 3nt upstream the exon-exon junction
(50). (Middle) Whereas nonsense-associated altered splicing (NAS) is 
not activated by the presence of a PTC within the C exon (CPTC class),
PTCs in the V exon (VPTC class) can strongly promote exon skipping 
and translation of V domain-less  light chains (V-LCs) (5, 16). (Bottom)
The production of V-LCs is innocuous in B cells. However, it provokes 
endoplasmic reticulum (ER) stress-associated apoptosis in plasma cells
(PCs), precluding their differentiation as long-lived PCs. Overall, 
significant numbers of PCs harboring biallelic VJ recombination in a 
VPTC/VJ＋ configuration at the Ig locus are eliminated through the 
activation of a Truncated Immunoglobulin Exclusion (TIE) checkpoint
(16). The TIE checkpoint exhibits dual effects on antibody responses.
On one hand, its activation blunts the PC repertoire that can emerge
from mature B cells, thus limiting the extent of antibody responses. 
On the other hand, the TIE-checkpoint favors the selection of long-lived
PCs with limited basal ER stress that supports further elevation of Ig
secretion. GL: germline; VJ＋: productively- recombined Ig allele; VPTC:
nonproductively-recombined Ig allele harboring a PTC within the V
exon; CPTC: nonproductively-recombined Ig allele harboring a PTC 
within the C exon.

mRNA is abnormally long, as in the case of the presence of a 
PTC (53). NMD is activated when the 3’UTR structure 
precludes the normal interaction of PABPC1 with release 
factors (eRF1 and eRF3) involved in translation termination. 
The spatial rearrangement of 3’UTR controlling the proximity 
of the termination codon and the poly(A) tail is a critical 
determinant for NMD (63). Although UPF1 was previously 
assumed to be the essential player involved in the interaction 
with release factors (eRFs), in vitro translation termination 
assays recently performed by Neu-Yilik et al. (64, 65) indicate 
that UPF3B (also named UPF3X) directly interacted with both 
RNA and eRF3. This NMD mechanism is most likely to be 
involved in the uptake of nonproductive Ig mRNAs, inducing 
a modest (∼2-fold) NMD degradation in mouse B cells (Fig. 1) 
(5). 

NAS of PTC-containing Ig transcripts and production of 
deleterious truncated Ig polypeptides in plasma cells
Mutations within the sequence of exonic splicing enhancers 
(ESEs) and the presence of a PTC have been shown to elicit 
alternative splicing called class-I and class-II NAS, respectively 
(8, 11-13, 66, 67). As an additional RNA surveillance pathway, 
class-II NAS (hereafter called NAS) can prevent the maturation 
of full-length PTC-containing mRNAs by promoting alternative 
splicing to skip the offending PTCs. However, NAS can yield 
internally deleted mRNAs and proteins. Hence, it exhibits 
opposite effects compared to NMD with regard to the 
production of truncated proteins. Although NMD and NAS use 
the common factor UPF1, these processes are mechanistically 
different. Knockdown of several key NMD factors including 
UPF2, UPF3A, UPF3B, and SMG1 showed no significant effect 
on NAS (13). The intrinsic mechanisms responsible for the 
activation of NAS remain elusive. Conflicting results have 
been obtained with regard to the sensitivity of NAS to 
translation inhibition or frameshift mutations (5, 13). Future 
breakthroughs would indicate whether NAS, nonsense-mediated 
SOS, or splicing inhibition could be induced as a response to 
PTC recognition during translation, after nuclear degradation 
of spliced PTC-containing mRNAs, or by other nuclear- 
scanning mechanisms.

To study NAS of Ig transcripts, we transfected several B-cell 
lines with minigenes harboring frameshift mutations at the VJ 
junction that could lead to the appearance of PTCs at the end 
of the V exon (VPTC), or within the last C exon (CPTC) (5, 16). 
Consistent with a reading frame-dependent NAS activation, the 
presence of VPTC, but not of CPTC, strongly induced skipping of 
the V exon. We also confirmed that V exon skipping occurred 
in mouse B cells during splicing of both nonproductive Ig 
and IgH transcripts (5, 16, 48). Interestingly, we found that 
skipping of the PTC-containing V exon was greatly increased 
in PCs compared to B cells. This was correlated with a 
transcriptional boost of Ig genes during PC differentiation (48). 
Thus, a fast RNAPII elongation rate can enhance the skipping 
of PTC-containing V exons in PCs, whereas a slow elongation 
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rate authorizes their splicing as full-length mRNAs in B cells 
(or splicing inhibition as mentioned before). These observations 
are in agreement with the known influence of RNAPII 
elongation rate on alternative splicing (68), suggesting that 
PTC-independent and PTC-dependent exon skipping events 
can be governed by some similar rules.

Until recently, consequences of NAS with regard to the 
production of truncated Ig chains have been overlooked. 
Interestingly, we have observed that exon skipping of VPTC Ig 
pre-mRNAs encodes V domain-less  light chains (V-LCs) 
that can induce the death of PCs through endoplasmic 
reticulum (ER) stress-associated apoptosis (16). Revealing a 
new PC checkpoint referred to as Truncated Immunoglobulin 
Exclusion (TIE)-checkpoint, the production of V-LCs can 
dampen PC differentiation by eliminating cells expressing 
nonproductively-rearranged VPTC Ig alleles (Fig. 2). In addition, 
conditional expression of V-LC mRNAs in ‘inducible-TIE’ 
(iTIE) knock-in mice reproduced physiological TIE checkpoint 
and affected the survival of long-lived PCs and antibody 
production (16). Thus, the transcription of nonproductive Ig 
alleles is not as safe as previously assumed and the activation 
of NAS can drive the elimination of PC clones harbouring 
biallelic Ig rearrangements. Remarkably, the TIE-checkpoint 
can reduce the magnitude of humoral responses and shape the 
antibody repertoire independently of classical constraints 
related to Ag specificity. 

Closing remarks
Aberrantly rearranged Ig alleles are abundant in B-lineage 
cells. The cooperative action of nonsense-mediated splicing 
inhibition (or SOS) and NMD limits the amount of deleterious 
truncated Ig polypeptides. However, activation of the NAS 
pathway exerts opposite effects with exon skipping-mediated 
production of V domain-less Ig chains. In PCs with biallelic Ig 
rearrangements, transcriptional boost of Ig genes can sustain 
massive Ig synthesis. However, it also promotes NAS 
activation and exon skipping during splicing of nonproductive 
transcripts. Because the survival of normal and malignant PCs 
is tightly controlled by ER stress and proteasome activity (69), 
high amounts of truncated Ig can provoke PC death as a 
consequence of a deregulated proteostasis. According to an 
efficient TIE-checkpoint, alternatively spliced mRNAs 
encoding structurally abnormal Ig chains are hardly detectable 
in non-malignant PCs, although they can be observed in some 
lymphoproliferative disorders, including Multiple Myeloma 
and Burkitt lymphoma (70-72). Previous findings have 
indicated that the activation of the TIE checkpoint can 
eliminate ∼20-25% of PCs, i.e., those expressing nonproductive 
VPTC Ig alleles (16). If a similar disappearance of PC harboring 
nonproductive VDJ rearrangements is observed for the IgH 
repertoire, it could indicate a broad TIE-checkpoint blunting 
the terminal differentiation of many PCs with biallelic IgH 
and/or IgL rearrangements. Altogether, this should have major 
consequences in our classical mindset usually considering 

nonproductively V(D)J-rearranged Ig alleles as passengers 
rather than drivers.
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