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In this study, we investigated a mathematical model for chemoimmunotherapy (a combination of chemotherapy 
and immunotherapy) for brain cancer. In most cases, the standard protocol for cancer treatment is fixed in terms 
of treatment time intervals and dosages. We offer a wide range of non-fixed protocols, which essentially vary in 
terms of time intervals and dosages (i.e., personalised medicine). The functions that describe this treatment are 
explicit and analytical. Hence, the parameters of the function can be easily changed and a new protocol can be 
obtained. We compared different protocols and obtained an optimal solution. In addition, we applied the singular 
perturbed vector field (SPVF) method to determine the hierarchy of the system of equations, which enabled us 
to identify the equilibrium points of the mathematical model and investigate their stability.

1. Introduction

Cancer is the general name for a group of diseases characterised by the unrestrained growth of cells, which are tiny structures that make up the 
organs and tissues in the body. These cells differ in appearance and function; however, they regenerate in a similar manner, through division, to 
heal or rebuild damaged tissue.

Normally, cell division is orderly and controlled. However, in cancer cells, this process is uncontrolled, and cells continue to divide and multiply 
easily [1].

Below, selected facts regarding cancer from around the world are presented [2, 3, 4, 5, 6, 7, 8]:

Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths annually. Approximately one in six deaths 
that occur globally is due to cancer.

Approximately 70% of the deaths from cancer occur in poor countries with low salaries.

Approximately one-third of cancer deaths is caused by five leading behavioural and dietary risks: high body mass index, low fruit and vegetable 
intake, lack of physical activity, tobacco use, and alcohol use. Tobacco use is responsible for approximately 22% of all cancer-related deaths.

Infections, such as hepatitis and human papillomavirus (HPV), can cause cancer, and can be responsible for up to 25% of cancer cases.

The economic impact of cancer is significant and increasing. The total annual economic cost of cancer in 2010 was estimated to be approximately 
1.16 trillion USD.

There are many different types of cancer. Cancerous tumours can appear almost anywhere and in any organ of the body [9, 10, 11, 12, 13]. In 
this study, we focused on brain cancers. Brain tumours can be divided into two types. Tumours that begin to grow in the brain cells themselves, most 
often originating in glioma cells (Multi-shaped glioblastoma, GBM, is a type of cancer that develops in the brain from the brain cells themselves, 
called Glioma), can appear anywhere in the brain and usually do not send metastases out of the brain [14, 15, 16]. The standard treatment in 
these cases is surgery for tumour resection. Following surgery, radiation and/or chemo-immunotherapy are usually performed. If the tumour recurs, 
additional surgery can be performed to remove the tumour. In cases where surgical resection is impossible, medication or radiation therapy is 
necessary. The second type of brain tumours are those that grow in another organ in the body, such as the breast, lung, colon, etc., and metastasise 
to the brain.

In the present study, we discuss the first type of tumours, which are tumours that originate in the brain cells called glioma cells. These tumours 
include astrocytoma, pilocytic astrocytoma, low-grade astrocytoma, anaplastic astrocytoma, GBM, oligodendrogliomas, and ependymoma. Early 
detection of tumours can save lives [17].
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Tumours of the brain can be treated with surgery for tumour resection, radiation (radiotherapy), chemotherapy (i.e., the use of anti-cancer 
drugs (cytotoxic) whose function is to damage cancer cells), treatment with alternating electric fields, targeted biological therapy (targeted therapy) 
targeted to tumour-specific genes, proteins, or to the tissue environment that contributes to tumour development, and immunotherapy [18, 19, 20]

From theoretical research to experimental investigations, scientists from all fields worldwide are searching for a solution to this disease [21, 22, 
23], [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], [35, 36, 37, 38], and this solution can originate from several sources. Medical doctors, scientists 
such as biological physicists, and mathematicians are involved in cancer research

There are numerous possible approaches to cancer treatment. The main goal of cancer treatment is to cure the patient, if possible, or control the 
development of the disease as much as possible. In certain cases, the treatment is designed to relieve the symptoms of the disease and improve the 
patient’s quality of life.

Examples of cancer treatments include surgery, chemical treatment (chemotherapy), radiation therapy (radiotherapy), immunological therapy, 
biological or molecular therapy, hormonal therapy, and a combination of several treatments.

In this study, we propose a therapeutic protocol from a mathematical perspective. The mathematical model focuses on chemo-immunotherapy 
using the immunological drug, Interleukin-2 (𝐼𝐿 − 2). This model also considers the interaction between chemotherapy and immunotherapy to 
create more effective chemotherapy treatments using an analytical function that describes the treatment and customisation of each patient. This 
function depends on the time of administration of the drug and different doses. After these interactions are presented using the mathematical model, 
we opted to perform an investigation in two directions. First, we numerically solved the model for different protocols (i.e., different parameters of 
the analytical function) and compared the results. Second, we applied the singular perturbed vector field (SPVF) method to the mathematical model 
[39]. This method exposes the hierarchy of a system by changing the coordinates of the original model. Once the hierarchy of the system is exposed, 
it can be divided into fast and slow subsystems. This division enables us to first determine the equilibrium points of the model and then analyse the 
stability of these equilibrium points.

2. Mathematical model

In this section, we present a mathematical model based on [44]. The mathematical model describes the interactions between dendritic cells 𝐷, 
cytotoxic 𝑇 -cells, cytokines 𝐼𝐿 −2, and Interleukin-10 (𝐼𝐿 −10), chemotherapy treatment, and cancer cells. The model is not suggested to accurately 
describe the complete reality. In reality, numerous additional cells in the body and immune system participate in the interaction of the body with 
cancer cells. However, the model is an acceptably sufficient approximation of reality that can address the hopes of patients with cancer.

The assumptions of the model are as follows: 𝑇 -cells are activated via interactions with an antigen-presenting cell (APC) or accessory cell, which are 
considered dendritic cells 𝐷 in this study. The 𝐷-cells interact with 𝐼𝐿10 and regulatory 𝑇 -cells 𝑇𝑅 (Treg). Tregs modify dendritic cells by making 
them tolerogenic. These tolerogenic dendritic cells deactivate cytotoxic 𝑇 -cells and create new Tregs from certain naive 𝑇 -cells. These interactions 
are described by (1)–(3).

The cytotoxic 𝑇 -cells 𝑇𝐶 are derived from the naive 𝑇 -cell population 𝑇𝑁 , which produces cytotoxic T cells. The population size of these cells 
indirectly depends on 𝐼𝐿 − 2 [26].

The naive 𝑇 cells are created at a constant rate and die at a rate dependent on 𝐼𝐿2. Naive 𝑇 cells are activated by APCs. The interaction between a 
tolerogenic dendritic cell and a cytotoxic 𝑇 -cell leads to non-responsiveness at a rate of 𝑑; this process is considered to occur in the same manner 
as death, as the 𝑇 -cell no longer fulfils its function. This cell population also has a natural death rate. When cytotoxic cells interact with 𝐼𝐿 − 2, 
they become activated; however, when they interact with 𝐼𝐿 −10, they become non-activated. Tregs, 𝑇𝑅, can be differentiated from the naive 𝑇 -cell 
population upon interaction with a tolerogenic dendritic cell. The interaction between Tregs and 𝐼𝐿 − 2 results in their expansion at a rate of 𝑐. Of 
note, Tregs also have a natural death rate 𝜔𝑅. These assumptions presented herein are described by equations (4)-(7).

Naive 𝑇 cells produce 𝐼𝐿 − 2 at a constant rate; however, they decay at a constant rate 𝜔2. The interaction of a cytotoxic 𝑇 cell with 𝐼𝐿 − 2 causes 
the 𝑇 cell to release 𝐼𝐿 − 2 at a rate of 𝑎2. The interaction of naive 𝐶𝐷4+ 𝑇 -cells with immature dendritic cells causes them to release 𝐼𝐿 − 10 [27]. 
The Treg-𝐶𝑇𝐿 interaction also induces the production of 𝐼𝐿 −10 at a rate of 𝑎10; otherwise, 𝐼𝐿 −10 is produced at the rate of 𝜔10. These procedures 
are described by (8)-(9).

The immune system reacts when a tumour is present in the body. Activation of the immune system during cancerous growth occurs via cytotoxic 
𝑇 -cells. The rate at which cytotoxic cells kill tumour cells is 𝐷𝐶 , where 𝐶 is the size of the tumour [28]. This interaction is described by (10).

When modelling cancer treatment using a mathematical model, it is common to express the function of the treatment using a delta function, 
which describes the sudden and rapid introduction of the substance into the body. When a substance is present in the body, it interacts with the 
immune system and the tumour itself. Thereafter, part of the substance is absorbed by the body and other parts are passed from the body [29, 30, 
31]; this occurs gradually and is considerably slower than the initial process. In this case, a function must be constructed such that up to a point 𝑥0, 
it increases rapidly, beyond which it decreases more slowly and continuously, and is derivative at point 𝑥0. Therefore, a delta function does not fit 
the description of the above process as it is not continuous and is not derivative at 𝑥0. Here, we model the treatment using an analytical function 
that is continuous and derivative for all 𝑥 ∈ ℝ (the function of the treatment is denoted by  (𝑞, 𝑡), where 𝑞 is the quantity of chemotherapy and 𝑡
is the time). As the function depends on the time and dosage, the dosage and time for each individual patient can be adjusted. The dynamics of 
chemotherapy drug decay are described by equation (11), where 𝐶𝐻 is the concentration of the chemotherapy drug [32].

In the present study, we discuss drug treatment after surgery to remove cancerous tumours.

Let �⃗� be the vector of the dynamic variables of the system: �⃗� =
(
𝐷𝐼 ,𝐷,𝐷𝑇 ,𝑇𝑁 ,𝑇𝐶 , 𝑇𝐶𝑃 , 𝑇𝑅, 𝐼𝐿2, 𝐼𝐿10, 𝐶,𝐶𝐻

)
.

The relationships between the dynamic variables of the system and the corresponding parameters are shown in Diagrams 1 − 6
Under the above assumptions, the mathematical model includes a system of first-order nonlinear ordinary differential equations (ODEs), and has 
the following form:

𝑑𝐷𝐼

𝑑𝑡
= −𝑎𝐷𝐼 − 𝑎𝑇𝐷𝐼

𝑇𝑅

𝑔𝑅 + 𝑇𝑅

−𝜔𝐼𝐷𝐼 − 𝑏𝑇𝐷𝐼

𝐼𝐿10
𝑔10 + 𝐼𝐿10

− 𝑘𝐷𝐼
𝐷𝐼

(
1 − 𝑒

𝛿𝐷𝐼
𝐶𝐻

)
≡ 𝐹1(�⃗� ), (1)

𝑑𝐷

𝑑𝑡
= 𝑎𝐷𝐼 −𝜔𝐷 − 𝑘𝐷𝐼

𝐷
(
1 − 𝑒𝛿𝐷𝐶𝐻

)
≡ 𝐹2(�⃗� ), (2)

𝑑𝐷𝑇 = 𝑎𝑇𝐷𝐼

𝑇𝑅 −𝜔𝑇𝐷𝑇 + 𝑏𝑇𝐷𝐼

𝐼𝐿10 − 𝑘𝐷𝑇
𝐷𝑇

(
1 − 𝑒

𝛿𝐷𝑇
𝐶𝐻

)
≡ 𝐹3(�⃗� ), (3)
𝑑𝑡 𝑔𝑅 + 𝑇𝑅 𝑔10 + 𝐼𝐿10
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𝑑𝑇𝑁

𝑑𝑡
= 𝛼𝑁 − 𝑇𝑁

𝜔𝑁

𝑔2 + 𝐼𝐿2
− 𝑘𝑁𝑇𝑁

(
1 − 𝑒𝛿𝑁𝐶𝐻

)
≡ 𝐹4(�⃗� ), (4)

𝑑𝑇𝐶

𝑑𝑡
= 𝑎𝐶𝑇𝑁𝐷 − 𝑑𝐷𝑇 𝑇𝐶 − 𝑎𝐶𝑃 𝑇𝐶

𝐼𝐿2
𝑔2 + 𝐼𝐿2

+ 𝑑𝐶𝑃 𝑇𝐶𝑃

𝐼𝐿10
𝑔10 + 𝐼𝐿10

−𝜔𝐶𝑇𝐶 − 𝑘𝐶𝑇𝐶

(
1 − 𝑒𝛿𝐶𝐶𝐻

)
≡ 𝐹5(�⃗� ), (5)

𝑑𝑇𝐶𝑃

𝑑𝑡
= 𝑎𝐶𝑃 𝑇𝐶

𝐼𝐿2
𝑔2 + 𝐼𝐿2

− 𝑑𝐶𝑃 𝑇𝐶

𝐼𝐿10
𝑔10 + 𝐼𝐿10

+ 𝛾𝑇𝐶𝑃 − 𝑘𝐶𝑃 𝑇𝐶𝑃

(
1 − 𝑒𝛿𝐶𝑃 𝐶𝐻

)
≡ 𝐹6(�⃗� ), (6)

𝑑𝑇𝑅

𝑑𝑡
= 𝑎𝑅𝐷𝑇 𝑇𝑁 + 𝑐𝑇𝑅

𝐼𝐿2
𝑔2 + 𝐼𝐿2

−𝜔𝑅𝑇𝑅 − 𝑘𝑅𝑇𝑅

(
1 − 𝑒𝛿𝑅𝑀

)
≡ 𝐹7(�⃗� ), (7)

𝑑𝐼𝐿2
𝑑𝑡

= 𝛼2𝑇𝑁 −𝜔2𝐼𝐿2 + 𝑎2𝑇𝐶

𝐼𝐿2
𝑔2 + 𝐼𝐿2

≡ 𝐹8(�⃗� ), (8)

𝑑𝐼𝐿10
𝑑𝑡

= 𝛼10𝐷𝐼 + 𝑎10𝑇𝑅𝑇𝐶 −𝜔10𝐼𝐿10 ≡ 𝐹9(�⃗� ), (9)

𝑑𝐶

𝑑𝑡
= 𝑓𝐶(1 − ℎ𝐶) −𝐷𝐶𝐶 − 𝑘𝐶

(
1 − 𝑒𝛿𝐶𝐶𝐻

)
≡ 𝐹10(�⃗� ), (10)

𝑑𝐶𝐻

𝑑𝑡
= −𝜔𝐶𝐻

𝐶𝐻 + (𝑞, 𝑡) ≡ 𝐹11(�⃗� ), (11)

where 𝐷𝐶 = 𝑑(𝐿∕𝐶)𝑙 ⋅ (𝑠 + (𝐿∕𝐶)𝑙)−1 is the rate at which cytotoxic cells kill tumour cells [45].

The model is complete, subject to the initial conditions

�⃗� (𝑡 = 0) = �⃗�0, (12)

where 𝑡 = 0 refers to the initial treatment.

The analytical function  describes chemotherapy treatment, which is a combination of chemotherapy and immunotherapy. The function depends 
on time 𝑡 and dosage 𝑞.

The function has the form:

 (𝑞, 𝑡) =
𝑛∑

𝑘=0
𝑞(𝑡−𝑚𝑘)(𝑡−𝑚𝑘)𝑒

𝑡−𝑚𝑘
0.5 , (13)

where 𝑛 is the duration of the customised treatment for each patient,  is the unit step function, and 𝑚 is the interval between treatments. For 
example, when 𝑚 = 7, the patient receives treatment every week.

The above mathematical model with function  describes a customised treatment protocol for each patient. Personalisation is performed by the 
analytical function described in equation (13), which depends on the time between treatments and the dose given to each patient. Any functional 
variable can be changed. Therefore, if the interval between treatments is to be changed, this can be carried out analytically. Similarly, if the dose 
from patient to patient needs to be changed, this can be also carried out analytically. These two parameters are fully controlled by a medical doctor.

The model can be written in abbreviated form as

𝑑�⃗�

𝑑𝑡
= 𝐹 (�⃗� ),

�⃗� (0) = �⃗�0, (14)

where 𝐹 (�⃗� ) is the vector field of the model; that is, 𝐹 (�⃗� ) =
(
𝐹1(�⃗� ), ..., 𝐹11(�⃗� )

)
.

The following parameters are used at the numerical simulation as well as at the application of the SPVF algorithm.

Model Parameters

Parameter Value Description

𝜔 0.19 Decay Rate of Immunogenic Dendritic Cells [25]

𝜔𝐼 0.35 Decay Rate of Immature Dendritic Cells [25]

𝜔𝑇 0.456 Decay Rate of Tolerogenic Dendritic Cells [25]

𝜔𝐶 1.2 ⋅ 10−1 Decay Rate of Cytotoxic T-Cells [49]

𝜔𝑁 1.12 ⋅ 10−2 Decay Rate of Naive T-Cells

𝜔𝑅 2.34 ⋅ 10−2 Decay Rate of Regulatory T-Cells

𝜔2 23 Decay Rate of IL-2 [48]

𝜔10 123 Decay Rate of IL-10

𝜔𝐶𝐻
3.45 ⋅ 102 Decay Rate of Chemotherapy Medicine

𝑘𝐶 0.086 The relative size of tumor needed for half-maximal stimulation of Cytotoxic T-cells

𝑐 .018 Max Growth Rate of T-regs [47]

𝑎𝑇 1.236 Activation Rate of Tolerogenic Dendritic Cells by Tregs

𝑑𝐶𝑃 60 Deactivation Rate of Cytotoxic Analysis T-Cells by Tregs [34]

𝑑 67 Deactivation Rate of Cytotoxic T-Cells by Dendritic Cells [49]

𝛼2 0.021 Source Rate of IL-2 [47]

𝛼10 0.34 Source Rate of IL-10 from Dendritic Cells [34]

𝛼𝑁 1.232 Source Rate of Naive T-cells

𝑎𝐶𝑃 0.465 Activation Rate of Cytotoxic Cells by IL-2

𝑔𝑅 .018 Max Growth Rate of Tregs [47]

𝑎𝑅 6.984 Activation Rate of Tregs

𝑔2 12 Growth Rate of Cytotoxic T-Cells

𝑔10 56 Deactivation Rate of Cytotoxic T-Cells by Tregs
3
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Model Parameters

Parameter Value Description

𝑎𝐶 0.768 Activation Rate of Naive T-Cells by Dendritic Cells [34]

𝑘𝐷𝐼
3.848 The relative size of tumor needed for half-maximal stimulation of Immature dendritic cells

𝑎 2.223 Activation Rate of Immature dendritic cells

𝑘𝐷𝑇
87.646 The relative size of tumor needed for half-maximal stimulation of Tolerogenic dendritic cells

𝑘𝑁 0.0634 The relative size of tumor needed for half-maximal stimulation of Naive T-cells

𝑎10 2.976 Activation Rate of Regulatory T-cells

𝑎2 3.9578 Activation Rate of Cytotoxic T-cells by Interleukin 2 (IL-2)

𝛿() ∈ [0.32 ⋅ 10−2 ,2.879 ⋅ 10−1] Pure coefficient in exponential expression

𝑘𝑅 321 Level of Tregs necessary for half maximal activation of tolerogenic dendritic cells

𝑏𝑇 0.45 Activation Rate of Tolerogenic Dendritic Cells by IL-10

𝛾 12 Growth Rate of Cytotoxic T-Cells [49]

𝑎10 0.453 Source Rate of IL-10 from Tregs

3. Analysis and results

In this section, we present the results of the two research objectives defined in the Introduction. The first is the application of the SPVF method, 
which determines the equilibrium points and investigates their stability. The second is a comparison of the results obtained by numerically solving 
the mathematical model for different treatment protocols using the analytical function (13), which considers different dosages and times.

3.1. Equilibrium points and stability analysis

One of the most important investigations in mathematical models describing realistic biological phenomena involves determining the equilibrium 
of the system. Based on the equilibrium of the system, there were no changes during a certain period of time. Such result is critical, particularly for 
the study of cancerous tumours [46]. Herein, we determined the equilibrium points of the mathematical model presented in Equations (1)-(11) with 
the initial conditions (12) and the function (13). Briefly, we first compared the right-hand side of equations (1)-(11) to zero, 𝐹 (�⃗� ) = 0, solved the 
algebraic equations to determine the equilibrium of the model, and finally verified the stability of each equilibrium point using the Jacobian matrix. 
As we are interested in equilibrium points ≠ 0, this system cannot be solved analytically, only numerically. Hence, an approximation is required. 
The first step of the approximation is to reduce the system of equations to decompose the model into fast and slow parts and study only the fast 
part when the slow part is frozen. Accordingly, the dynamical variables of the system that progress rapidly, and those that progress slowly must be 
known. However, based on the presentation of the model, the desired decomposition cannot be known without prior knowledge from experiments 
or intuition. Another method for discovering decomposition is the application of asymptotic mathematical methods. In this study, we applied the 
well-known SPVF method presented in [39]. An algorithm for the decomposition of a system of ODEs is presented in detail herein. The main function 
of the SPVF is to transfer the coordinates of the model, where the model can be decomposed into fast and slow subsystems at new coordinates. 
According to the SPVF method, to determine the equilibrium points of the system rewritten in new coordinates, the equilibrium points of only the 
fast subsystem can be found, while the slow subsystem remains constant. In addition, a stability analysis of the equilibrium points can be performed 
only for the fast subsystem. According to the SPVF method, the transformation and inverse transformation maintain stable equilibrium points, that 
is, the stable points remain stable in both the new and old coordinate systems under the transformation of the SPVF method.

By applying the SPVF algorithm, we obtain the eigenvalues of the system and new coordinates as follows:

𝜆
𝑓

1 = 2.6755 ⋅ 1021, 𝜆
𝑓

2 = 1.9873 ⋅ 1019, 𝜆
𝑓

3 = 5.6789 ⋅ 1018, 𝜆
𝑓

4 = 6.5422 ⋅ 1017,

𝜆𝑠
5 = 86556.9783, 𝜆𝑠

6 = 5685.5754, 𝜆𝑠
7 = 4455.7854, 𝜆𝑠

8 = 544.8077, (15)

𝜆𝑠
9 = 43.8889, 𝜆𝑠

10 = 23.7655, 𝜆𝑠
11 = 1.5459,

where 𝑓 denotes 𝑓𝑎𝑠𝑡 and 𝑠 denotes 𝑠𝑙𝑜𝑤, and are explained in the following paragraph. To avoid burdening the reader with algebraic expressions, 
we list the eigenvectors corresponding to the above eigenvalues as �⃗�1, ..., �⃗�11.

According to the SPVF algorithm, the system of equations can be decomposed into fast and slow subsystems with respect to the maximal 𝑔𝑎𝑝 = 𝜆𝑖
𝜆𝑗

; 
that is, because the eigenvalues are arranged in descending order, the gap is the ratio of two consecutive eigenvalues. 𝑀𝑎𝑥𝐺𝑎𝑝 is the maximum 
ratio of any two consecutive eigenvalues. As observed from the above eigenvalues (equations (15)), the maximum gap is between 𝜆𝑓

4 and 𝜆𝑠
5 because 

𝑀𝑎𝑥𝐺𝑎𝑝 
{

𝜆
𝑓

4
𝜆𝑠5

}
>> 𝐺𝑎𝑝 

{
𝜆𝑖
𝜆𝑗

}
for all 𝑖, 𝑗 ∈ {1, ...,11}. Hence, the system of equations can be decomposed into the fast subsystem �̃�𝐼 , �̃�, �̃�𝑇 , �̃�𝑁 and 

slow subsystem �̃�𝐶 , �̃�𝐶𝑃 , �̃�𝑅, 𝐼2, 𝐼10, �̃�, �̃�𝐻 , where ̃⋅ denotes the presentation of the dynamic variables at the new coordinates. Therefore, the stability 
analysis can concentrate on the fast subsystem, whereas the slow subsystem remains fixed. To determine the equilibrium points, we first formalise 
the transformation to new coordinates, where the decomposition into fast and slow subsystems is valid.

If we denote the new dynamical variables of the model in the new coordinates as ⃗̃𝑈 =
(
�̃�𝐼 , �̃�, �̃�𝑇 , �̃�𝑁 , �̃�𝐶 , �̃�𝐶𝑃 , �̃�𝑅, 𝐼2, 𝐼10, �̃�, �̃�𝐻

)
, the model can be 

presented in the new coordinates using the eigenvectors as follows:

⃗̃𝑈 =𝑊 ⋅ �⃗� , (16)

where matrix 𝑊 is the matrix whose columns are the transposes of the eigenvector, that is, 𝑊 =
(
�⃗�𝑡

1, ..., �⃗�
𝑡
11
)
. We take the derivative of the algebraic 

system (16) with respect to time 𝑡 and substitute the system (14) as follows:

𝑑 ⃗̃𝑈

𝑑𝑡
=𝑊 ⋅

𝑑�⃗�

𝑑𝑡
=𝑊 ⋅ 𝐹 (�⃗� ). (17)

To complete the presentation of the model in new coordinates, we multiply equation (16) from the left by the inverse matrix 𝑊 −1; this allows us to 
write the old dynamical variables of the model as a function of the new dynamical variables:
4



Fig. 1. Solution profiles of cancer cells without treatment ( (𝑞, 𝑡) = 0) - solid line compared to experimental (clinical) results.

�⃗� =𝑊 −1 ⋅ ⃗̃𝑈 . (18)

Substituting equation (18) into (17), we obtain the complete model with the initial conditions rewritten in new coordinates as

𝑑 ⃗̃𝑈

𝑑𝑡
=𝑊 ⋅ 𝐹

(
𝑊 −1 ⋅ ⃗̃𝑈

)
≡ �⃗�

(
⃗̃𝑈
)
,

⃗̃𝑈 |𝑡=0 =𝑊 ⋅ �⃗� |𝑡=0. (19)

At these coordinates (model (19)), the model is decomposed into fast and slow subsystems, as follows:

𝜀1 ⋅
𝑑�̃�𝐼

𝑑𝑡
=𝐻𝑓𝑎𝑠𝑡

(
⃗̃𝑈
)

𝜀2 ⋅
𝑑�̃�

𝑑𝑡
=𝐻𝑓𝑎𝑠𝑡

(
⃗̃𝑈
)

𝜀3 ⋅
𝑑�̃�𝑇

𝑑𝑡
=𝐻𝑓𝑎𝑠𝑡

(
⃗̃𝑈
)

(20)

𝜀4 ⋅
𝑑�̃�𝑁

𝑑𝑡
=𝐻𝑓𝑎𝑠𝑡

(
⃗̃𝑈
)

𝑑�̃�𝐶

𝑑𝑡
=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)

𝑑�̃�𝐶𝑃

𝑑𝑡
=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)

𝑑�̃�𝑅

𝑑𝑡
=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)

𝑑𝐼2
𝑑𝑡

=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)

(21)

𝑑𝐼10
𝑑𝑡

=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)

𝑑�̃�

𝑑𝑡
=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)

𝑑�̃�𝐻

𝑑𝑡
=𝐻𝑠𝑙𝑜𝑤

(
⃗̃𝑈
)
,

where 0 < 𝜀𝑖 << 1 for 𝑖 = 1,2,3,4 are small parameters of the fast subsystem.

The main advantage of decomposing the system of equations into fast and slow subsystems is the ability to study only the fast subsystem without 
losing biological information in our case, and thus obtain a general picture of the entire process of the model. In this study, equilibrium and stability 
points were explored. Stability analysis is a biologically important investigation that can be performed to determine when a patient’s medical 
condition stabilises in terms of the relevant parameters for treatment. Hence, the relevant subsystem is a system of equations (20). For convenience, 
the abbreviated representation of the system of equations (20)-(21) is:

𝜀 ⋅
𝑑𝑣𝑓 = ⃗𝑓 (𝑣𝑓 , 𝑣𝑠) (22)
O. Nave Heliyon 8 (2022) e09288
𝑑𝑡
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Fig. 2. Plot of function  (𝑞, 𝑡) describing chemotherapy treatment for cancer - one cycle only. Treatment cycle was every 7 days. In our analysis, we considered a 
constant dosage normalised to “1”. Full treatment cycle was 365 days.

Fig. 3. Solution profiles of cancer cells with treatment every 7 days. Solid lines: Line 1 refers to treatment with highest mixed dosage 𝑞1 and Line 4 refers to treatment 
with lowest mixed dosage 𝑞4 . Lines 2, 3 are intermediate dosages - compared to experimental (clinical) results

Fig. 4. Plot of function  (𝑞, 𝑡) describing chemotherapy treatment for cancer - one cycle only. Treatment cycle was every 14 days. In our analysis, we considered a 
constant dosage normalised to “1”. Full treatment cycle was 365 days.
6
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Fig. 5. Solution profiles of cancer cells with treatment every 14 days. Solid lines: Line 1 refers to treatment with highest mixed dosage 𝑞1 and Line 4 refers to 
treatment with lowest mixed dosage 𝑞4 . Lines 2, 3 are intermediate dosages - compared to experimental (clinical) results

Fig. 6. Plot of function  (𝑞, 𝑡) describing chemotherapy treatment for cancer - one cycle only. Treatment cycle was every 28 days. In our analysis, we considered a 
constant dosage normalised to “1”. Full treatment cycle was 365 days.

𝑑𝑣𝑠

𝑑𝑡
= ⃗𝑠(𝑣𝑓 , 𝑣𝑠), (23)

where (𝜀, 𝜀1, ..., 𝜀4), 𝑣𝑓 =
(
�̃�𝐼 , �̃�, �̃�𝑇 , �̃�𝑁

)
, and 𝑣𝑠 =

(
�̃�𝐶 , �̃�𝐶𝑃 , �̃�𝑅, 𝐼2, 𝐼10, �̃�, �̃�𝐻

)
.

To obtain the equilibrium points of the model, we must solve the fast subsystem (22) for the fast variables while setting all slow variables (system 
of equations (23)) as constant (the slow variables are “frozen” at their initial values; hence, we can take 𝑣𝑠 = 𝑣𝑠(0) as the constants);

⃗𝑓 (𝑣∗𝑓 , 𝑣𝑠(0)) = 0. (24)

After obtaining the equilibrium point solution from the fast subsystem (algebraic system (24)), we substitute these points into the slow subsystem 
and solve the algebraic system for solutions of the slow variables, that is,

⃗𝑠(𝑣∗𝑓 , 𝑣
∗
𝑠 ) = 0. (25)

Solving the system of equations (24) and then solving the system of equations (25) result in the equilibrium points of the model rewritten in new 
coordinates. The next step is to analyse the stability of each equilibrium point. Hence, we examined the sign of the real part of the eigenvalues of 
the following 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 matrix at each equilibrium point.(

𝜕
(
⃗𝑓 (𝑣𝑓 ,𝑣𝑠),⃗𝑠(𝑣𝑓 ,𝑣𝑠)

)
𝜕(𝑣𝑓 ,𝑣𝑠)

)|||||(𝑣∗
𝑓
,𝑣∗𝑠 )

. (26)

The eigenvalues with negative real parts (obtained from equation (26)) are locally stable. Only one stable equilibrium point was found for each 
treatment protocol. Five protocols were studied. The first protocol did not include treatment, that is,  (𝑞, 𝑡) = 0. In this case, there is no equilibrium 
7
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Fig. 7. Solution profiles of cancer cells with treatment every 28 days. Solid lines: Line 1 refers to treatment with highest mixed dosage 𝑞1 and Line 4 refers to 
treatment with lowest mixed dosage 𝑞4 . Lines 2, 3 are intermediate dosages - compared to experimental (clinical) results

Fig. 8. Plot of function  (𝑞, 𝑡) describing chemotherapy treatment for cancer - one cycle only. Treatment cycle was every 56 days. In our analysis, we considered a 
constant dosage normalised to “1”. Full treatment cycle was 365 days.

point. For  (𝑞, 𝑡) ≠ 0, we obtained an equilibrium point.

The model rewritten in the new coordinates using the eigenvectors does not have biological meaning as every dynamical variable in the new 
coordinates is a linear combination of the dynamical variables in the old coordinates. Hence, equilibrium points have no biological meaning. 
Therefore, to provide a biological interpretation of our results, we must invert the equilibrium points to the old coordinates, that is, we must apply 
the inverse matrix of the eigenvectors 𝑊 −1 to the equilibrium points:

𝑊 −1

(
𝑣∗
𝑓

𝑣∗𝑠 .

)
(27)

All equilibrium points (obtained from equation (27)) depend on the parameters and initial conditions of the model. For example, the equilibrium 
point of the dynamical variable of the tumour 𝐶 for the protocol given to the patient twice with 28 days between treatments is

𝐶∗ = 0.2537 ⋅𝜔2𝛼10𝐷
0
𝐼
− 0.8766 ⋅ 𝜅𝜔𝐶𝐻

ℎ𝑔2𝐷
0 + 2.4564 ⋅ 𝑎𝐶𝑃 𝛾𝐷

0
𝑇
+ 1.2342 ⋅ 𝑏𝑇 𝑔10𝜅𝐷𝐼

𝜔𝑇 𝑇
0
𝑁

+1.6768 ⋅ 𝜅𝑎2𝑎𝑅𝑇 0
𝐶
− 0.0033 ⋅𝜔10𝑑𝐶𝑃 𝑇

0
𝐶𝑃

− 9.7745 ⋅𝜔𝐶𝐻
𝑎𝐶𝜔𝑇 𝑇

0
𝑅
+ 0.0090 ⋅ ℎ𝑓𝜅𝑁𝑑𝛾𝐼𝐿0

2

−0.0978 ⋅ 𝑑𝐶𝑃 𝛼𝑁𝑔2𝐼𝐿
0
10 + 3.55𝜔10𝐶

0 + 9.9968 ⋅ 𝑑𝜔𝐶𝜅𝑅𝐶
0
𝐻
. (28)

Once we substitute the parameters of the model, we obtain the stable equilibrium point of the cancer tumour. Thus, the equilibrium point for the 
dynamic variable 𝐶 is a combination of the remaining dynamic variables of the model, indicating that this is the optimal combination of variables 
for achieving a stable equilibrium point.
8
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Fig. 9. Solution profiles of cancer cells with treatment every 46 days. Solid lines: Line 1 refers to treatment with highest mixed dosage 𝑞1 and Line 4 refers to 
treatment with lowest mixed dosage 𝑞4 . Lines 2, 3 are intermediate dosages - compared to experimental (clinical) results

Fig. 10. The solutions profiles of the cancer cells with different initial conditions.

3.2. Numerical results

In this section, we present our numerical results relative to the experimental results (clinical results, [40, 41, 42]). We analysed the solution 
profiles of our results obtained by solving models (1)-(11), and applied a numerical simulation using the MATLAB ode45 packages.

According to a report from the Washington University School of Medicine in St. Louis, most patients with glioblastoma die less than 18 months 
after diagnosis [43]. However, a clinical trial of a personalised vaccine for glioblastoma revealed improvements in survival rates for such patients. 
A summary of this study is given below.

The trial included patients from different countries with brain tumours and glioblastomas at different stages. Some patients received a vaccine 
called DCVax-L, and some received a placebo. The vaccine is personalised and varies from one patient to another. All treatments were administered 
to patients who underwent a cancerous tumour removal procedure, and a small amount of tumour tissue was processed and then exposed to the 
patient’s own immune cells, called dendritic cells. This procedure trains dendritic cells to follow and destroy tumour cells. Subsequently, these 
trained dendritic cells were re-injected into the patient. The treatment protocol was not fixed. An example of this protocol is as follows: Vaccine 
once every 3 weeks three times. The vaccine was then administered three times, once every two months, and then once every six months.

Patients in the trial had a median survival of just over 23 months, some had an average overall survival of 40.5 months, and generally, 
patients with an aggressive glioblastoma lived 15 to 17 months with standard treatment such as surgery for tumour removal, chemotherapy, and 
9
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Fig. 11. The graphs describe the dynamical variables 𝐷𝑇 ,𝐷𝐼 and 𝐷 vs the cancer cells 𝐶 .

Fig. 12. The graphs describe the dynamical variables 𝑇𝑅,𝑇𝑁 and 𝐼𝐿2 vs the cancer cells 𝐶 .

radiotherapy.

In addition to this type of treatment, patients reported minimal side effects compared to those associated with the standard treatment.

Figs. 2, 4, 6, and 8 present the function  (𝑞, 𝑡) for one cycle at different treatment times. For example, Fig. 2 presents the function of a treatment 
every 7 days. The complete treatment cycle is 365 days.

Fig. 1 presents the solution profiles of cancer cells (solid line). We compared the results of the proposed model with clinical data. The model was 
solved using  (𝑞, 𝑡) = 0, that is, no treatment was administered to the patient. As expected, the cancer cells began to grow after approximately 110
days.

In Fig. 3, we present the solution profiles of cancer cells (solid lines) for different parameter values. This figure relates to Fig. 2, where the treatments 
were administered to the patient every 7 days. Line 1 refers to the treatment with the highest mixed dosage 𝑞1, and 4 refers to the treatment with 
the lowest mixed dosage 𝑞4. These results are predictable because both doses are high and the time differences between treatments are relatively 
short, with a difference of 7 days between treatments. As a result, the cancer decreases relatively quickly to virtually zero after 40 −−85 days for all 
doses. Because the dose 𝑞4 (Line 4) is the lowest, it decreases more slowly to zero relative to the other doses.

In Fig. 5, we present the solution profiles of cancer cells (solid lines) for different parameter values. This figure relates to Fig. 4, where the treatments 
were administered to the patient every 14 days. As depicted in these graphs, at the beginning of the treatment, there was a sharp decrease in the 
tumour size followed by an increase in the tumour size; such finding is due to the second dose being administered two weeks after the first dose. 
After the second dose, the tumour size decreased until approximately 180 days, when the tumour size reached zero.

In Fig. 7, we present the solution profiles of cancer cells (solid lines) for different parameter values. This figure relates to Fig. 6, where the treatments 
were administered to the patient every 28 days. As depicted in the graphs, the behaviour is slightly different and unusual because, at the beginning 
of treatment, the cancer decreases rapidly with the administration of the drug. Subsequently, there was an increase in the tumour for 75 days, 
10



Fig. 13. The graphs describe the dynamical variables 𝑇𝑅,𝑇𝑁 and 𝐼𝐿10 vs the cancer cells 𝐶 .

Fig. 14. The correlations between the dynamical variables of the model.

followed by a decrease to virtually zero after 190 days (190 days is approximately seven treatment cycles). Of note, the second dose is administered 
to the patient only after 28 days, and therefore requires time to significantly affect the tumour. Inexplicably, after 190 days, the tumour begins to 
grow to a maximum size that occurs after 270 days (270 days is a cycle of approximately ten treatments). Thereafter, the tumour again decreases to 
virtually zero after 340 days, which corresponds to 12 treatment cycles. The rational explanation for the increase and decrease is the relatively large 
intervals of the treatment itself, which allows the tumour to grow.

In Fig. 9, the solution profiles of cancer cells (solid lines) for different parameter values are shown. This figure relates to Fig. 8, where the treatments 
were administered to the patient every 56 days. These results demonstrate a behaviour similar to that of the previous graph, where the treatment 
doses were administered at relatively large intervals. As observed at the beginning of the treatment, similar to all other results, the tumour decreases 
quickly and then begins to increase for 60 days. The next treatment is administered after 56 days, and the tumour begins to decrease after 80 days, 
which means that, in this case, the treatment affects the tumour virtually immediately. The tumour size decreases for 70 days, then starts increasing 
for 60 days, but to a considerably smaller size than its previous size. When another treatment cycle is performed, the tumour begins to decrease 
again; this cycle is repeated. In this case, a correlation was found between treatment and tumour size, and the effect was virtually immediate. After 
only a few days of treatment, tumour size decreased. After several weeks of treatment, the effect decreased and the tumour began to grow again. 
When the treatment was repeated, the tumour size began to decrease again. Unlike the previous case, the treatment and size of the tumour were 
virtually completely coordinated in terms of time.

Fig. 10 shows the solution profiles of the cancer cells based on different values of the initial conditions 𝐶(0) ∈
[
103,1013

]
. According to the graphs, 

all cancer cells decreased with treatment time. As demonstrated by the results obtained after approximately 245 days, cancer cells reach a state of 
equilibrium.
O. Nave Heliyon 8 (2022) e09288
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Fig. 15. The correlations between the dynamical variables of the model with significant variables which marked by 𝑋

Fig. 16. The correlations between the dynamical variables of the model in different level.
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Fig. 17. The correlations between 𝑇 -cells and the cancer cells. The axes are: the 𝑦 axis is the considered dynamical variable and the 𝑥 axis is the time

Fig. 11 presents the dynamic variables of dendritic cells, that is, immature dendritic cells, immunogenic dendritic cells, and tolerogenic dendritic 
cells vs. cancer cells. As depicted in the graphs, the dendritic cells (𝐷𝐼, 𝐷𝑇 , and 𝐷) behave approximately the same only on a different scale in 
relation to the cancer cells. First, the dendritic cells decrease, and is followed by a very sharp increase that stabilises over time. Currently, the 
number of cancer cells is steadily declining.

Fig. 12 displays the plots of cytotoxic T-cells, naive T-cells, regulatory T-cells, and cytokine 𝐼𝐿 − 2 vs. cancer cells. Cytotoxic T-cells behave 
similarly. At the beginning of the process, the 𝑇 -cells decrease, and then increase and stabilise. Of note, these cells have negative values as the 𝑦-axis 
is set as a log, indicating the values of these cells between 0 and 1. The 𝐼𝐿 − 2 cells remained stable throughout the process. However, at a given 
scale of the 𝑡-axis, the number of cancer cells decreased monotonically.

Fig. 13 shows the plots of cytotoxic T-cells, naive T-cells, regulatory T-cells, and cytokine 𝐼𝐿 − 10 vs. cancer cells. The difference between this 
figure and the previous figure is the behaviour of 𝐼𝐿 − 10. The cytokine 𝐼𝐿 − 10 rises rapidly to a state of stabilisation.

Fig. 14 shows a heatmap of the dynamic variables of the mathematical model. Each square in the heatmap describes the correlation between the 
variable on the 𝑥-axis and the variable on the 𝑦-axis. The correlation used in our calculations was 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛. As expected, on the diagonal 
of the heatmap, the correlation was 1, which indicates a linear correlation between the same dynamical variables. For example, the correlation 
between variables 𝐷𝑇 and 𝐶𝐻 is close to -1, which means that the correlation is a negative linear correlation. Thus, a direct opposite correlation 
exists, as one variable increases and the other decreases, and vice versa. Based on the heatmap, the matrix is symmetric with respect to the diagonal 
𝑦 = 𝑥. Further, the same variables are observed to be grouped in clusters, that is, 𝐷, 𝑇 , etc. Such result indicates that the correlation between the 
variables in the same cluster is 1 (positive correlation), and the variables from different clusters have a negative correlation.

Fig. 15 contains a plot of the same heatmap of the dynamical variables of the mathematical model. In 𝑥, we emphasise the variables that are not 
significant. In our calculations, we set 𝑝 − 𝑣𝑎𝑙𝑢𝑒 to 0.05. From this drawing, the relationship between variables that have a positive correlation and 
those that are significant are evident. The variables with negative correlations were not significant. This result can be used in future research where 
a large amount of data will be collected and artificial intelligence can be applied. Accordingly, the variables that are significant can be determined.

Fig. 16 shows the same heatmap as the previous plots, but with another level of clusters. The 𝑐𝑒𝑙𝑙.𝑡𝑦𝑝𝑒 − 𝑏𝑎𝑟 shows sets of variables that behave 
similarly. Mathematical connections are not necessarily behaviour and biological connections. For example, the green bar represents a cluster of 
dendritic variables, which behave the same and reinforce the results presented in the previous graphs.

Fig. 17–19 displays the correlations between the different dynamic variables (present in the diagonal of the matrix) of the system. For example, in 
18, the fourth column is the second column. The graph describes the correlation between the variables, 𝐼𝐿 −2 and 𝑇𝑅. In each graph in Figs. 17–19, 
the correlation of the same variable was added to the variable of the cancer cells. The axes of these Figures are the diagonals of the matrix.
13
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Fig. 18. The correlations between 𝑇 -cells and 𝐼𝐿− 10 and the cancer cells. The axes are: the 𝑦 axis is the considered dynamical variable and the 𝑥 axis is the time

4. Conclusions

In this study, a mathematical model for chemo-immunotherapy, which is a combination of chemotherapy and immunotherapy for brain cancer, 
was investigated. The system of equations included nonlinear first-order ODEs. The mathematical model considers the interaction of immune system 
cells with cancer cells and the treatment. The dynamic variables of the system are immature dendritic cells, immunogenic dendritic cells, tolerogenic 
dendritic cells, naive 𝑇 -cells, cytotoxic 𝑇 -cells, proliferating cytotoxic 𝑇 -cells, Treg, 𝐼𝐿 − 2, 𝐼𝐿 − 10, cancer cells, and chemotherapy medicine. We 
proposed a new treatment protocol, which is essentially a new analytical function that depends on the time interval between treatment and dosage. 
Of note, the hierarchy of the system was hidden. To investigate the stability of the equilibrium points, it is necessary to solve the nonlinear algebraic 
equation related to the mathematical model, which, in this case, is impossible analytically. Hence, we applied the SPVF algorithm to transfer the 
mathematical model to a new coordinate with an explicit hierarchy and divided it into fast and slow subsystems. This procedure enabled us to inves-

tigate only the fast subsystem, without losing the biological information of the original model. We determined all equilibrium points of the model in 
the new coordinates and their stability. The equilibrium points have no biological meaning in the new coordinates; hence, we inverse-transformed 
only the stable equilibrium points into the original coordinates of the model (In the present paper we have presented one stable equilibrium point 
of the mathematical model (28)).

We investigated the mathematical model with our proposed treatment protocol, with constant dosage and different time intervals between treat-

ments, that is, 7, 14, 28, and 56 days. Thereafter, we compared our analysis results with experimental (clinical) data. The optimal treatment was 
found to correspond to the protocol with a 7 day interval between treatments. The next step involved the application of the protocol with different 
dosages and time intervals simultaneously.

We examined the behaviour of cancer cells when the initial conditions were changed. All results were identified to reach a state of equilibrium 
at approximately the same time. Indeed, this is dependent on the treatment, which has been determined to vary in terms of dosage and time.

Figs. 11–19 clearly show the correlations between the variables of the mathematical model. Further, the variables with a positive correlation, when 
the Pearson correlation is close to 1; those with a negative correlation, a Pearson correlation close to -1; and those with a correlation of 0, which 
indicates a weak linear correlation between the two variables, can be clearly seen. Significant variables in the model were also found, which can be 
useful for the application of machine learning. Overall, we present graphs that represent the correlation of each variable with the graph of cancer 
cells, and explicitly illustrate the behavioural relationships of the variables, both biologically and mathematically.
14
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Fig. 19. The correlations between all the dynamical variables of the model. The axes are: the 𝑦 axis is the considered dynamical variable and the 𝑥 axis is the time
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