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Abstract

Motivation: The motif discovery problem consists of finding recurring patterns of short strings in a

set of nucleotide sequences. This classical problem is receiving renewed attention as most early

motif discovery methods lack the ability to handle large data of recent genome-wide ChIP studies.

New ChIP-tailored methods focus on reducing computation time and pay little regard to the accur-

acy of motif detection. Unlike such methods, our method focuses on increasing the detection

accuracy while maintaining the computation efficiency at an acceptable level. The major advantage

of our method is that it can mine diverse multiple motifs undetectable by current methods.

Results: The repulsive parallel Markov chain Monte Carlo (RPMCMC) algorithm that we propose is

a parallel version of the widely used Gibbs motif sampler. RPMCMC is run on parallel interacting

motif samplers. A repulsive force is generated when different motifs produced by different sam-

plers near each other. Thus, different samplers explore different motifs. In this way, we can detect

much more diverse motifs than conventional methods can. Through application to 228 transcrip-

tion factor ChIP-seq datasets of the ENCODE project, we show that the RPMCMC algorithm can find

many reliable cofactor interacting motifs that existing methods are unable to discover.

Availability and implementation: A Cþþ implementation of RPMCMC and discovered cofactor

motifs for the 228 ENCODE ChIP-seq datasets are available from http://daweb.ism.ac.jp/yoshidalab/

motif.

Contact: ikebata.hisaki@ism.ac.jp, yoshidar@ism.ac.jp

Supplementary information: Supplementary data are available from Bioinformatics online.

1 Introduction

The motif discovery problem has been receiving renewed attention

since recent experimental technologies, such as ChIP-seq, posed new

challenges. The problem is to identify recurring patterns of conserved

short strings that appear in a large fraction of nucleotide sequences.

A genome-wide ChIP study produces thousands or more DNA frag-

ments consisting of several hundred base pairs, which cover the bind-

ing sites of a transcription factor (TF). By discovering motifs in the

given sequences, which are associated with known TF-binding motifs

in a database, e.g. JASPAR (Sandelin et al., 2004), TRANSFAC
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(Wingender et al., 1995), we can predict not only the regions bound

by the primary TF but also the cofactors that modulate the TF activity

(Bailey, 2011; Goi et al., 2013; Smith et al., 2005).

Early methods of de novo motif discovery can be classified into

either a model-based [MEME (Bailey and Elkan, 1994), AlignACE

(Hughes et al., 2000), ANN-Spec (Workman and Stormo, 2000)] or

a word-count approach [Weeder (Pavesi et al., 2001)]. These meth-

ods were designed on the assumption that the input sequences of

�103 base pairs would range in size from 102 to 103. Hence, they

do not scale to the size of ChIP-seq data and their fundamental

methodologies have undergone reconstruction. However, most

ChIP-tailored algorithms emphasize computational efficiency, and

they sacrifice accuracy of motif detection because they use heuristics

to speed up their computation time.

The model-based methods employ either the EM algorithm

(Bailey and Elkan, 1994) or Gibbs sampling (Lawrence et al., 1993).

The main computational load arises in the process of calculating the

posterior probabilities over all fixed-length subsequences at every

iteration. STEME (Reid and Wernisch, 2011), a ChIP-tailored ver-

sion of MEME, uses a branch-and-bound technique, so that negli-

gible oligomers with significantly low probabilities are effectively

removed. The word-count methods, regardless of old or new, rely

on essentially the same strategy. All possible oligomers are counted

with exact or the fuzzy matching for input sequences. Then, overre-

presented oligomers are determined against background sequences.

Similar motifs are merged to generate output motifs. To reduce the

computational load in the counting operation, DREME (Bailey,

2011) and CisFinder (Sharov and Ko, 2009) adopt similar strategies.

Starting from ’ 100 oligomers with no wildcards, each oligomer is

either left or removed recursively by adding a wildcard and by as-

sessing its significance. Such methods run the risk of missing import-

ant motifs in earlier steps of the recursion. Hegma (Ichinose et al.,

2012) is the fastest of current algorithms. A highly specific strategy

based on Gray codes (Gray, 1947) is employed to avoid fuzzy

matching so as to speed up the merging of similar motifs. However,

this novel idea results in a degradation of the detection accuracy as

will be shown later.

The aim of this study is to derive a new algorithm that achieves

high detection accuracy while maintaining the computational effi-

ciency at an acceptable level. In particular, the proposed method is

designed to detect many diverse motifs that previous methods are

unable to discover. The proposed repulsive parallel MCMC

(RPMCMC) algorithm is a parallel version of the widely used Gibbs

motif sampler. One critical drawback of the standard Gibbs sam-

pling, as with the EM algorithm, arises from the following fact: the

posterior distribution is highly multimodal because many diverse

motifs are present in given sequences. Once the generated Markov

chain is absorbed to a locally high probability region, it is difficult

to escape from that region within a finite time. This problem has

received little attention in previous studies. MEME adopts a serial

implementation of the EM algorithm that repeats the search with

different initial conditions (Bailey and Elkan, 1994). To reduce the

possibility of becoming trapped in the same local optima, low prior

probabilities are assigned to already-discovered motif sites in con-

secutive serial runs. However, such iterative methods take too long

to be used for large ChIP data.

RPMCMC is run on parallel interacting Gibbs samplers. A re-

pulsive force comes into play when the trajectories of different

chains near each other. Therefore, different chains are facilitated to

explore different regions. Compared with the original method using

a single chain, this all-at-once interacting parallel run can detect

much more diverse motifs. In addition, the proposed method has

other unique characteristics, for instance automated control of vari-

able-length motifs, and the fast-clustering algorithm for many gener-

ated motifs in the summarization step. We implemented the

RPMCMC algorithm with Cþþ, which is available from the

Supplementary Website. The method was comprehensively tested on

synthetic promoter sequences and 228 TF ChIP-seq datasets of the

ENCODE project. In the synthetic promoter analysis, RPMCMC

found around 1.5 times as many embedded motifs as existing

methods did. For the ChIP-seq datasets, the RPMCMC algorithm

reported 444 reliable cofactors in total, 219 of which were not dis-

covered by either of the recently published ChIP-tailored algorithms:

DREME and Hegma. On the Supplementary Website, we provide

all the discovered cofactor motifs which were associated with anno-

tated motifs in JASPAR.

2 Methods

2.1 Model
We use the ZOOPS model (Bailey and Elkan, 1994) that allows zero

or one motif occurrence per sequence. Assume that we are given a

set of n sequences, Sþ ¼ fsþ1 ; . . . ; sþn g, where sequence sþi is of

length Li (i ¼ 1; . . . ;n). The reverse complement of the given se-

quence set is denoted by S� ¼ fs�1 ; . . . ; s�n g. Our model uses the set

of n concatenated sequences, S ¼ fs1; . . . ; sng, where si ¼ ðsþi ; s�i Þ
(i ¼ 1; . . . ; n). The motif presence indicator zi takes the value 1 or 0

according to the presence or absence of a motif in sequence si. In a

sequence si with zi¼1, a K-mer motif is positioned at the start site

ui 2 f1; . . . ;Li � Kþ 1;Li þ 1; . . . ; 2Li � Kþ 1}. The kth element

of the motif follows the position-specific multinomial distribution

with hk ¼ ðhk;a; hk;c; hk;g; hk;tÞT, which represents the nucleotide pref-

erence of the kth element to A, C, G, T. Thus, we have

H ¼ ðh1; . . . ; hKÞ, a position probability matrix (PPM). We treat the

motif length K as an unknown parameter. The background se-

quences are assumed to follow independent multinomial trials with

the background probability denoted by h0 ¼ ðh0;a; h0;c; h0;g; h0;tÞT.

Given an input S, the objective is to estimate the PPM H with

the unknown motif length K and the background probability h0

where the latent variables comprise U ¼ fu1; . . . ;ung and

Z ¼ fz1; . . . ; zng. The likelihood is then

pðSjU;Z;K;H; h0Þ /
Y

r2fa;c;g;tg
h

Pn
i¼1

P2Li

j¼1 Iðsi;j¼rÞ
0;r

�
YK
k¼1

Y
r2fa;c;g;tg

hk;r

h0;r

� �Pn
i¼1 ziIðsi;uiþk�1¼rÞ

;

(1)

where si;j denotes the types of bases at the jth position in si, and Ið�Þ is

the indicator function. The first component of the right-hand side in

the first line is the probability of all letters in the n input sequences,

which is calculated under the background multinomial distribution.

The second component is the likelihood ratio that assesses overrepre-

sentation of the K-mer segmented sequences against the background.

As the priors on the multinomial parameters, we use the

Dirichlet distributions

pðHjKÞ /
YK
k¼1

Y
r2fa;c;g;tg

ðhk;rÞbk;r�1;

pðh0Þ /
Y

r2fa;c;g;tg
ðh0;rÞar�1;

pðK ¼ jÞ ¼ IðKmin� j�KmaxÞ
Kmax � Kmin þ 1

;
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where bk ¼ ðbk;a; bk;c;bk;g; bk;tÞT (k ¼ 1; . . . ;K) and a ¼
ðaa; ac; ag; atÞT are the concentration parameters fixed at set values.

The prior on H is conditioned by the motif length K. The equal

probabilities are assigned to any K with a range between the prede-

termined minimum and maximum motif lengths, Kmin and Kmax.

To complete the joint posterior of all the unknown parameters,

we prescribe the priors on U and Z as follows:

pðui ¼ ujKÞ ¼ 1

2ðLi � Kþ 1Þ for i ¼ 1; . . . ;n;

pðzi ¼ 1jKÞ ¼ cK for i ¼ 1; . . . ; n:

The start site ui of a motif occurs with equal probability in all the

possible positions in sequence si. The motif presence indicator zi fol-

lows the binomial distribution with the success probability cK for

each i (0� c�1).

Note that although a specific type of modeling is presented here,

our current program allows for a certain amount of flexibility in the

model specification. For instance a user can choose a higher-order

Markov background model up to third order (da Fonseca et al.,

2008) and a position specific prior for the motif start sites (Bailey

et al., 2010).

2.2 Multiple motifs and local trap
Let x denote all the unknowns, U;Z;K;H and h0. To obtain an esti-

mate approximately with the posterior pðxjSÞ, we can employ a

Gibbs sampling method. However, the Gibbs motif sampler has a

serious drawback in that inherent presence of a great many different

motifs causes a complex energy landscape of the posterior distribu-

tion. In particular, once the trajectory of a Markov chain comes into

a locally high-probability region which corresponds to one of the

existing motifs, it is difficult to effect a transfer into another region

within a finite runtime. The EM algorithm might exhibit the same

defects.

As an illustration, we show a result of the simple Gibbs motif

sampling. The dataset consists of 103-bp-long synthetic promoter se-

quences of 300 human genes. The Gibbs sampling was repeated 20

times under different initial conditions. As shown in Figure 1, all the

chains were trapped at similar AT-rich motifs for a long duration.

Exceedingly high probabilities might be concentrated on the AT-rich

segments and all the chains were absorbed to those domains of the

posterior distribution. This is a typical scenario. Figure 1 also shows

the result of RPMCMC, which was run with 20 interacting parallel

Gibbs samplers as described below. By performing just an all-

at-once parallel run, RPMCMC could capture much more diverse

motifs than the independent Gibbs sampling could.

2.3 RPMCMC algorithm
The RPMCMC algorithm is derived by creating an augmented

system pAðx1; . . . ;xMjbÞ, which consists of M exact copies piðxÞ ¼
pðxjSÞ (i ¼ 1; . . . ;M) of the posterior distribution and the repulsive

force function wðx1; . . . ; xMÞ:

pAðx1; . . . ; xMjbÞ /
YM
i¼1

pðxiÞwðx1; . . . ; xMÞb; b�0: (2)

Each xi is called a replica. The repulsive force function w imposes a

stronger penalty on closer replicas. The parameter b controls the

force severity, i.e. a greater b produces a stronger repulsion and

vice versa. Drawing samples of x1; . . . ; xM simultaneously from

Equation (2), the M sample paths tend to move toward different

regions. Furthermore, a replica trapped in a locally high probabil-

ity state can be pushed to other regions by the repulsive force

derived from approaching replicas (Fig. 2). It is important to see

that the use of a non-zero force severity brings bias to the samples

from pA with respect to the posterior distribution. With b¼0,

which removes the repulsion from pA, an unbiased sample set can

be obtained.

The repulsive force function is defined as a function of PPMs,

wðx1; . . . ; xMÞ � wðH1; . . . ;HMÞ. Let DðHi;HjÞ be an increasing

function of the dissimilarity between Hi and Hj. With this, the repul-

sion is modeled by

wðx1; . . . ; xMÞ ¼
YM
i¼1

expðmin
j:j<i

DðHi;HjÞÞ: (3)

Replica i interacts with its nearest neighbor j	, such that

j	 ¼ arg minj:j<i DðHi;HjÞ. The dissimilarity D is measured by

DðHi;HjÞ ¼
1

K	
ð min
ðk;hÞ2A

jjHi;k:kþK	 �Hj;h:hþK	 jjF

þ c� jKi � Kjj Þ;
(4)

where A ¼ fðk; hÞjk ¼ 1; . . . ;maxð1;Kj� Ki þ 1Þ; h ¼ 1; . . . ;

maxð1;Ki � Kj þ 1Þg and K	 ¼ minfKi;Kjg. In general, Ki and Kj,

the column sizes of Hi and Hj, are different. The distance of the

PPMs is assessed after associating a smaller-sized PPM with the

same-sized submatrix of the other, Hi;k:kþK	 and Hj;h:hþK	 and by

choosing the smallest Frobenius norm in all possible alignments

ðk;hÞ 2 A. The second term is a gap penalty for the difference of

motif lengths where c>0.

Fig. 1. A drawback of the independent Gibbs motif sampler, which is high-

lighted on 300 promoter sequences. The top and bottom panels display the

processes of produced PPMs (sequence-logos) for RPMCMC with 20 replicas

and independent Gibbs sampling under 20 different initial conditions. Five of

the 20 sampling paths are shown for each method Fig. 2. A schematic view of the RPMCMC algorithm
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To obtain an estimate from the augmented posterior, Gibbs

sampling is combined with several techniques such as the reversible-

jump MCMC method (Green, 1995) and the slice sampler (Neal,

2003). The full details of the RPMCMC procedure are described

in Supplementary Method S1. The proposed method generates

Markov chains of the M replicas in parallel. Then, different chains

move toward different regions of the state space due to the

repulsion. We can discover a much wider variety of motifs with an

all-at-once interacting parallel simulation than with the independent

method. Conventional Gibbs sampling with M different initial seeds

(as shown in the previous subsection) can be derived by setting the

zero force severity, b¼0, to RPMCMC.

Suppose that we are given a sample set of size N�M from

Equation (2) with nonzero b, denoted by fxðjÞi ji ¼ 1; . . . ;

M; j ¼ 1; . . . ;Ng where each x
ðjÞ
i denotes the jth sample of the ith

replica. Obviously, the repulsive force leads to biased samples with

respect to the target pAðx1; . . . ; xMj0Þ in Equation (2) at the zero

force severity. To correct this bias, the importance sampling is used,

which assigns a weight to each sample as

w
ðjÞ
i ¼

pAðxðjÞ1 ; . . . ;x
ðjÞ
M j0Þ

pAðxðjÞ1 ; . . . ;x
ðjÞ
M jbÞ

/ 1

wðxðjÞ1 ; . . . ;x
ðjÞ
M Þ

: (5)

The ratio between the target (zero force) and the biased distribution

(b > 0) becomes the inverse of the repulsive force function. Note

that the M replicas x
ðjÞ
i (i ¼ 1; . . . ;M) in the jth ensemble share the

same weight.

As shown in Supplementary Method S1, our current implemen-

tation does not parallelize the process of updating the M Markov

chains. We use multi-core processors only for counting the nucleo-

tide frequencies when renewing the motif start sites.

2.4 Post-processing: clustering and ranking
RPMCMC produces many redundant outputs with slight variations.

We reduce the redundancy by grouping the outputs into g clusters,

C1; . . . ;Cg, based on the dissimilarity of the sampled PPMs. The

procedure is as follows (see Fig. 3 for a schematic illustration):

i. Samples of size p ¼M�N are arranged as g ¼ fxð1Þ; . . . ;xðpÞg
by sorting realized values of the likelihood [Equation (1)] in

decreasing order.

ii. Set k > 0, a threshold for the within-cluster variability.

iii. Set k¼1 and repeat (a)-(d) until no samples are left:

(a) Initiate the kth cluster Ck ¼ fxð1Þg by a singleton of the

sample that is ranked first in g. Let lk ¼ xð1Þ be the cluster

representative.

(b) Collect all samples satisfying the condition DðHð1Þ;HðiÞÞ � k
where HðiÞ denotes the PPM of xðiÞ. These samples are

integrated into cluster Ck; Ck ¼ fxðiÞjDðHð1Þ;HðiÞÞ � k;
i ¼ 1; . . . ; pg.

(c) Discard the collected samples in Ck from the ordered se-

quence; g g n Ck. Let p be the length of g and rearrange g
according to the likelihood values.

(d) If g is empty, terminate the computation. Otherwise, let

k kþ 1 and go back to step (a).

The method operates with a single input parameter k that con-

trols the number g of clusters. Samples within D� k are assigned to

the cluster representative lk, which is the one to achieve the highest

likelihood within the kth cluster members.

Denote the p ¼M�N samples and their importance weights by

fxðiÞ;wðiÞgp

i¼1. With the g reduced samples fl1; . . . ;lgg, we define

an approximated posterior distribution by

p̂ðxjSÞ /
Xg

k¼1

Iðx ¼ lkÞw	k; w	k /
X
i2Ck

wðiÞ:

This is a mixture of the g probability mass functions Iðx ¼ lkÞ at lk.

Mixing rate w	k is the sum of the importance weights associated with

the corresponding cluster Ck. PPMs and the motif start sites

in fl1; . . . ; lgg are of primary interest for motif discovery. We gen-

erate a ranked list of the reduced discovered motifs, which are

ordered according to the weights w	k.

2.5 Performance evaluation
We report the performance of several motif discovery algorithms on

two types of data: (i) promoter sequences into which strings gener-

ated from PPMs in the JASPAR CORE database are planted

and (ii) 228 TF ChIP-seq datasets of the ENCODE project. We

evaluate the performance for each type of data as follows:

(i) Given the nucleotide positions of known and predicted motifs,

recall [sensitivity (SN)] and precision [positive predicted value

(PPV)] are evaluated at a nucleotide level. These criteria have

commonly been used, for instance in Tompa et al. (2005) (we

use the abbreviations SN and PPV according to convention). For

given J known motifs, we define slightly modified SN and PPV

for the evaluation of multiple output motifs.

Let pj be the output that achieves the most overlapping

predicted sites with the jth known motif among the g outputs

(if there are two or more outputs having the same number of

overlapped nucleotides, the one with the higher rank given by a

motif finder is chosen). Then, the recall and the precision are

computed as

SN ¼ 1

J

XJ

j¼1

SNj and PPV ¼ 1

J

XJ

j¼1

PPVj;

SNj ¼
# of nucleotides in motif j overlapped by output pj

# of nucleotides in motif j
;

PPVj ¼
# of nucleotides in motif j overlapped by output pj

# of nucleotides in output pj
:

A low SN statistic indicates the lack of ability to discover

planted multiple motifs and a low PPV statistic can be a signalFig. 3. A schematic illustration of the post-processing process
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for less identification accuracy, for instance the occurrence of

over- or under-estimates of the planted motif regions.

(ii) From contiguous segments around the transcription factor binding

sites (TFBSs) of the primary TF in each dataset, we obtain a list of

cofactor interacting motifs and their annotations that are impli-

cated in the regulatory module of the primary TF. To identify the

cooperative cofactors of the primary TF, each predicted motif

(PPM) is matched to JASPAR CORE motifs by using the

TOMTOM program (Gupta et al., 2007). For a given predicted

PPM, TOMTOM outputs the matching scores to all annotated

TFBSs (the name of TFs) in JASPAR with the statistical signifi-

cances (E-values). For each algorithm, a diversity of the discovered

motifs is evaluated with the number of known motifs in JASPAR

CORE that are matched significantly to the produced PPMs with

the acceptable level of significance at E-value less than 0.05.

In addition, we use the log-likelihood ratio (LLR) to evaluate

K-mer binding sites of a predicted motif:

LLRðU;KÞ ¼
XK

k¼1

X
r2fa;c;g;tg

n0fk;r log
fk;r

br

� �
;

where fr;k (r 2 fa; c; g; tg; k 2 f1; . . . ;Kg) is the relative fre-

quency of nucleotides at each position in a predicted site,

b ¼ ðba;bc;bg; btÞT is the relative frequency of nucleotides of the

background. The output consists of n0 motif subsequences.

A higher LLR indicates a better likeliness of the K-mer instances

to be a motif in terms of a combined characterization on the

degree of overrepresentation relative to the background and

the total information content.

3 Results and discussion

3.1 Synthetic promoter sequence
The performance of RPMCMC was tested on synthetic datasets

against two ChIP-tailored algorithms, DREME and Hegma, and a

classical algorithm, Weeder. The datasets were derived from non-

redundant sets of randomly selected n 2 f300; 600;1200;2500;

5000g promoter sequences obtained from UCSC.hg19 with two

different kinds; one composed of fixed-length sequences of 1000 bp

and the other of variable-length sequences varied between 200

and 2000 bp. Oligomers generated by randomly chosen 10 JASPAR

CORE PPM collections were planted into randomly selected

start sites, so that each sequence has eight motifs on average. For

each data size n, we prepared 20 different sequence sets. With

this ground truth, we measured the change in recall and precision.

All parameters of RPMCMC and the specified Weeder options

are listed in Table 1. For DREME and Hegma, we employed the

default parameters. The parameters of RPMCMC were empirically

chosen.

Figure 4(a) summarizes the SN and PPV values as a function of n

for RPMCMC, Hegma and Weeder. DREME was removed from

this figure because there was no way of calculating SN and PPV due

to the lack of outputs on motif sites in the distributed program. The

numbers of outputs from RPMCMC, Hegma and Weeder were

85.7, 214.76 and 13.3 on average, respectively. It can be seen that

RPMCMC outperformed the other methods. For the fixed-length

datasets, RPMCMC delivered SN values around 1.7 times higher

than those of the other two methods. The PPVs of RPMCMC

were around 1.5 times higher than those of Hegma. As shown in

Figure 4(b), the results on the variable-length datasets were similar

to those on the fixed-length datasets except that the performance

of Hegma was significantly degraded.

We analyzed the cause of the observed low SN and PPV statistics

for Hegma and Weeder, as illustrated with the results on the fixed-

length datasets. It was found that Hegma has a strong tendency to

divide planted regions of a motif into a few different predicted

motifs. Such incorrectly fragmented outputs acted to increase PPV

slightly but resulted in the observed low SN. A distinctive character-

istic of Weeder is the fairly low PPV, whereas several comparative

studies reported Weeder to be one of the best performing algorithms

among early motif finders (Tompa et al., 2005). A region predicted

by Weeder tends to include not only a planted motif region but also

many background regions. RPMCMC could achieve much higher

SN and PPV than the others could.

Table 1. Default parameters of RPMCMC and Weeder

options that were used in all experiments

RPMCMC

Parameter Value

Prior on zi c ¼ 0:755

Max/min motif width Kmin ¼ 8;Kmax ¼ 15

Dirichlet priors ar ¼ 1; bk;r ¼ 1

No. of replicas M¼ 50

No. of MCMC iterations N¼ 520

Burn-in period (fixed) N�20

Repulsive force severity b ¼ 10�
P

izi

Motif clustering k ¼ 0:3

Gap penalty c¼ 0.3

Weeder

Option Value

Species code HS

Analysis type Medium

Hegma and DREME were executed using the default

settings.

Fig. 4. Performance comparison among RPMCMC, Hegma and Weeder on

synthetic datasets: (a) fixed-length sequence sets and (b) variable-length

sequence sets. Motifs were generated according to the JASPAR CORE PPM

collection and were inserted randomly into a set of promoter sequences.

SN (left) and PPV (right) values of each method are plotted against the vary-

ing sequence sizes, n 2 f300; 600; 1200; 2500; 5000g
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Figure 5(a) gives the computation time for each method.

RPMCMC was implemented in Cþþ. We used the C programs

for DREME, Hegma and Weeder, which are available on the au-

thors’ websites. All the tests were conducted on Intel
VR

Xeon

Phi
TM

coprocessors with 61-core CPUs and 48 GB of main memory.

In terms of computation efficiency, Hegma outperformed the others

and RPMCMC was comparable to DREME. In particular, the com-

putation times of RPMCMC and DREME were about a 10000th

those of Hegma. RPMCMC would sustain an acceptable level of

computation time, and furthermore, it might be possible to render

the algorithm more efficient. The bottleneck in RPMCMC is in the

process of calculating the posterior probabilities of the motif start

sites ui (see details in Supplementary Method S1): with a given PPM,

K�
P

i 2ðLi � Kþ 1Þ times calculations were necessary to perform

in every iteration over all possible K-mer consecutive subsequences

in S. This process can fully be parallelized into independent process-

ing elements. Alternatively, we could use a branch-and-bound

technique as in STEME that effectively prunes subsequences with

negligibly low probabilities.

We remark on the difficulty in detecting the burn-in time for

RPMCMC. An initial portion of the Markov chain samples should

be discarded because the chain approaches its stationary distribution

(Cowles and Carlin, 1996) following a sufficient burn-in period.

Figure 6 shows the process of evolving the likelihood during a

RPMCMC run. The series of the likelihood values remained insta-

ble, which indicates a fairly slow mixing of the Markov chain

because the target distribution was inherently multimodal and

the parallel interacting chains switched their target local modes

successively. In general, it is difficult to deal with a diagnostic of

burn-in periods that looks for multimodality of the posterior distri-

bution. At the current moment, we do not have a specific idea other

than an obvious approach of giving as long as possible for a trial

move.

3.2 ENCODE ChIP-seq datasets
Using RPMCMC with the default parameters given in Table 1, we

predicted the cofactor motifs of the primary TF for each of the 228

datasets of ChIP-seq experiments in the ENCODE project (The

ENCODE Project Consortium, 2012). FASTA files were produced

by clipping the sequences of UCSC.hg19 at the locations recorded

in SYDH TFBS narrowPeak files (available from NCBI’s Gene

Expression Omnibus using the accession number GSE31477). We

removed datasets that had only a few sequences after removing frag-

ments with lengths less than 200 or more than 500 from the ob-

tained FASTA files. Also, we removed datasets which have more

than one percent of sequences including blacklist regions reported

on https://sites.google.com/site/anshulkundaje/projects/blacklists.

In this way, we obtained the 228 datasets from the total of 359 data-

sets. The numbers of the input sequences ranged from 205 to 49

211. RPMCMC produced 51–149 output motifs for each dataset.

A discovered motif, for instance fUk;Hkg in lk, was regarded as

being significantly enriched if it appeared in 5% or more of the input

sequences, i.e.
Pn

i¼1 zi=n�0:05. At the acceptable level of signifi-

cance on the TOMTOM’s E-values �0:05, approximately 15 sig-

nificantly enriched outputs on average could have correspondence

to one of the experimentally validated TFBSs in JASPAR CORE.

In Supplementary Data S1, we provide the lists of de novo cofactor

motifs for all TF-ChIP datasets with the results of JASPAR

annotations.

In the experiments, Hegma produced a far greater number of

outputs (1081 outputs on average over all datasets) than RPMCMC

(110 outputs) and DREME (49 outputs). The outputs of Hegma

possibly included many redundant motifs. Removing motifs withPn
i¼1 zi=n < 0:05 from the total outputs, the average numbers of

outputs of Hegma, RPMCMC and DREME dropped to 24, 110 and

33, respectively.

The computation times of each algorithm for 10 selected datasets

including the smallest and the largest dataset are shown in

Figure 5(b). Compared with the experiment with the synthetic data-

sets, the computation times of RPMCMC were a little inferior to

those of DREME for the ChIP-seq datasets. RPMCMC would still

sustain an acceptable level of computation time. As discussed in the

previous subsection, the current implementation of the RPMCMC

algorithm is yet to be optimized for speed.

As shown in Figure 7(a), the numbers of known motifs signifi-

cantly matched to the outputs of RPMCMC (E-values �0.05) were

larger than those of Hegma and DREME for 74% of the 228 data-

sets. Although RPMCMC produced the largest numbers of outputs

among the three methods, the LLR values of the discovered motifs

of RPMCMC were much higher than those of the others as in

Figure 7(b). This indicates that RPMCMC has a great potential to

mine many reliable diverse motifs that are undetected by the existing

methods.

Table 2 shows 15 cofactors that were predicted by RPMCMC

on a ChIP dataset (wgEncodeSydhTfbsHepg2Nrf1IggrabPk) in

which the binding sites of NRF1 were studied in HepG2. The bind-

ing sites of RPN4 and USF1 were detected only by RPMCMC.

It was reported that both RPN4 and NRF1 are involved in the same

proteasome activity (Radhakrishnan et al., 2010; Xu et al., 2011),

Fig. 5. Computational efficiency of RPMCMC, Hegma, DREME and Weeder.

(a) The synthetic promoter sequence and (b) the ChIP-seq datasets, shown as

a function of the number of nucleotides. The vertical axis indicates CPU

times. The right figure is an enlarged display of the left figure to make clear

the computation time of Hegma

Fig. 6. Series of the likelihood values in RPMCMC for a synthetic dataset

with 300 sequences. Default burn-in is set at 20 steps (vertical line in upper plot)
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and the interaction of USF1 and Nrf1 is involved in the transcrip-

tional regulation of FMP1 gene (Prasad and Singh, 2008).

Figure 8 summarizes the detection ability to discover diverse

motifs based on a Venn diagram of all matching motifs produced

from the analyses of the 228 datasets. The outputs of RPMCMC

contained almost all of the outputs of DREME and Hegma, and,

notably, 219 annotated cofactors were uniquely discovered by

RPMCMC.

4 Concluding remarks

In the motif discovery problem, the direct use of a Gibbs sampling

method revealed an inability to find latent diverse motifs even in a

fairly small number of input sequences. In the application for only

300 input sequences, all simulations with different initializations be-

came trapped in the AT-rich motifs, which are of little significance

in practice. This highlighted a critical drawback of the Gibbs sam-

pling methods. The same is true for the EM algorithm. Because bio-

logical sequences generally contain rather diverse conserved

patterns, which are sometimes biologically meaningless, the poster-

ior distribution exhibits a very complex landscape as it includes

many locally high probability regions. Our view is that solving this

problem is the essence of improving the accuracy of motif discovery.

Motivated by this, we presented a new motif discovery method

called RPMCMC, which is a parallel variant of the widely used

Gibbs motif samplers. The rather simple idea is to run the Gibbs

motif samplers in parallel by making use of the repulsive force

on different samplers. With all-at-once sampling, we could discover

diverse motifs by which the parallel samplers divide their responsi-

bility in the overall search region.

As another contribution, we provided a list of predicted cofactor

motifs that were overrepresented in the 228 ENCODE ChIP-seq

datasets. RPMCMC can potentially mine promising annotated

motifs which other word-count methods fail to find. To narrow

down things to truly functional cofactor sets, it is necessary to con-

duct further validation experiments.
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