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Influenza is a highly contagious viral respiratory disease that affects millions of

people worldwide each year. Annual vaccination is recommended by the World

Health Organization to reduce influenza severity and limit transmission through

elicitation of antibodies targeting mainly the hemagglutinin glycoprotein of the influenza

virus. Antibodies elicited by current seasonal influenza vaccines are predominantly

strain-specific. However, continuous antigenic drift by circulating influenza viruses

facilitates escape from pre-existing antibodies requiring frequent reformulation of

the seasonal influenza vaccine. Traditionally, immunological responses to influenza

vaccination have been largely focused on IgG antibodies, with almost complete disregard

of other isotypes. In this report, young adults (18–34 years old) and elderly (65–85 years

old) subjects were administered the split inactivated influenza vaccine for 3 consecutive

seasons and their serological IgA and IgG responses were profiled. Moreover, correlation

analysis showed a positive relationship between vaccine-induced IgA antibody titers

and traditional immunological endpoints, exposing vaccine-induced IgA antibodies as

an important novel immune correlate during influenza vaccination.
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INTRODUCTION

Since the great influenza pandemic of 1918 (Spanish flu), we have struggled to prevent influenza
virus infection and transmission. From 2009 to 2019, over 100million people were infected with the
H1N1 swine pandemic virus leading to ∼1 million hospitalization and 75,000 deaths (1). During
typical influenza seasons, both H1N1 and H3N2 influenza A viruses (IAV) and influenza B viruses
(IBV) cause disease morbidity and mortality in the human population (2). Seasonal IAV and IBV
co-circulate worldwide in the human population with unpredictable patterns. Consequently, the
first influenza monovalent vaccines developed in the 1930s were quickly updated in the 1940s
to include an influenza B strain and later to a trivalent formulation with a second IAV strain
(3). In this century, the trivalent inactivated vaccine (TIV) was again updated to a quadrivalent
(QIV) formulation with inclusion of a second IBV strain to cover the independently evolving IBV
lineages (4–6).

Influenza virus infection generates strong and long-lasting immunity, but continuous antigenic
evolution of the hemagglutinin (HA) and neuraminidase (NA) surface proteins allows for evasion
of pre-existing immunity by drifted strains. Similarly, influenza virus vaccination can transiently
induce strain-specific antibodies, but fails to protect against antigenically drifted strains, requiring
yearly strain updates to the vaccine (7, 8). Nonetheless, yearly vaccination is still the most effective
strategy to prevent and control influenza infection (9).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00902
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00902&domain=pdf&date_stamp=2020-05-19
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tedross@uga.edu
https://doi.org/10.3389/fimmu.2020.00902
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00902/full
http://loop.frontiersin.org/people/767747/overview
http://loop.frontiersin.org/people/911439/overview
http://loop.frontiersin.org/people/83351/overview
http://loop.frontiersin.org/people/761725/overview


Abreu et al. IgA Response to Influenza Vaccine

Recent epidemiological models suggest that virtually everyone
in the developed world experiences their first influenza infection
by the age of five (10). Moreover, early-life exposure to influenza
greatly shapes the immune response to subsequent infections
and vaccination through a phenomenon known as immune
imprinting or original antigenic sin (11).

Despite our reductive view of vaccine-elicited protection,
oversimplified to a couple of clinical and serological endpoints,
the immune response to influenza vaccination is a complex
network of cellular signals and responses strongly dependent
on the subject’s past immunological experience (12). First
exposure to influenza virus elicits a strong humoral response
mainly targeting the viral surface proteins HA and NA
(13), ideally driven by balanced pro- and anti-inflammatory
signals that lead to viral clearance with minimal tissue
damage (14, 15).

Sterilizing immunity in absence of inflammation is promoted
by serum neutralizing antibodies against theHA receptor binding
site (RBS) (12). Antibodies that bind to this location can
prevent viral adhesion and internalization to target cells. To
date, serological inhibition of erythrocyte hemagglutination by
influenza virus remains the gold standard assay to measure
HA-receptor blocking antibodies and evaluate vaccine elicited
protection (16). Similarly, serological levels of HA-reactive IgG
antibodies are correlated with reduced viral shedding and
ameliorated disease (17–19).

Mechanistically, mucosal immunity driven by IgA antibodies
and tissue resident memory B- and T-cells is the major
contributor for influenza virus protection (12). Furthermore,
unadjuvanted inactivated vaccines fail to generate strong
T cell-dependent responses (20) and therefore rely on the
recall of pre-existing immunity, which is extremely diverse
in the human population (21, 22). Nonetheless, the impact
of vaccination on the human IgA response and mucosal
immunity to influenza viruses is technically challenging,
evasive and as so generally overlooked. Recently, Iversen
et al. reported that the gut mucosal and serological IgA
repertoires of celiac patients share strong clonal overlap despite
originating from different plasma cell compartments (23).
Moreover, a recent transcriptomic analysis of serological IgA
plasmablasts following influenza vaccination seems to indicate
a common shared IgA-repertoire between serum and the
lung mucosa (24). Contrastingly, mucosal and serological IgG
repertoires share lower clonal relatedness than those of IgA
subtype (23).

Current influenza virus vaccines provide limited protection,
even in well-matched years (25), with particularly low
effectiveness in high-risk populations, e.g., young children and
elderly (18, 26). Current immunological correlates poorly portray
the complex immune response in these populations following
influenza virus vaccination. Here, we longitudinally tracked
serological changes in vaccine-specific IgA and IgG antibody
levels in young adult and elderly subjects following influenza
virus vaccination in three consecutive years. Additionally,
since the H3N2 IAV vaccine component was updated each
season during the course of the study, we further compared
vaccine-induced IgA and IgG serological responses against the

H1N1 IAV component that was not updated vs. an updated
drifting H3N2 IAV antigen. Overall, the relationship between
vaccine-specific IgA antibody titers and other immune correlates
of protection was evaluated.

MATERIALS AND METHODS

Study Approval
The study procedures, informed consent, and data collection
documents were reviewed and approved by the Western Review
Board and the Institutional Review Boards of the University of
Pittsburgh. The funding source had no role in sample collection
nor decision to submit the paper for publication.

Subjects
Eligible volunteers between the ages of 18–35 and 65–85 years
old (y.o.), who had not yet received the seasonal influenza
vaccine, were enrolled beginning in September of each year,
from 2014 to 2016. All vaccine formulations are based on
World Health Organization recommendations for the Northern
Hemisphere influenza seasons beginning in the Fall (Figure 1),
and as such, all vaccinations and sample collections occurred
each year between September 1st and December 15th. Influenza
virus did not circulate widely in the community during the
time periods that the volunteers participated, and as such,
participants were not monitored for influenza virus infection
during that time-period; they were, however, asked during each
visit if they had flu symptoms, and those who did were excluded
from the study. Volunteers were recruited at medical facilities
in two sites: Pittsburgh, Pennsylvania and Stuart, Florida.
All were enrolled with written, informed consent. Exclusion
criteria included documented contraindications to Guillain-
Barré syndrome, dementia or Alzheimer’s disease, allergies to
eggs or egg products, estimated life expectancy<2 years, medical
treatment causing or diagnosis of an immunocompromising
condition, or concurrent participation in another influenza
vaccine research study. These two cohorts spanned for 4 years
from 2013 to 2016 (21, 22). However, for this study only the 59
(24 young and 35 elderly) repeatedly vaccinated subjects from
2014 to 2016 were selected to characterize the serological IgA
response to the vaccine. Serological hemagglutination inhibition
(HAI) responses from recurrent vaccinated subjects were similar
to matching age groups of the original cohorts (data not shown).
Blood (70–90mL) was collected from each subject at the time
of vaccination (D0) and 21–28 days (D21) post-vaccination.
Blood samples were processed for sera and peripheral blood
mononuclear cells (PBMC). For PBMC isolation, blood was
collected in CPT tubes (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) at D0 and D21. These samples
were processed immediately, within 1–24 h of collection, and
stored at −150◦C for future analysis. Sera was collected in
SST tubes (Becton, Dickinson and Company) and processed
within 24–48 h, storing at 4◦C until separated and aliquoted
for long-term storage at −30◦C. These serum samples were
tested for the ability to mediate HAI and HA-specific IgA
antibodies against the matching and past vaccine strains.
Throughout the study, the H1N1 strain (A/California/7/2009)
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in the vaccine remained constant for three seasons, whereas the
H3N2 (A/Texas/50/2012 in 2014, A/Switzerland/9715293/2013
in 2015, and A/Hong Kong/4801/2014 in 2016) vaccine strains
were updated and changed each season.

Viruses and HA Antigens
Influenza viruses were obtained through the Influenza Reagents
Resource (IRR), BEI Resources, the Centers for Disease Control
and Prevention (CDC), or were provided by Sanofi Pasteur
(Cambridge, MA, USA) and Virapur, LLC (San Diego, CA,
USA). Viruses were passaged once in the same growth conditions
as they were received, in 10-day old embryonated, specific
pathogen-free (SPF) chicken eggs per the protocol provided
by the WHO. Due to low influenza B virus sensitivity in the
HAI test, viruses underwent ether-treatment as recommended
by the Influenza Division of the CDC in order to increase assay
sensitivity and more reliable detection of HAI rises following
influenza B vaccination (27). Ether-extracted split viruses were
created from freshly harvested allantoic fluid and from previously
frozen virus lots, prior to HA and HAI assays, as previously
described (22). Briefly, viruses were mixed at a 1:1 ratio with
anhydrous diethyl ether (ACROS Organics/Fisher Scientific,
Pittsburgh, PA, USA) for ≧4 h, with stirring. Following phase
separation, ether was evaporated under a fume hood. Titrations
before and after ether treatment were performed with turkey
erythrocytes and virus was standardized to 8 HAU/50 µL for use
in HAI assays. The virus used in this study matched the four
vaccine strains included in the 2016 commercially licensed split-
virion (IIV) FluzoneTM (Sanofi Pasteur, Swiftwater, PA, USA)
influenza vaccine.

Recombinant HA Proteins
Full-length HA proteins were developed for each
of the FluzoneTM influenza A vaccine components:
A/California/7/2009 (H1N1), A/Texas/50/2012 (H3N2),
A/Switzerland/9715293/ 2013 (H3N2), A/Hong Kong/4801/2014
(H3N2) as well as past H1N1 and H3N2 vaccine strains
(Table S1). A chimeric HA protein was generated by cloning
the head portion of A/mallard/Sweden/81/2002 (A/H6N2) on
top of A/California/07/2009 (A/H1N1pan) stem region (cH6/1)
(28, 29). Correct stem conformation was validated by enzyme-
linked immunosorbent assay (ELISA) using FI6, CR6261
(Creative Biolabs, Shirley, NY, USA) and C179 (Takara Bio,
Mountain View, CA, USA) stem-directed monoclonal antibodies
(29, 30). Recombinant HA (rHA) proteins representing the
wild type and chimeric amino acid sequence were expressed
in EXPI293 cells and purified via a C-terminal histidine tag
on HisTrap excel nickel-affinity chromatography columns
(GE Healthcare Life Sciences, Marlborough, MA, USA) as
previously described (29, 30). Purified rHA proteins were
dialyzed against PBS, total protein concentration adjusted
to ∼1 mg/mL after bicinchonic acid (BCA) assay (Thermo
Fisher Scientific, Waltham, MA, USA) estimation and
purity checked by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE).

HA-Specific IgA Enzyme Linked
Immunosorbent Assay (ELISA)
Immulon R© 4HBX plates (Thermo Fisher Scientific, Waltham,
MA, USA) were coated with 50 ng/well of rHA in carbonate
buffer (pH 9.4) with 250 ng/mL bovine serum albumin (BSA) for
∼16 h at 4◦C in humidified chambers. Plates were blocked with
blocking buffer (2% BSA, 1% gelatin in PBS/0.05%Tween20) at
37◦C for 2 h. D0 and D21 serum samples were initially diluted
1:50 and then further 2-fold serially diluted in blocking buffer to
generate 7-point binding curves. Serially diluted serum samples
were added to the assay plate in duplicate and incubated ∼16 h
overnight at 4◦C in humidified chambers. Plates were washed 4
times with phosphate buffered saline (PBS) and HA-specific IgA
detected using horseradish peroxidase (HRP)-conjugated goat
anti-human IgG (Southern Biotech, Birmingham, AL, USA) at
a 1:4,000 dilution and incubated for 2 h at 37◦C. Plates were
then washed 5 times with PBS prior to development with 100
µL of 0.1% 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS) solution with 0.05% H2O2 for 20min at 37◦C.
The reaction was terminated with 1% (w/v) SDS. Colorimetric
absorbance at 414 nm was measured using a PowerWaveXS
(Biotek, Winooski, VT, USA) plate reader. HA-specific IgA
equivalent concentration was calculated based on an 8-point
standard curve (2–250 ng/mL) generated using a human IgA
reference protein (Athens Research and Technology, Athens, GA,
USA). Cumulative HA binding was calculated by adding the
IgA-equivalent of both IAV vaccine components (H1+H3).

Hemagglutination-Inhibition (HAI) Assay
The hemagglutination inhibition assay was used to assess
functional antibodies to the H1N1 HA able to inhibit
agglutination of turkey erythrocytes as previously described (21,
22). The protocols were adapted from the WHO laboratory
influenza surveillance manual (16). To inactivate non-specific
inhibitors, sera were treated with receptor-destroying enzyme
(RDE) (Denka Seiken, Co., Japan) prior to being tested. Briefly,
three parts of RDE were added to one part of serum and
incubated overnight at 37◦C. RDE was inactivated by incubation
at 56◦C for 30–45min and then cooled to RT before diluting
with 1X PBS or 0.85% NaCl to a final serum dilution of
1:10. RDE-treated sera was serially diluted in PBS 2-fold
across v-bottom microtiter plates (Greiner bio-one, Monroe,
NC, USA). An equal volume of each influenza virus (25
µL), adjusted to a concentration of ∼8 HAU/50 µL, was
added to each well. The plates were covered and incubated
at RT for 20min, and then erythrocytes (Lampire Biologicals,
Pipersville, PA, USA) in PBS were added. Red blood cells
were stored at 4◦C and used within 72 h of preparation. The
plates were mixed by agitation and covered, and the RBCs
settled for 30min at RT. The HAI titer was determined by
the reciprocal dilution of the last well that contained non-
agglutinated RBCs. Positive and negative serum controls were
included in each plate. Seroprotection was defined as HAI titer
>1:40 and seroconversion as a 4-fold increase in titer compared
to baseline resulting in a titer of >1:40, as per the WHO
and European Committee for Medicinal Products to evaluate
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FIGURE 1 | General experimental approach. Healthy subjects (18–35 y.o. and 65–85 y.o.) were vaccinated with standard of care inactivated influenza vaccine for

three consecutive years (2014–2016), and serum samples were collected prior (Day 0) and post vaccination (Day 21–28). Serum samples were tested for receptor

blocking activity by HAI, or for HA-specific IgA and IgG antibody levels by ELISA. Ten responders with the highest IgA responses were selected for IgA and IgG

purification by affinity chromatography and purified fractions used to determine IgA and IgG specific HAI activity.

influenza vaccines (16). Subjects were considered seronegative
with a titer <1:40.

Purification of IgA and IgG Antibodies
Ten subjects (five donors 18–35 y.o. and five donors 65–85 y.o.)
with the highest HA-specific IgA titers post-vaccination were
selected for isotype-specific antibody fractionation (Figure 1).
IgA1 and IgG antibodies were purified using jacalin agarose
(Thermo Fisher Scientific, Waltham, MA, USA) and lectin
beads (Thermo Fisher Scientific, Waltham, MA, USA) affinity
chromatography, respectively. In brief, D0 andD21 collected sera
(200 µL) were diluted 1:1 with PBS supplemented with 0.02%
sodium azide (PBSA) and added to a jacalin bead gravity column.
The column was then washed with PBSA until the solution had
an optical density (O.D.) value of zero at 280 nm wavelength.
The beads were then eluted in 2mL fractions with α-d-galactose
(0.1M) (Sigma-Aldrich, St. Louis, MO, USA) until the same
optical density was reached. The column was regenerated with
PBSA (20mL). The remaining flow through, as well as the wash
collection was placed in a Protein G column (Thermo Fisher

Scientific, Waltham, MA, USA) (5mL) and washed with PBSA
(75mL). After baseline, the sample was eluted with 12mL of
0.1M glycine (pH 2.5) and the eluate was collected in 2mL
fractions. Samples were neutralized with 1.5M Tris (200 µL at
pH 8.5) and all fractions were dialyzed three times with PBSA
and concentrated using 30k Spin-X UF tubes (Nunc, Corning,
Thermo Fisher Scientific, Waltham, MA, USA) to ∼=250 µL.
Concentrator filter was then washed with 75 µL of PBSA and
added to the final collection tube. Protein content was estimated
by BCA assay and adjusted to 0.5–1mg/mL concentration. Purity
and yield were determined by ELISA; IgA and IgG fractions were
90–97% pure with a 97–99% yield (Figure S1). Purification of Ig
isotypes had no impact on the ratio of HA-specific IgA or IgG
antibodies (data not shown).

Total IgA and IgG ELISA
Costar ELISA plates (Thermo Fisher Scientific, Waltham,
MA, USA) were coated with 2µg/mL goat anti-human Ig
UNLB (Southern Biotech, Birmingham, Alabama) and incubated
overnight at 4◦C in a humidifying container. Plates were blocked
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with blocking buffer at 37◦C for 2 h. D0 and D21 serum
samples were initially diluted 1:50 for IgA and 1:500 for IgG,
while —the corresponding IgA and IgG purified fractions were
initially diluted to 1:1,500 and 1:50,000, respectively. All samples
were then further 2-fold serially diluted in blocking buffer to
generate 7-point binding curves and incubated overnight at 4◦C.
Plates were washed 4 times and detection and development
performed as described above. Total IgA and IgG concentration
was calculated based on an 8-point standard curve (2–250 ng/ml)
generated using a human IgA or human IgG reference protein
(Athens Research and Technology, Athens, GA, USA). Yield was

calculated as
IgA recovered
IgA input X 100 and purity was calculated as

IgA in IgA fraction
(IgA + IgG) in IgA fraction

X 100.

Flow Cytometry
Human PBMC (∼5 × 106 live cells) were stained on ice for
30min with 100 µL of staining buffer [PBS/2% fetal bovine
serum (FBS)]. Human PBMC were first treated with Fc receptor
blocking solution (Biolegend, Dedham, MA, USA) then stained
for 30min on ice using titrated quantities of fluorescently
conjugated monoclonal antibodies (Table S1). After completion
of surface labeling, human PBMC were washed extensively with
staining buffer prior to fixation with 1.6% paraformaldehyde in
staining buffer for 15min at RT. Following fixation, cells were
pelleted by centrifugation at 400 x g for 5min, resuspended
in staining buffer and maintained at 4◦C protected from light
until acquisition. Data acquisition was performed using the
BD FACSARIA Fusion and analysis performed using FlowJo
(FlowJo LLC, Ashland, OR, USA). Compensation values were
established prior to acquisition using appropriate single stain
controls. Memory B cells were defined as CD3/CD14neg CD19+,
CD27+, IgD− cells as previously described (31, 32).

Statistical Analysis
Statistical significance between groups was calculated using
one-way ANOVA Friedman test and Dunns multiple
comparisons. Values were considered significant for p <

0.05. Unless otherwise stated, data is presented from at least
three independent experiments.

Percentage of HA binding to each vaccine strain was
calculated from the cumulative IgG or IgA binding to the IAV
vaccine components for each subject individually (H1+H3).

Significant subtype immunodominance was determined
as previously described (19). In brief, significant
immunodominance in a group was calculated by One-sample
Wilcoxon Signed rank test (%HA 6=50) and 1-way ANOVA
Friedman test and Dunn’s multiple comparisons (H1 6=H3).
Statistical significance (p < 0.05) must be reached in both tests
and the highest p-value is represented. Differences between
pre- and post-vaccination were calculated by one-way ANOVA
multiple comparisons.

Significant immunodominance for each donor was assessed by
two independent multiple t-test one per row. Replicate readings
(n ≧ 6) of HA-specific IgG or IgA and percentage of HA
binding were tested for significant differences between vaccine
components (H1 6= H3 & %H1 6= %H3 6= 50%). Statistical

significance (p < 0.05) must be reached in both tests. Subjects
with readings below the limit of detection were excluded from
the analysis.

Intra- and inter-assay significant relationships were
determined by Pearson correlation analysis. All statistical
analysis was performed using the GraphPad Prism V.8.3.0
software (San Diego, CA).

RESULTS

Recurrent IIV Vaccination Induces H1N1
Reactive IgA Antibodies in Young and
Elderly Subjects
Vaccination with split-inactivated influenza vaccines (IIV)
induces HA-specific IgG antibodies (21). However, the impact
of recurrent consecutive IIV vaccination on the serological
IgA antibody response has not been thoroughly investigated.
To better understand the serological response to recurrent
IIV vaccination with antigenically similar vaccine strains, the
serological IgA antibody titers were quantified against the
H1N1 HA vaccine component (A/California/07/09) in young
and elderly subjects vaccinated over three consecutive northern
hemisphere influenza seasons (2014 to 2016) (Figure 2A). Elderly
subjects (age 65–85 y.o.) had a significant rise in specific anti-
HA IgA antibody titers to the H1N1 HA after vaccination in
2014 and 2016, but not in 2015. In young subjects (18–34
y.o.), despite a consistent trend for increased IgA antibody titers
against H1N1 HA vaccine component following vaccination,
IIV vaccination did not significantly increase these titers until
the 2016 season (Figure 2A). Nonetheless, recurrent vaccination
over three consecutive years with IIV significantly increased the
anti-HA IgA antibody titers in both elderly and young subjects

(Geo Mean Dif
(

H116D21 −H114D0

)

7.3 and 1.763µg/mL,

respectively). Interestingly, elderly subjects had significantly
higher titer of anti-HA H1N1-reactive IgA antibodies both prior
to- and post-vaccination in 2014 and 2016, but not in 2015.
IgG antibodies against the H1N1 HA component of the vaccine
had a similar trend to IgA response (Figure 2B). From 2014 to
2016, the IgA and IgG antibody titers were comparable prior to
vaccination, which indicates a transient rise even after recurrent
vaccination with the same vaccine strain (Figures 2A,B).

Reduced Anti-HA Serological IgG and IgA
Antibody Titers to the H3N2 Vaccine
Component Following Recurrent
Vaccination With Antigenically Different
Vaccine Strains
Between 2014 and 2016, the recommended H3N2 component
in the seasonal influenza vaccine was updated each season
due to viral antigenic drift (33, 34). To understand the
serological response to recurrent IIV vaccination with 3
antigenically different H3N2 vaccine strains, the levels of
serological IgA antibodies that bound to the HA from
A/Texas/50/2012 (TX/12), A/Switzerland/9715293/ 2013
(Switz/13), and A/Hong Kong/4108/2014 (HK/14) were
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FIGURE 2 | IIV recurrent vaccination induces H1N1-specific IgA and IgG antibodies in young and elderly subjects. HA-specific IgA and IgG levels in the serum of

young and elderly donors was measured by ELISA. (A,B) Serum samples from young adults and elderly subjects collected prior and 28 days post-vaccination for

three consecutive years were tested for anti-HA specific IgA (A) or IgG (B) antibodies against the H1N1 vaccine strain (CA/09) rHA. (C,D) Serum samples from young

adults and elderly subjects collected prior and 28 days post-vaccination for three consecutive years were tested for anti-HA specific IgA (C) or IgG (D) antibodies

against H3N2 vaccine strains rHA (TX/12 in 2014, Switz/13 in 2015, and HK/14 in 2016). Box and whisker plots show the median with upper and lower quartile of the

µg/mL IgA or IgG equivalent based on a human reference serum standard. *p < 0.05, **p < 0.01, ***p < 0.001.

determined in young and elderly subjects that were vaccinated
over these three consecutive influenza seasons (Figure 2C).
In 2015 and 2016, IIV vaccination had no significant impact
on H3 HA-specific IgA antibody titers in young subjects,
but there was a trend for decreased titers across years

(Geo Mean Dif
(

H316D21 −H314D21

)

= −1.54µg/mL).

Vaccinated elderly subjects had a significant increase in the
H3 HA-specific IgA antibodies each season (p < 0.001).
However, there were no significant differences in these IgA
titers prior to- or post-vaccination in both the elderly and
young subjects. Furthermore, elderly subjects had a significant
decrease in H3 HA-specific IgA titers from 2014 to 2016

(Geo Mean Dif
(

H316D21 −H314D21

)

= −1.02µg/mL). In

contrast, there was a significant increase during each season
in serological anti-H3 HA-specific IgG antibodies following

vaccination in both young and elderly subjects (Figure 2D).
Similar to H3 HA-specific IgA titers, there was a decrease
in the IgG titers in elderly subjects in 2016, as well as a
decrease in the magnitude of the IgG response following

vaccination, (Geo Mean Dif
(

H3D21 −H3D0

)

= 20.94;

28.57, and 6.35µg/mL in 2014, 2015, and 2016, respectively)
(Figures 2C,D).

Serological H1 HA-Specific IgA Titers
Positively Correlate With IgG Titers
Influenza vaccination has similar impact on serum IgA and
IgG antibody titers (Figure 2). To understand the relationship
between the HA-specific IgA and IgG antibodies, the inter-
assay Pearson correlations for each timepoint were calculated
(Tables 1, 2). H1-specific IgA titers are positively correlated with
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TABLE 1 | Inter-assay Pearson correlations for H1N1 vaccine strains.

Timepoint IgA/IgG (µg/ml) IgA(µg/ml)/ Log2(HAI Titer)

14_D0 0.53*** ns

14_D21 0.62*** ns

15_D0 0.36** −0.32*

15_D21 ns ns

16_D0 0.57*** −0.37*

16_D21 0.51 *** ns

n = 59 (24 young + 35 Elderly); *p < 0.05, **p < 0.001, ***p < 0.001.

TABLE 2 | Inter-assay Pearson correlations for H3N2 vaccine strains.

IgA (µg/ml) IgA/IgG (µg/ml) IgA(µg/ml)/ Log2HAI Titer

14_D0 0.39** Ns

14_D21 0.50*** Ns

15_D0 0.26* ns

15_D21 0.32* 0.33*

16_D0 0.36** ns

16_D21 0.42** ns

n = 59 (24 young + 35 Elderly); *p < 0.05, **p < 0.01, ***p < 0.001.

IgG titers at all timepoints, except for D21 post-vaccination in
2015 (p = 0.11) (Table 2). In contrast, H3 HA-specific IgA titers
only correlate with serum IgG titers in 2014, but not in 2015 or
2016 (Table 2).

Following IIV vaccination, changes in the antibody titers
are generally assessed by the HAI assay, thus the inter-assay
Pearson correlations between HA-specific IgA and serological
HAI activity against the H1N1 and H3N2 vaccine strains at
each timepoint were calculated (Tables 1, 2). Longitudinally,
HA-specific IgA antibody titers do not positively correlate with
HAI titers against the H1 or H3 vaccine components at most
timepoints tested. The only exception was in 2015 following
vaccination, where the H3 HA-specific IgA titers significantly
correlated with serum HAI titer against the Switz/13 H3N2 virus
strain (r = 0.33, p = 0.018). Surprisingly, the H1N1 HA-specific
antibodies at D0 in 2015 and 2016 were negatively correlated
with the serological HAI activity against the H1N1 CA/09 virus
(Table 1).

Pre-Existing HA-Specific IgA Titers
Positively Correlated With
Post-Vaccination Titers
To understand the relationship between pre- and post-
vaccination antibody titers, we calculated intra-assay Pearson
correlations between all timepoints (Tables 3–6). Overall, pre-
existing HA-specific IgA antibody titers positively correlated with
HA-specific IgA antibody titers after vaccination for both H1
and H3 HA vaccine components (Tables 3, 4). In contrast, in
2014, the H3N2 HA-specific IgG titers post-vaccination did not
correlate with H3N2 HA-specific IgG titers in 2015 (Tables 5, 6).

TABLE 3 | Intra-assay Pearson correlations for H1N1 vaccine strains.

IgA (µg/ml) 14_D0 14_D21 15_D0 15_D21 16_D0

14_D21 0.80

15_D0 0.54 0.49

15_D21 0.44 0.50 0.70

16_D0 0.69 0.59 0.68 0.48

16_D21 0.75 0.68 0.61 0.53 0.89

TABLE 4 | Intra-assay Pearson correlations for H3N2 vaccine strains.

IgA (µg/ml) 14_D0 14_D21 15_D0 15_D21 16_D0

14_D21 0.77

15_D0 0.81 0.72

15_D21 0.60 0.57 0.66

16_D0 0.73 0.67 0.76 0.70

16_D21 0.71 0.66 0.69 0.79 0.81

TABLE 5 | Intra-assay Pearson correlations for H1N1 vaccine strains.

IgG (µg/ml) 14_D0 14_D21 15_D0 15_D21 16_D0

14_D21 0.76

15_D0 0.54 0.28

15_D21 0.38 0.22 0.75

16_D0 0.56 0.39 0.66 0.67

16_D21 0.48 0.29 0.56 0.55 0.75

N = 59, 24 young and 35 elderly; All values are significantly different from 0, p < 0.05,

unless if highlighted in red.

TABLE 6 | Intra-assay Pearson correlations for H3N2 vaccine strains.

IgG (µg/ml) 14_D0 14_D21 15_D0 15_D21 16_D0

14_D21 0.66

15_D0 0.57 0.27

15_D21 0.38 0.22 0.49

16_D0 0.66 0.40 0.64 0.48

16_D21 0.56 0.35 0.50 0.53 0.72

N = 59, 24 young and 35 elderly; All values are significantly different from 0, p < 0.05,

unless if highlighted in red.

Elderly Subjects Have a Highly
Immunodominant Anti-HA IgA Response to
the H1N1 Vaccine Component
Multivalent vaccines assume equal immunogenicity of the
vaccine components to induce a balanced immune response
to each vaccine strain (35). However, more often, there is
a subtype immunodominance to one or more components
following influenza vaccination (19). To understand the impact
of influenza vaccination on the balance of the serological
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FIGURE 3 | Elderly subjects have significantly immunodominant response to the H1N1 vaccine component. (A–C) Percentage of IgA HA-binding to the H1N1 or the

H3N2 vaccine strain calculated as described in the M&M section in young adults and elderly subjects vaccinated in 2014 (A) 2015 (B) or 2016 (C). (D) Frequency of

young adults and elderly subjects with a significant immunodominant IgA response toward the H1N1 or H3N2 vaccine strains pre- and post-vaccination. (E) Heatmap

for the percentage of immunodominant response to each IAV vaccine strain from 2014 to 2016. Donors are represented as rows organized by date of birth (DOB).

Blue indicates significant immunodominance of the H1N1 vaccine strain, red represents significant immunodominance of the H3N2 vaccine strain, and white shows

balanced responses. **p < 0.01, ***p < 0.001.

response to influenza A virus, the percentage of HA binding
to H1 and H3 HA vaccine components was quantified. Ideally,
in the absence of subtype immunodominance, ∼50% of total
anti-HA antibodies would bind to each of the two influenza
A vaccine HA components. Prior to vaccination in 2014,
young adults did not appear to have an immunodominance
to either of the IAV vaccine strains (Figure 3A). In contrast,
elderly subjects had a significant subtype immunodominance
toward the H1 HA vaccine component (mean difference to
50% = 19.3% ± 1.7, p < 0.001). Vaccination with TX/12 or
HK/14 in 2014 and 2016 did not alter pre-existing subtype
immunodominance, while in elderly subjects, vaccination with

Switz/13 H3N2 vaccine strain in 2015 resulted in a slight
decrease in the H1 HA immunodominance (mean difference
to 50% = 16.3% ± 4.6, p = 0.002). Interestingly, consecutive
vaccinations with the same H1N1 vaccine strain, while the
H3N2 vaccine component was changed each season, resulted in
significant H1 HA subtype immunodominance in young adults
during the 2016 season (mean dif. to 50% = 40% ± 11.39, p
< 0.001).

Finally, the frequency of young and elderly subjects
with significant subtype immunodominance (significant
differences in the response to one of the IAV vaccine
components) was calculated. Despite of similar frequencies
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FIGURE 4 | IIV vaccination does not recall broadly reactive IgA antibodies in young and elderly subjects. (A) Levels of HA-reactive IgA antibodies against rHAs from

three H1N1 influenza viruses (CA/09, NC/99 and Sing/86) in the serum of young adults and elderly subjects prior to and post-vaccination. (B) Level of H1

stem-directed IgA antibodies in the serum of young adults and elderly subjects prior to and post-vaccination, measured by ELISA as described in the M&M section.

(C) Frequency of stem-directed IgA antibodies relative to total rHA binding, in the serum of young adults and elderly subjects prior to and post-vaccination. *p < 0.05,

**p < 0.01, ***p < 0.001.

of individuals with a balanced antibody response against
both IAV vaccine strains, an equal number of young adults
are immunodominant toward H1 or H3 HA components,
while elderly subjects favor the H1 HA vaccine component
(Figure 3D).

Split-Inactivated Influenza Vaccination
Does Not Induce IgA to Past Seasonal IAV
Vaccine Strains
Inactivated influenza vaccines generally recall pre-existing
memory B-cells. To understand if subtype immunodominance
is the result of high pre-existing cross-reactive H1 HA

IgA antibodies, we quantified the levels of serological IgA
antibodies against two past H1N1 HA vaccine strains (Sing/86
and NC/99) prior to- and after vaccination in 2016. In
young adults, pre-existing titers of CA/09 HA-reactive IgA
antibodies in the serum were similar to the titers against
two historical vaccine strains, Sing/86 and NC/99. The IIV

vaccination did not increase historical H1 HA-reactive IgA

antibodies. In contrast, elderly subjects had significantly

higher IgA antibody titers against the CA/09 HA vaccine
strains than against the two historical strains and vaccination
significantly induced NC/99 HA-reactive IgA antibodies
(Figure 4A).
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Split-Inactivated Influenza Vaccination
Does Not Induce HA-Stem IgA Antibodies
Split-inactivated influenza vaccinations induce stem-directed
IgG memory responses. Measuring peripheral antigen-specific
IgAmemory responses is technically challenging, thus the impact
of IIV on the IgA serological response against the H1 HA stem by
ELISA was measured using a chimeric rHA (cH6/1)(29, 30, 36).
IIV vaccination does not induce stem-directed IgA antibodies
against the H1 or H3 HA vaccine components (Figure 4B).
However, elderly subjects had a significant increase in stem-
directed IgA antibodies compared to young adults, who had a
significantly lower percentage of stem-directed IgA antibodies,
compared to head-directed antibodies, following vaccination
(Figure 4C).

IgA Antibodies Have Receptor Blocking
Activity
To understand the significance of HA-specific IgA antibodies
to prevent receptor binding, IgA and IgG antibodies were
purified from the serum of 10 vaccinated donors with high
post-vaccination HA-specific antibody titers. IIV vaccination
significantly increased the receptor blocking antibodies against
the H1N1 and H3N2 vaccine strains, as reflected by a decrease
in serological Ig minimal effective concentration (MEC) required
to prevent viral hemagglutination activity. Similarly, after
normalizing the serum IgG and IgA antibody titers, vaccination
significantly decreased theMEC required for HAI activity against
the H1N1 and H3N2 vaccine strains. Purified IgG and IgA
antibodies had similar MEC as the total serum Ig HAI activity
against both vaccine strains, however, this was not impacted by
vaccination. After normalizing to HA-specific antibody titers,
there were no significant differences in HAI activity between IgG
and IgA antibodies, prior to- or post-vaccination (Tables 7, 8).

DISCUSSION

Seasonal influenza infection remains a major public health
concern with significant social and economic impact. Just 2 years
ago, people living in the northern hemisphere experienced the
highest seasonal influenza activity since the last pandemic in
2009. During the 2017–2018 influenza season, the U.S. CDC
estimated almost 50 million people fell ill due to influenza
virus infection with >20 million seeking medical attention in
the U.S. Furthermore, the 2017–2018 season was marked by
severe symptomology across all age groups, leading to almost
one million hospitalizations and over 70 thousand deaths (CDC
influenza burden). TheWHO recommends annual vaccination to
prevent seasonal influenza infection and transmission. However,
the immune response to recurrent vaccination remains poorly
understood. Here, the impact of recurrent vaccination over
three influenza seasons on the serological IgA response to
influenza A vaccine strains was examined in a small cohort of
recurrent vaccines.

From October 2014 to March 2017, the U.S. experienced
three influenza seasons of low to mild influenza activity. The
2014–2015 and 2016–2017 seasons were dominated by H3N2

TABLE 7 | Minimal Effective Concentration for HAI activity.

H1N1 strain Pre vaccination Post vaccination

Geo Mean (ng/ml) (±SD) Geo Mean (ng/ml) (±SD)

Total Ig Serum 107.6a 3.34 28.7b,c 2.30

IgG Serum 90.93a 3.26 20.85b,c 2.34

IgA serum 16.28b 3.75 7.26d 2.46

Purified IgG 52.07a,c 2.48 70.71a,c 1.63

Purified IgA 85.59a 1.96 58.12a,c 3.07

HA-specific purified IgG 0.91d 3.58 2.63d 5.21

HA-specific purified IgA 1.85d 4.15 1.93d 5.20

N = 10, 5 young (18–35 y.o.), and 5 elderly (>65 y.o.) subjects.
a−d Paired two-way ANOVA grouping.

TABLE 8 | Minimal Effective Concentration for HAI activity.

H3N2 strain Pre vaccination Post vaccination

Geo Mean (ng/ml) (±SD) Geo Mean (±SD)

Total Ig Serum 264.9a 2.38 30.76b,c 3.27

IgG Serum 223.9a 2.32 22.34b,c 3.25

IgA serum 40b 2.70 7.79d 3.44

Purified IgG 49.16a 2.84 44.56a,c 4.94

Purified IgA 99.48a 1.82 102.4a,c 1.53

HA-specific purified IgG 0.160d 3.33 0.52d 0.13

HA-specific purified IgA 0.12d 4.88 5.47d 4.90

N = 10, 5 young (18–35 y.o.), and 5 elderly (>65 y.o.) subjects.
a−d Paired two-way ANOVA grouping.

influenza viruses with higher infection and hospitalization rates
than the 2015–2016 season, which was dominated by H1N1
influenza viruses. Vaccine effectiveness across all ages and against
all vaccine strains ranged from 20 to 50% over these three seasons,
with its lowest in 2014 against H3N2 influenza viruses (5%)
and highest in 2015 against H1N1 influenza viruses (45%). In
this report, we observed that recurrent vaccination that included
the same H1N1 vaccine strain (CA/09) significantly increased
H1N1 HA-specific serological antibody titers (IgA and IgG) in
young and elderly subjects. In contrast, consecutive vaccination
with newly updated H3N2 vaccine components seemed to hinder
H3N2 HA-specific IgA responses in young and elderly subjects
(Figure 2).

Vaccine-induced immune responses are traditionally focused
on receptor blocking antibodies or total vaccine-reactive IgG
titers as measured by HAI or ELISA, but serological changes
in vaccine-specific IgA antibodies are generally neglected. Split-
inactivated IIV induces receptor blocking antibodies with high
HAI activity against the four vaccine strains (21, 22). Moreover,
IIV vaccination raises pre-existing serologic HAI activity against
past vaccine strains (21). In contrast, IgA responses following
vaccination appear highly strain-specific, with little boost in
reactivity against previous vaccine strains or the conserved stem
portion of the HA protein (Figure 4).
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In the search for a truly universal influenza vaccine, the use of
a single immunological assay to assess vaccine-elicited protection
is limiting. Recent studies highlight the need for broader and
better immune correlates of protection, as well as particular
vaccine delivery platforms (37–40). Interestingly, H1N1 HA-
specific IgA titers in serum are positively correlated with IgG
antibodies against the matched strains in young and elderly
subjects for the three seasons assessed in this study (Tables 1,
2). Furthermore, despite similar HAI activity from purified IgA
and IgG antibody fractions (Table 7), HA-specific IgA antibody
titers in the serum do not correlate with serological HAI activity
against the corresponding vaccine strain (Tables 1, 2). This is
might result from the artificial nature of the HAI assay or be
a consequence of the lower IgA antibody levels in the serum
as compared to IgG. Similar studies with other neutralization
assays should help clarify the contribution of serological IgA
to protection during influenza infection. Alternatively, future
work focusing on secreted dimeric IgA, the predominant
immunoglobulin in the lung and upper respiratory tract mucosa,
will assess the correlation of serological IgA antibody levels with
mucosal HAI activity in nasal washes or BAL fluid, since IgA
polymerization significantly increases viral neutralization and
receptor blocking activity (41).

Recent studies have highlighted the complex dynamics of
the antibody repertoire from memory B-cell compartment to
plasmablasts and serum (24, 42–44), and exposed the importance
of a diverse and balanced clonal recall and de novo B-
cell responses for broad influenza protection (45). Similar
studies focusing on the IgA antibody responses will be crucial
to understand the overlap of serological and mucosal IgA
antibody repertoires.

Influenza virus infection strongly induces HA-specific
polymeric IgA antibodies at the nasal mucosa (46). Furthermore,
high influenza-specific IgA antibodies are consistently associated
with better disease prognosis and decreased viral transmission
(46–48), particularly in subjects with low serological HAI activity
(49). Moreover, in animal models, a genetically engineered
neutralizing IgA antibody conferred sterilizing immunity and
prevented transmission to naïve animals, whereas its parental
IgG clone could not (50). Overall, this highlights the significance
of serological and mucosal IgA responses for protection against
influenza infection.

Influenza virus vaccine production has remained largely
unaltered for almost half a century. Nonetheless, the past decades
were marked by the emergence of multiple alternative vaccine
delivery and production platforms, such as live attenuated virus,
virus-like particles (VLP), nanoparticles or recombinant proteins
(20, 51–53). Not surprisingly, the immunization route and
delivery platform can dramatically impact the immune response
to the vaccine (54). Intranasally delivered live attenuated
influenza vaccines do not increase serological HAI activity, but
have a pronounced induction of influenza-specific mucosal IgA
antibodies (20). Similarly, VLP-based vaccines that are generally
associated with superior immunogenicity than conventional
platforms, strongly induce serological IgA antibodies (55, 56).

Together these studies highlight the importance of exploring
alternative immune correlates, aside from conventional
serological HAI or HA-specific IgG titer, particularly when
testing new vaccine delivery systems or immunization routes.

The number of class-switched (IgA and IgG) memory B
cells and plasmablasts are age-dependent. While IgG1 and IgG3

memory B cells peak in number prior to adolescence and
continuously decrease as a person ages, IgA memory B cells peak
at childhood (2-5 y.o.) and again in early adulthood (18–40 y.o.)
followed by a slow decrease throughout life (57). Surprisingly,
despite the drastic differences in serological IgA and IgG antibody
levels, the overall frequency of IgA and IgG memory B cells in
peripheral blood is fairly similar (Figure S2) and does not change
from young adulthood to old age (57). Furthermore, despite
a prominent increase in activated memory B cells following
influenza vaccination, the relative proportion of IgA and IgG
memory B cells remains the same (Figure S2). In the peripheral
blood, plasma cells frequency peaks during infancy (first two
years of age) and steadily decreases throughout life (57), unless
transiently expanded by an inflammatory stimulus. Nonetheless,
the overall percentage of IgA and IgG plasma cells in circulation
is strikingly similar and surprisingly stable throughout life (57).

Recently, our group has reported a subdominant serological
IgG response to the H3N2 HA vaccine component during the
2016–2017 influenza season relative to the other three vaccine
components (19), as a result of an inefficient recall response
of pre-existing H3N2 HA-specific memory B cells. In elderly
subjects, IgA responses are significantly skewed toward the
H1N1 vaccine strain. In contrast, young adults have a skewed
response toward either the H1N1 or the H3N2 vaccine strains
(Figure 3). This biased response is most likely the result of early-
life influenza virus imprinting. The elderly population was born
before 1954 when only H1N1 influenza viruses circulated in
the population, whereas young adults born between 1985 and
2001 could have been initially exposed to either H1N1 or H3N2
influenza viruses (58). Moreover, the impact of imprinting in
the response to influenza virus vaccination is more severe in the
elderly population with impaired de novo somatic hypermutation
and decreased adaptability to new influenza strains (45).

The pursuit for new influenza vaccine candidates may
require a much broader immunological profiling then traditional
serological HAI, neutralization assays or vaccine-specific IgG
titer. Despite of the limited sample size, this study exposes
the significance of serological IgA responses during influenza
vaccination, but future work should clarify the overlap of IgA
and IgG antibody repertoires, as well as the kinetics and longevity
of vaccine-induced antibodies in the serum and at the site of
infection. A holistic perspective of the immune response to
influenza viruses may lead to the development of a truly universal
influenza virus vaccine.
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