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In brain-computer interface (BCI), feature extraction is the key to the accuracy of recognition. *ere is important local structural
information in the EEG signals, which is effective for classification; and this locality of EEG features not only exists in the spatial
channel position but also exists in the frequency domain. In order to retain sufficient spatial structure and frequency information,
we use one-versus-rest filter bank common spatial patterns (OVR-FBCSP) to preprocess the data and extract preliminary features.
On this basis, we conduct research and discussion on feature extraction methods. One-dimensional feature extraction methods
like linear discriminant analysis (LDA) may destroy this kind of structural information. Traditional manifold learning methods or
two-dimensional feature extraction methods cannot extract both types of information at the same time. We introduced the
bilinear structure and matrix-variate Gaussian model into two-dimensional discriminant locality preserving projection
(2DDLPP) algorithm and decompose EEG signals into spatial and spectral parts. Afterwards, the most discriminative features
were selected through a weight calculation method. We tested the method on BCI competition data sets 2a, data sets IIIa, and data
sets collected by our laboratory, and the results were expressed in terms of recognition accuracy.*e cross-validation results were
75.69%, 70.46%, and 54.49%, respectively. *e average recognition accuracy of new method is improved by 7.14%, 7.38%, 4.86%,
and 3.8% compared to those of LDA, two-dimensional linear discriminant analysis (2DLDA), discriminant locality property
projections (DLPP), and 2DDLPP, respectively. *erefore, we consider that the proposed method is effective for
EEG classification.

1. Introduction

Brain-computer interface (BCI) is a kind of real-time
communication system connecting the brain and external
devices. BCIs based on electroencephalogram (EEG) can
convert the information sent by the brain into commands to
drive the external devices, so as to realize the communi-
cation between people and the outside world [1]. *ere are
several control signal types in BCI and, among them, motor
imagery (MI) is one of the most studied applications [2]. MI
is an independent BCI method that uses motor cortex as a
signal source. *e user imagines moving his/her limbs
without any actual muscular movement. Studies on EEG
signal indicate that when people perform motor imaging
tasks, this will cause an event-related desynchronization
(ERD) and event-related synchronization (ERS) of

oscillations in alpha band (8–13Hz) and beta band
(14–30Hz) [3]. Due to these characteristics, researchers can
process and analyze EEG signals in relevant frequency bands
for the classification of motor imaging tasks.

InMI-based BCI system, a well-known problem is how to
handle very large amounts of features extracted from mul-
tichannel EEG signals. Feature extraction is a commonly used
approach for solving this problem. To solve the computa-
tional complexity and data storage problem caused by the
high dimension of signals, many dimensionality reduction
methods have been used in traditional BCI technology.
Kumar et al. [4] used independent components analysis
(ICA) to remove artifacts in EEG signals and used principal
component analysis (PCA) for reducing high-dimensional
data. Although PCA seeks to learn a projection that can
preserve the main energy of data, it does not contain
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discriminability. Linear discriminant analysis (LDA) uses
the label information to enlarge the between-class distance
and reduce the within-class distance [5]. Although LDA
uses the label information in MI, it ignores the important
local information in the EEG signal. Motor imaging EEG
signals are collected through electrodes spread over the
cerebral cortex. When a certain imaging task is performed,
ERD/ERS will occur in specific local areas of the brain [6].
*ere are mutual influences and connections between the
signals collected by adjacent electrodes. *ese connections
exist not only in the spatial position but also in the fre-
quency domain. As described above, the main focus is on
alpha band (8–13Hz) and beta band (14–30Hz). *e LDA
method cannot effectively extract these local features. Since
the manifold learning method was proposed [7, 8], some
studies assumed that EEG signals are more likely to exist in
low-dimensional nonlinear manifold subspace. Since then,
manifold learning methods have been applied on epileptic
EEG signals [9, 10], EEG-based depth of anesthesia as-
sessment [11], emotional state classification [12], tracking
dynamic EEG brain connectivity [13], and so forth. At the
same time, manifold learning was applied in MI-based BCI
system [14–16].

*e goal of methods based on manifold learning is to
keep locality-geometric structure of data in a neighboring
area and successfully find the inherent features existing in
nonlinear manifold [17]. Locality property projections
(LPP) [18], neighborhood preserving embedding (NPE)
[19], and locally linear embedding (LLE) [8] are the popular
methods of manifold learning, which preserve the locality
property. But they suffer from a limitation that they
deemphasize discriminant information which is important
in recognition problem. Discriminant locality property
projection (DLPP) [20] aims to find the subspace that best
discriminates different classes by minimizing the within-
class distance, while maximizing the between-class dis-
tance. However, they are all vector-based methods. EEG
signals, as multichannel data, contain rich spatial infor-
mation. *e spatial information here means that the EEG
signal is in the form of a matrix, and the matrix contains
two-dimensional information closely related to the spatial
structure. Significant spatial channel information will be
lost by using vector-based methods [21]. According to these
factors, the two-dimensional dimensionality reduction
method is considered. Two-dimensional discriminant lo-
cality preserving projection (2DDLPP) [22] is the 2D ex-
pansion of DLPP. 2DDLPP can extract two-dimensional
information and preserve geometric structures of original
data. But, for EEG signals, both spatial information and
spectral information are important information that is
effective for classification. 2DDLPP only calculates a single-
sided projection and cannot use the spatial and spectral
characteristics of the EEG signal at the same time.

In addition to the manifold learning method, sparse
learning has been increasingly applied to feature extraction.
For example, sparse linear discriminant analysis (SLDA)
[23] and sparse two-dimensional discriminant locality
preserving projection (S2DDLPP) [17] are proposed to learn
a sparse discriminant subspace for feature extraction.

Researches have shown that the method based on sparse can
effectively reduce the computational complexity and has
good robustness to noise [24–26]. But the above methods are
somewhat sensitive to the selection of the number of di-
mensions, since the discriminability of each projection di-
rection is fixed [27].

To solve the above issues and combine the important
local information in the EEG signal with the 2D matrix
processing method, we propose an extension of 2DDLPP
based on the Gaussian variable model. *e main idea of
matrix-variable Gaussian model [28] implies a separable
structure for the covariance matrix of the vectorized data
and it shows that the covariance between any two spatial-
spectral features can be decomposed into two terms. On this
basis, we calculate the eigenvalues and eigenvectors of spatial
term and spectral term, respectively. After that, the two sets
of eigenvalues are multiplied in pairs and sorted, and those
features with a large weight are selected. *is allows the
spectral and spatial characteristics to be analyzed at the same
time, thereby ensuring that the extracted features have the
best discriminativeness.

*is paper proposes a bilinear two-dimensional discrim-
inant locality preserving projection (B2DDLPP) algorithm that
based on a matrix-variable Gaussian model. Compared with
2DDLPP, B2DDLPP uses a bilinear structure to fully extract
the connections between the channels of the EEG signal. Both
spatial information and frequency information are considered
at the same time, so it is more suitable for the task of feature
extraction of motor imaging EEG signals.

2. Materials and Methods

2.1. Related Methods. *e input data of the feature extrac-
tion algorithm introduced in this paper is the feature matrix
after OVR-FBCSP, and each sample gets a featurematrix with a
size of Nf × Ng, where Nf is the number of frequency bands
in FBCSP (9 in this article), Ng � 2 × m × Numclass, m is the
number of pairs of features, and Numclass is the total number
of classes. When using the vector-based feature extraction
method, we vectorize the feature matrix of each sample as
input. *e class of each feature matrix is the same as the
corresponding sample; and the OVR-FBCSP algorithm will be
introduced in Section 2.3.1.

2.1.1. Discriminant Locality Property Projections (DLPP).
DLPP is based on the extension of LPP, and it considers the
discrimination information. *is makes DLPP have better
performance on classification problems compared to LPP.

*e objective function of DLPP is as follows:
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nj are the numbers of samples in the ith class and jth class,
separately.Ws

ij is the weight between ys
i and y

s
j, and Bij is the

weight betweenmi andmj. It should be noted that s in ys
i and

Ws
ij is the upper corner mark, not power operation.
Suppose that a is a transformation vector; that is,

Y� aTX. By simple algebra formulation, the objective
function can be turned to

aTXLXTa
aTFHFTa

, (2)

where L�D-W, and W can be defined as
Ws

ij � exp(− ‖xs
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2/t). D is a diagonal matrix, and its

entries are column (or row) sum of Ws; Ds
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ij. H�E-
B, and B can be defined as Bs

ij � exp(− ‖f i − fj‖
2/t), where f i

is the mean value of samples in the ith class; F� f1, f2,. . .,fs; E
is a diagonal matrix, and its entries are column (or row) sum
of B; Eii � 􏽐jBij.

DLPP subspace is spanned by a set of vectors a, satisfying

a � argmin
aTXLXTa
aTFHFTa

. (3)

*e numerator of objective function reflects within-class
distance, while the denominator reflects between-class
distance. *e vectors ai that minimize the objective function
are given by minimum eigenvalues solutions to the gener-
alized eigenvalues problem.

*us, A� [a1, a2, . . . , ad] are the solutions of equation
(3), ordered according to their eigenvalues, λ0, λ1, . . . , λd− 1;
and the embedding is as follows:

xi⟶ yi � ATxi. (4)

2.1.2. Two-Dimensional Discriminant Locality Preserving
Projection (2DDLPP). 2DDLPP is the 2D expansion of
DLPP. *e main advantage of 2DDLPP over DLPP is that it
has a more accurate approximation of the original signals,
which can avoid the losses of important information for
recognition. *e objective function of 2DDLPP is
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where Ys
i and Ys

j denote the projected feature matrices in
class s, corresponding to the original EEG signals. Z is the
number of motor imagination classes. Ws

ij and Bij are the
within-class weight matrix and the between-class weight
matrix, separately. Mi and Mj represent the mean matrices
of the projected signals in class i and class j; that is, Mi �
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Suppose that X is an Nf × Ng feature matrix signal and

A denotes the transformation matrix. *e linear transfor-
mation is Y�ATX.

*e objective function can be reformed as follows:
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where Fi is the mean matrix of the ith class; it is defined as
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where t is a parameter that can be set empirically and in this
paper it is set to 1.

L�D − W is the Laplacian matrix, where Ds is a diagonal
matrix, and its entries are column (or row) sum of Ws;
Dii � 􏽐jWji; and H� E − B, where E is a diagonal matrix,
and its entries are column (or row) sum of B; Eii � 􏽐jBji.

*e projection directions can be obtained by minimizing
the objective function, satisfying

A � argmin
A

ATXLXTA
ATFHFTA

. (9)

*e minimization problem can be turned into a gen-
eralized eigenvalue problem:

XLXTA � λFHFTA. (10)

*us, A� a1, a2,. . ., ad are the solutions of (9), ordered
according to their eigenvalues, λ0, λ1, . . . , λd− 1.

2.2.Matrix-VariateGaussianModelandItsCombinationwith
Manifold Learning

2.2.1. Matrix-Variate Gaussian Model. *e matrix-variate
Gaussian model is the normal distribution of the matrix. Let
f(X|Ωi) denote the conditional probability of matrix
X∈RNf×Ng under class Ωi, and the matrix-variate Gaussian
model for matrix X is denoted by

X|Ωi ∼ MNNf×Ng
Mi, ϕi,ψi( 􏼁, 1≤ i≤Z, (11)

where Z is the total number of classes, the matrices Mi
denote the mean matrix of the classΩi, and ϕi and Ψi denote
covariance matrix of the class Ωi. In this paper, ϕi and Ψi
denote spectral covariance and spatial covariance, respec-
tively. *ese matrices are defined as follows:

Mi � EX|Ωi
(X),

ϕi � tr− 1 ψi( 􏼁∗EX|Ωi
X − Mi( 􏼁 X − Mi( 􏼁

T
􏼐 􏼑,

ψi � tr− 1 ϕi( 􏼁∗EX|Ωi
X − Mi( 􏼁

T X − Mi( 􏼁􏼐 􏼑.

(12)
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*e conditional probability of matrix X can be deter-
mined by Mi, ϕi, and Ψi as follows:
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(13)

where det(·) represents the determinant of a matrix.
We define column vectorization as vec (·); then the mean

of matrix X equals vec (Mi). By vectorizing the matrix
Gaussian distribution, it can be converted into a multivariate
Gaussian distribution of vector data as follows:

X ∼ MNNf×Ng
(M, ϕ,ψ)⇔vec(X) ∼ N(vec(M),ψ⊗ ϕ),

(14)

where ϕ∈RNf×Nf , Ψ∈RNg×Ng , and ⊗ represents the Kro-
necker product operator. It can be seen from equation (14)
that the covariance matrix of vectorized data can be
transformed into a separable structure, which consists of the
Kronecker product of two matrices.

*e matrix-variate model in equation (11) corresponds
to a specific structure for the covariance of the vectorized
data. *is model implies that the covariance matrix of the
vectorized data can be decomposed into two parts. *is
separability property will be used in the algorithms proposed
in this paper.

2.2.2. Bilinear Two-Dimensional Discriminant Locality Pre-
serving Projection (B2DDLPP). Bilinear two-dimensional
discriminant locality preserving projection (B2DDLPP)
method is based on the matrix-variate Gaussian model. *is
model denotes that within-class covariance between any two
spatial-spectral features can be decomposed into two parts.

Exchanging the numerator and denominator in the
objective function of the 2DDLPP algorithm, the objective
function of B2DDLPP can be reformed as follows:
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*e projection directions can be obtained bymaximizing
the objective function, satisfying

G � argmax
G

GTFHFTG
GTXLXTG

. (17)

Combining moment estimation of separable covariance
matrix in separable LDA [29] and the high similarity be-
tween LDA and DLPP [30], we use the two following

equations to estimate the corresponding within-class co-
variance matrices. Decompose Sw to get
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where Xs
i denotes the ith feature matrix in class s, Xs
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the jth feature matrix in class s,Ws
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of classes. T is the transpose operation of the matrix.

Besides, the between-class scatter matrix can be con-
sidered as a separable structure. Vectorize the mean matrix
in each class to get SB� SBR⊗SBL, where
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ns

i�1 X
s
i . B is the

weight matrix between any two classes’ meanmatrix and it is
defined as

Bab � exp
− Fa − Fa

����
����
2

t
⎛⎝ ⎞⎠. (23)

Using this assumption, we obtain the eigenvalues and
eigenvectors of ϕ-1SBL, denoted by λl and ul, respectively.
Similarly, we obtain the eigenvalues and the eigenvectors of
Ψ-1SBR, denoted by cj and vj.*en, sort the two eigenvalues
λl and cj in a descending order. *e corresponding pro-
jection matrix can be constructed, respectively:
U � [u1, u2, . . . , uNf

] and V � [v1, v2, . . . , vNg
]. *us, the

feature matrix Y is defined as

Y � UTXV. (24)

Finally, in order to get the d-dimensional features, we
choose the yij elements of Y which correspond to the d

largest λlcj values.

2.3. Materials and Experiments

2.3.1. Preprocessing and the Flow Chart of the Experiment.
We conducted feature extraction using the proposed
B2DDLPP in three databases. B2DDLPP algorithm is
compared with LDA, two-dimensional linear discriminant
analysis (2DLDA), DLPP, and 2DDLPP. It should be noted
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that the same preprocessing method was applied to three
data sets in this experiment: Before using the three feature
extraction methods mentioned above, we apply the one-
versus-rest (OVR) multiclass extension of the filter bank
common spatial patterns (FBCSP) [31, 32] method to
process the data. Taking four classes as an example, we take
one class of samples as positive samples and the remaining
samples as negative samples and perform FBCSP operations
on the data to obtain a set of features. By analogy, a total of
four sets of features can be obtained. Combine the four
groups of features, and finally get a feature matrix
ofNf × Ngsize, where Nf is the number of frequency bands
in FBCSP (9 in this article), Ng � 2 × m × Numclass, m is
the number of pairs of features, and Numclass is the total
number of classes. *is method can reduce the dimen-
sionality of the EEG data beforehand to ensure that the
feature dimension of the data is less than the number of
samples. *is allows the subsequent feature extraction
method to proceed smoothly. At the same time, effective
spatial structure and frequency information are retained to
obtain better classification results. As alpha band (8–13Hz)
and beta band (14–30Hz) contain rich information for MI
task, we divide all EEG signals into frequency subbands. *e
FBCSP employs a filter bank that covers 4–40Hz, which
comprises 9 bandpass filters that cover 4Hz each [31]; and,
in order to get a flatter delay response and low signal dis-
tortion, we use 6-order Chebyshev type II filter in this paper.
*e specific process is shown in Figure 1.

Considering that SVM classifier has been widely used in
EEG classification [33–35], we use SVM classifier for clas-
sification in this paper. We divide the data set into two sets:
training set and test set. *e performance of BCI algorithms
highly depends on the dimensionality of the feature space at
the classifier’s input, denoted by d. For each method, the
optimal dimensionality dop of the feature space in training
set is determined based on the average performance of each
subject over all the validation runs. *e feature space di-
mensionality for each method in test set is set based on the
value of dop in the validation phase. In order to make dif-
ferent methods more suitable for the data, so as to get the
optimal dimension dop, the selection range of parameter m

in the preprocessing method is from 1 to 4. *e value of the
parameter m affects the data dimension after preprocessing.

*e flow chart of the experiment is shown in Figure 2. All
experiments are performed on MATLAB R2017a and
Windows 10, with AMD core 2600X CPU and 16GB RAM.

2.3.2. Data Set

(1) Set 1: BCI competition IV, data sets 2a (Exp.1). *e ul-
timate purpose of this experiment is to classify the following
motor-imagery tasks: left hand, right hand, feet, and tongue
movement. *is data set contains EEG signals of nine
healthy subjects. It is recorded in two sessions and the signals
are recorded using 22 Ag/AgCl electrodes at 250 Hz sam-
pling rate. Each session consists of six runs and each of
which includes 48 trials of a length of 3 seconds, yielding a
total of 288 trials per session. *ese two sessions are used as

training set and test set, respectively. It should be mentioned
that there are three Electrooculogram (EOG) channel re-
cordings in this data set and they can be used as a reference
for denoising. In this paper, we chose the time period of 3 s
to 6 s and in order to preserve complete spatial information,
all channels are reserved.

(2) Set 2: BCI competition III, data sets IIIa (Exp.2). *is data
set consists of recordings from three healthy subjects (k3b,
k6b, and l1b). Each subject sat in a relaxing chair with
armrests and was asked to perform imagery movements with
four different tasks: left hand, right hand, foot, and tongue.
Each subject completed 60 trials per class. Recordings were
made with a 60-channel EEG amplifier fromNeuroscan with
the left mastoid for reference and the right mastoid as
ground. EEG signals were recorded with a sampling rate of
250Hz and filtered between 1 and 50Hz with the notch filter
on. In this paper, we chose the time period of 3 s to 7 s and all
channels are reserved.

(3) Set 3: data sets 3 (Exp.3). *e third data set used in this
paper was obtained by our laboratory. *is data set consists
of recordings from 10 subjects and each subject sat in a
relaxing chair with armrests and was asked to perform
imagery movements with three different tasks: left hand,
right hand, and the idle state. Motor imaging duration is 4
seconds. *e signals are recorded using 62 Ag/AgCl elec-
trodes at 1000 Hz sampling rate and each subject completed
125 trials per class, yielding a total of 375 trials. Among
them, 300 trials are used as the training set, and the
remaining data are used as the test set. In order to reduce
data redundancy and improve the efficiency of data pro-
cessing, we performed downsampling to reduce the fre-
quency to 250Hz.

3. Results and Discussion

In this section, we show the results of different methods on
training set and the test set. We used a 5-fold cross-vali-
dation method to process the training set and then use the
optimal parameters obtained in the training set for the
classification of the test set. All results are displayed by the
classification accuracy.

*e pseudocode for training the B2DDLPP feature ex-
tractor is presented in Table 1 and the validation results of
training set for Exp.1, Exp.2, and Exp.3 are presented in
Tables 2–4, respectively. For each subject, the highest average
recognition rate over all the cross-validation runs and the
corresponding feature dimension of different algorithms are
reported. We also studied the case where no feature ex-
traction method is utilized and the FBCSP features are di-
rectly passed to the classifier.

Table 2 shows that the average recognition accuracy of
B2DDLPP is improved by 2.81%, 8.47%, 7.07%, 4.86%, and
3.8% compared to those of None, LDA, 2DLDA, DLPP, and
2DDLPP, respectively. From the results, B2DDLPP has the
highest accuracy rate for each subject; and whether to use 2D
method or manifold learning method, it can be seen from
the comparison result that these two factors have an
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important influence on the accuracy of EEG classification. In
the operation of LDA and DLPP, vectorization of the
extracted matrix features will cause the loss of important
information. *ere is an indispensable connection in the
matrix structure, which has a great influence on the accuracy
of classification.*e accuracy of 2DLDA and 2DDLPP using
the 2D method has improved compared with the method
without 2D processing; and, compared to 2DLDA, the ac-
curacy of 2DDLPP increased by 3.27%, which shows that
keeping locality-geometric structure of EEG data in a
neighboring area plays an effective role in improving the
classification accuracy.

When compared with 2DDLPP, the result of B2DDLPP
has greatly improved. 2DDLPP only transforms the rows or
columns of matrix data, which inevitably leads to unnec-
essary information loss. B2DDLPP uses bilinear structure to
decompose the covariance matrix into row part and column
part, which has a better grasp of the internal interconnec-
tions of spatial data. *erefore, B2DDLPP can extract more
discriminative information. We can draw the same con-
clusion in Table 3.

*e overall recognition accuracy in Table 4 is not as high
as that in the other two tables. *e reason may be that the
subject of this data set is not a professionally trained person
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BP filter 

8–12Hz
BP filter 

36–40Hz
BP filter 
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Figure 1: Operation steps of FBCSP. Each trial in matrix feature contains spatial-spectral information.
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Figure 2: *e flow chart of the experiment.

Table 1: *e pseudocode for training the B2DDLPP feature extractor.

Algorithm: B2DDLPP
Inputs:
- Training sample XNf×Ng

. *e total number of samples is N. *e number of training samples in each class is Ni, 1≤ i≤Z.
Outputs:
- *e feature extraction operators UNf×Nf

and VNg×Ng
- the corresponding λl and cj values which determine the priority in selecting the

elements in feature matrix.
Procedure:
1. Calculate the spatial covariance matrix ψ and the spectral covariance matrix ϕ according to (18) and (19).
2. Calculate SBL and SBR according to (21) and (22).
3. Calculate the eigenvalues λl and the corresponding eigenvectors ul of ϕ

− 1SBL, 1≤ l ≤Nf. And calculate the eigenvalues cj and the
corresponding eigenvectors vj of ψ− 1SBR4. Construct U and V.
5. Calculate the feature matrix Y according to (24).
6. Choose the ylj elements of Y which correspond to the d largest λlcj values. D is the dimension after feature extraction.
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having a long-term specialized motor imaging training. *is
insufficient effective information in the original data leads to
the result, whereas, in Exp.1 and Exp.2, the subject is the
specially trained group of people, which generates less noise
when performing a motor imaging task. Table 4 shows that
the average recognition accuracy of B2DDLPP is improved
by 2.34%, 6.75%, 5.7%, 4.66%, and 3.66% compared to those
of None, LDA, 2DLDA, DLPP, and 2DDLPP, respectively.
*is result also fully proves the effectiveness of the 2D
method and manifold learning method for the extraction of
spatial and structural information from EEG signals.

It can be seen from the results of the three tables that
although B2DDLPP has the highest accuracy rate, the
classification accuracy of other feature extraction methods
listed in the table is a bit lower than the accuracy rate
without feature extraction. *e reason can be attributed to
the two following points: First, the methods of LDA and
DLPP are not very robust to noise. Among the acquisition
channels, the channels related to motor imagery are only a
part of them. In this experiment, in order to ensure the
integrity of the channel structure, we use the data of all
channels, which brings redundant data and noise. Second,
the extraction of effective information is insufficient.
2DLDA and 2DDLPP methods only transform the rows or

columns of matrix data and this one-sided compression is
not sufficient for the extraction of effective features in the
spatial-spectral matrix.

It should be noted that the parameter t related to the
calculation of the weight matrix in DLPP, 2DDLPP, and
B2DDLPP is set to 1.

*e following shows the results of the test set. *e results
of test set for Exp.1 and Exp.2 are presented in Figures 3 and
4, respectively. Note that the feature space dimensionality for
each method in test set is set based on the value of dop in the
validation phase.

We can see from the figures that the performance results
on the test data show a trend that is very similar to that of the
performance results during the cross-validation phase.

In addition, we studied the influence of different feature
dimensions on the effects of these methods. Figure 5 shows
recognition accuracy of all the methods on different number
of dimensions under three subjects in Exp.2. *e results in
the figure are shown by the average accuracy of 5-fold cross-
validation. We can see from the figure that the overall trend
of various methods rises slightly with the increase of the
dimension and finally tends to be flat. Combining the curve
results of the three subjects, the accuracy of the B2DDLPP
method is the highest, followed by 2DDLPP. *e results of

Table 2: Cross-validation performance results for different algorithms in Exp.1.

Feature
extraction Subj.1 (%) Subj.2 (%) Subj.3 (%) Subj.4 (%) Subj.5 (%) Subj.6 (%) Subj.7 (%) Subj.8 (%) Subj.9 (%) Average

(%)
None 84.72m� 3 57.70m� 1 87.23m� 2 54.93m� 4 63.81m� 2 50.71m� 4 88.61m� 1 87.84m� 4 81.05m� 1 72.88

LDA 79.22m� 1 51.78m� 1 79.57m� 1 50.38m� 1 63.94m� 1 44.81m� 1 85.91m� 1 75.04m� 1 74.34m� 1 67.22
dop � 72 dop � 64 dop � 53 dop � 47 dop � 7 dop � 6 dop � 10 dop � 22 dop � 58

2DLDA 83.27m� 1 55.19m� 2 78.44m� 2 50.33m� 1 67.32m� 2 44.56m� 1 86.10m� 1 77.43m� 2 74.97m� 1 68.62
dop � 6 dop � 5 dop � 4 dop � 4 dop � 3 dop � 5 dop � 4 dop � 7 dop � 5

DLPP 80.55m� 2 55.56m� 1 84.38m� 1 54.17m� 2 63.20m� 1 50.69m� 2 88.19m� 1 80.55m� 2 80.21m� 2 70.83
dop � 134 dop � 65 dop � 72 dop � 106 dop � 69 dop � 122 dop � 51 dop � 132 dop � 128

2DDLPP 84.03m� 1 56.40m� 1 86.60m� 1 52.71m� 3 65.89m� 2 49.66m� 2 88.97m� 1 81.79m� 2 80.98m� 1 71.89
dop � 6 dop � 7 dop � 7 dop � 9 dop � 9 dop � 6 dop � 9 dop � 7 dop � 9

B2DDLPP 86.80m� 2 61.11m� 1 89.61m� 1 58.64m� 2 71.91m� 2 53.48m� 1 90.61m� 1 85.38m� 4 83.68m� 1 75.69
dop � 142 dop � 58 dop � 44 dop � 126 dop � 70 dop � 67 dop � 63 dop � 167 dop � 52

For each method and each subject, optimal m related to FBCSP’s output and the optimal dimension (dop) are presented.

Table 3: Cross-validation performance results for different algorithms in Exp.2.

Feature Extraction Subj.1 (% m, dop) Subj.2 (% m, dop) Subj.3 (% m, dop) Average (%)

None 81.67m� 1 56.67m� 1 58.33m� 2 65.56
LDA 78.89m� 1,dop � 59 58.33m� 2,dop � 37 53.33m� 2,dop � 103 63.52
2DLDA 79.89m� 2,dop � 8 58.50m� 2,dop � 3 55.17m� 2,dop � 3 64.52
DLPP 85.00m� 1,dop � 58 57.50m� 1,dop � 22 52.50m� 1,dop � 30 65.00
2DDLPP 85.44m� 3,dop � 5 54.33m� 1,dop � 7 57.67m� 1,dop � 7 65.81
B2DDLPP 87.22m� 1,dop � 37 60.00m� 2,dop � 79 64.17m� 1,dop � 26 70.46
For each method and each subject, optimal m related to FBCSP’s output and the optimal dimension (dop) are presented.
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DLPP and 2DLDA are not much different, and the worst is
the LDA method. Different methods have different ex-
traction capabilities for spatial information and structural
information and the effect of this extraction determines the

final accuracy. *e results also show that B2DDLPP can
achieve a high accuracy rate in the case of low feature di-
mensions, which can greatly help reduce the complexity of
data and extract effective features.
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Figure 3: *e results of the test set for Exp.1. *e figure shows the accuracy of 9 subjects and the average accuracy of them.
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Figure 4: *e results of the test set for Exp.2.
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4. Conclusions

In this paper, we propose a B2DDLPP algorithm. By adding
the matrix-variate Gaussian model and a bilinear structure,
B2DDLPP decomposes the within-class covariance matrix
and the between-class scatter matrix to obtain the optimal
projection matrix. As a matrix-based method, B2DDLPP is
more effective for extracting spatial information than vector-
based methods. At the same time, the bilinear structure
further enhances this effect.

In order to fully verify the effectiveness of the algorithm,
we apply the B2DDLPP algorithm to three EEG data sets in
this paper. *e results show that B2DDLPP has a higher
feature extraction performance compared to other methods.
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[11] J. Kortelainen, E. Väyrynen, and T. Seppänen, “Isomap ap-
proach to EEG-based assessment of neurophysiological
changes during anesthesia,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 19, no. 2,
pp. 113–120, 2011.

[12] R. Yuvaraj, M. Murugappan, N. M. Ibrahim et al., “Optimal
set of EEG features for emotional state classification and
trajectory visualization in Parkinson’s disease,” International
Journal of Psychophysiology, vol. 94, no. 3, pp. 482–495, 2014.

[13] M. Xing, Cought Chart: Tracking Dynamic EEG Brain
Connectivity with Unsupervised Manifold Learning, pp. 149–
157, Springer International Publishing, New York, NY, USA,
2016.

[14] M. Li, X. Luo, J. Yang, Y. Sun, and E. Martinelli, “Applying a
locally linear embedding algorithm for feature extraction and
visualization of MI-EEG,” Journal of Sensors, vol. 2016, Article
ID 7481946, 9 pages, 2016.

[15] K. Sadatnejad, S. Ghidary, and Shiry, “Kernel learning over
the manifold of symmetric positive definite matrices for di-
mensionality reduction in a BCI application,” Neuro-
computing, vol. 179, pp. 152–160, 2016.

[16] E. Krivov and M. Belyaev, “Dimensionality reduction with
isomap algorithm for EEG covariance matrices,” in Pro-
ceedings of the 2016 4th International Winter Conference on
Brain-Computer Interface (BCI), pp. 1–4, Gangwon-do,
Korea, February 2016.

[17] M.Wan, G. Yang, C. Sun, andM. Liu, “Sparse two-dimensional
discriminant locality-preserving projection (S2DDLPP) for
feature extraction,” Soft Computing, vol. 23, no. 14,
pp. 5511–5518, 2019.

[18] X. He and P. Niyogi, “Locality preserving projections,” NIPS,
vol. 16, pp. 234–241, 2003.

[19] X. He, D. Cai, S. Yan, and H. J. Zhang, “Neighborhood
preserving embedding,” IEEE International Conference on
Computer Vision, pp. 1208–1213, 2005.

[20] W. Yu, X. Teng, and C. Liu, “Discriminant locality preserving
projections: a new method to face representation and rec-
ognition,” in Proceedings of the 2005 IEEE International
Workshop on Visual Surveillance and Performance Evaluation
of Tracking and Surveillance, pp. 201–207, October 2005.

[21] M. S. Mahanta, A. S. Aghaei, and K. N. Plataniotis, “A Bayes
optimal matrix-variate LDA for extraction of spatio-spectral
features from EEG signals,” in Proceedings of the 2012 Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 3955–3958, San Diego, CA, USA,
August 2012.

[22] R. Zhi and Q. Ruan, “Facial expression recognition based on
two-dimensional discriminant locality preserving projec-
tions,” Neurocomputing, vol. 71, no. 7-9, pp. 1730–1734, 2018.

[23] Z. Qiao, L. Zhou, and J. Z. Huang, “Sparse linear discriminant
analysis with applications to high dimensional low sample size
data,” Iaeng International Journal of Applied Mathematics,
vol. 39, no. 1, pp. 48–60, 2009.

[24] A. Jiang, Q. Wang, J. Shang, and X. Liu, “Sparse common
spatial pattern for EEG channel reduction in brain-computer
interfaces,” in Proceedings of the 2018 IEEE 23rd International
Conference on Digital Signal Processing (DSP), pp. 1–4,
Shanghai, China, November 2018.

[25] D. Wen, P. Jia, Q. Lian, Y. Zhou, and C. Lu, “Review of sparse
representation-based classification methods on EEG signal
processing for epilepsy detection, brain-computer interface
and cognitive impairment,” Frontiers in Aging Neuroscience,
vol. 8, p. 2016, 2016.

[26] Y. Zhang, Y. Wang, J. Jin, and X. Wang, “Sparse bayesian
learning for obtaining sparsity of EEG frequency bands based
feature vectors in motor imagery classification,” International
Journal of Neural Systems, vol. 27, no. 2, Article ID 1650032,
2017.

[27] J. Wen, X. Fang, J. Cui et al., “Robust sparse linear dis-
criminant analysis,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 29, no. 2, pp. 390–403, 2019.

[28] A. Gupta and D. Nagar, Matrix Variate Distributions,
Vol. 104, CRC Press, Boca Raton, FL, USA, 1999.

[29] J. Zhao, P. L. H. Yu, L. Shi, and S. Li, “Separable linear
discriminant analysis,” Computational Statistics and Data
Analysis, vol. 56, no. 12, pp. 4290–4300, 2012.

[30] R. Zhi and Q. Ruan, “Facial expression recognition based
on two-dimensional discriminant locality preserving
projections,” Neurocomputing, vol. 71, no. 7-9,
pp. 1730–1734, 2008.

[31] K. K. Ang, “filter bank common spatial pattern (FBCSP) in
brain-computer interface,” in Proceedings of the 2008 IEEE
International Joint Conference on Neural Networks,
pp. 2390–2397, IEEE World Congress on Computational
Intelligence, Hong Kong, China, June 2008.

[32] G. Dornhege, B. Blankertz, G. Curio, and K.-R. Muller,
“Boosting bit rates in noninvasive EEG single-trial classifi-
cations by feature combination and multiclass paradigms,”
IEEE Transactions on Biomedical Engineering, vol. 51, no. 6,
pp. 993–1002, 2004.

Computational Intelligence and Neuroscience 11



[33] Y. Zhang, J. Liu, J. Liu, J. Sheng, and J. Lv, “EEG recognition of
motor imagery based on SVM ensemble,” in Proceedings of the
2018 5th International Conference on Systems and Informatics
(ICSAI), pp. 866–870, IEEE, Nanjing, China, November 2018.

[34] M. Riyadi, T. Prakoso, F. Whaillan, M. David, and
A. Hidayatno, “Classification of EEG-based brain waves for
motor imagery using support vector machine,” in Proceedings
of the 2019 International Conference on Electrical Engineering
and Computer Science (ICECOS), pp. 422–425, IEEE, Ban-
dung, Indonesia, October 2019.

[35] Y. Park and W. Chung, “Optimal channel selection using
covariance matrix and cross-combining region in EEG-based
BCI,” in Proceedings of the 2019 7th International Winter
Conference on Brain-Computer Interface (BCI), pp. 1–4, IEEE,
Gangwon, South Korea, February 2019.

12 Computational Intelligence and Neuroscience


