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Abstract
Modern social media are becoming overloaded with information because of the rapidly-

expanding number of information feeds. We analyze the user-generated content in Sina

Weibo, and find evidence that the spread of popular messages often follow a mechanism

that differs from the spread of disease, in contrast to common belief. In this mechanism, an

individual with more friends needs more repeated exposures to spread further the informa-

tion. Moreover, our data suggest that for certain messages the chance of an individual to

share the message is proportional to the fraction of its neighbours who shared it with him/

her, which is a result of competition for attention. We model this process using a fractional

susceptible infected recovered (FSIR) model, where the infection probability of a node is

proportional to its fraction of infected neighbors. Our findings have dramatic implications for

information contagion. For example, using the FSIR model we find that real-world social net-

works have a finite epidemic threshold in contrast to the zero threshold in disease epidemic

models. This means that when individuals are overloaded with excess information feeds,

the information either reaches out the population if it is above the critical epidemic threshold,

or it would never be well received.

Introduction
Because of the expanding size of such online social networks (OSNs) as Facebook and Twitter,
modern media carry an enormous amount of user generated content. As their impact on soci-
ety is increasing, much interest is now being focused on the spreading mechanism in social net-
works. In order to understand the mechanisms underlying information diffusion, many studies
involve analyzing large amounts of empirical data [1–7], and others formulate predictions of
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how popular a particular piece of information will become [8, 9]. The susceptible infected
recovered (SIR) model [10] of disease epidemics is frequently used to model the spread of
information.

Although disease, opinion, and information spreading all share significant similarities, fun-
damental differences remain. In the spread of disease [11–15], every person coming in contact
with an infected individual has the same probability of being infected, and the infected individ-
ual continues to infect others until it no longer has the disease. In contrast, an individual with
many friends may not share a held opinion if only a few of the friends agree with the opinion.
Indeed, in many opinion models [16–29] individuals strongly tend to conform to the majority
opinion of their friends. The spreading of information on OSNs is similar to that in epidemic
and binary-choice opinion models, but the detailed mechanisms can differ. Studies [30, 31]
have shown that the epidemic models do not reproduces certain empirical statistics observed
in information spreading, and modifications on ‘inactive’ and ‘ignorant’ behaviours could sig-
nificantly improve model results, and the influence of super-spreaders are present to ensure
the matching statistics between models and empirical data. Social experiments have found that
individuals often adopt new social behaviors when they are strongly influenced by repeated sig-
nals from friends [32], and extensive empirical study of Facebook found that the predominant
component of Internet content spreading is the influence of “weak” links, e.g., the viewing of
content generated by individuals with whom the viewer has had no interaction. This suggests
that these weak links play a much more important role in information diffusion in OSNs than
in face-to-face social networks where there is social interaction [33]. This same study [33] and
others [34] also found that most of the spreading of online information occurs within the first
day of its posting, indicating a short lifetime and a decaying rate of diffusion similar to that in
the spread of disease. In addition to the social reinforcement behaviors discovered in Ref. [32],
Ref. [34] also found that highly connected nodes (individuals with many friends) are less likely
to spread (pass on) incoming information.

Although most empirical analyses focus on large data sets and use average statistics as a ref-
erence when determining universal spreading mechanisms, there is evidence [35] that spread-
ing modes differ as information types differ and that they are also influenced by the number of
linked “friends” a user has. Here we examine a set of popular messages on the Chinese micro-
blog site Sina Weibo to determine the number of repeated message “shares” an individual
needs to receive before they in turn share the message. We find that much of the viral spreading
of popular messages follows a fractional SIR model, i.e., an individual with a large number of
friends needs more repeated signals before sharing a message than one with a few number of
friends. The analysis also suggests that the probability that an individual will share a message is
proportional to the fraction of its friends that have shared it with him or her. This mechanism
leads to a phase transition behavior in the spreading, i.e., messages with attractiveness below a
critical threshold will not spread to a significant fraction of the population of the OSN, and
those above the critical threshold will.

Empirical Motivation

Data Source
We obtain our data from the micro-blog site Chinese Sina Weibo (www.weibo.com), one of
most popular social media channels in China. It is similar to Twitter and by the end of 2012
had more than 40,000,000 active users [36]. A user can view messages that other users post but
cannot send messages to them unless the other users elect to “follow” this user. The messages
are limited to 140 Chinese characters. The number of people a user with a free account can fol-
low is limited to 2000. (A tiny number of users elect to have the paid account option that allows
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a higher limit.) Fig 1 shows the transmission pattern for one of the popular messages on
Weibo. The purple dots are users who have shared the message, and the green lines are the
paths through which the message has spread. The spreading is a branching process that origi-
nates from a first node near the bottom of the figure.

In many empirical studies of information diffusion and user behavior in social media, aggre-
gate statistics have been derived using a large amount of information content [7, 37]. Although
this approach has the advantage of having large data sets and reliable statistics, it ignores the
heterogeneity of information content and its effect on any findings.

In order to examine how message transmission dynamics vary as the type of message varies,
we select the most popular 286 messages that were shared at least 40,000 times in December
2012 (data available in S1 File). Because we focus solely on these popular messages, we avoid
the need to identify and filter spam [38]. For each message, we obtain the diffusion process by
identifying every node (every user account) that has shared the message and recording the time
of each sharing. For each node in this diffusion tree, we get the number of times it receives the
same message from friends before it in turn shares the message. We do this by combining the
network structure data with the sharing-time data.

Empirical Observations
We first define three quantities:

i. The number of users Ni sharing message i, which in epidemic spreading terms corresponds
to the total number of individuals who have been infected and have recovered.

ii. The fraction of users sharing the same message as R = Ni/N, where N is the total number of
active Weibo users.

iii. The total number of followees of user j (the total number of users being followed by j) who
share share a message with j before j shares the message is defined as k�j . In the epidemic

model this corresponds to the number of infected neighbors of node j before j is infected.
The total number of users that user j follows is defined as kj. For each message, we denote
the average of k�j of all the users sharing this same message as hk_i.
Fig 2 shows that in the majority of these messages have an average value hk_i< 2. This is in

contrast to the SIR model of scale-free networks in which, as we examine in more detail below,
hk_i> 2.

Thus the hypothesis of our new model is that the spread of information in an OSN differs
from the spread of a disease during an epidemic. In an OSN users pay only limited attention to
incoming information and as the number of their contacts increase this attention to each con-
tact decreases further. In the following section we test this hypothesis by comparing the out-
come from our model with real-world data.

The Fractional SIR (FSIR) Model
In our fractional SIR (FSIR) model we assume that, as the number of friends a user has
increases, the number of enforcements from these friends of a particular message required
before the user passes the message on (“spreads the infection further”) also increases. Because
the total amount of attention a user can pay to the OSN is limited, we hypothesize that the
amount of influence from each neighbor is inversely proportional to the total number of con-
tacts (followees) the user has.

Evidence exists [39] that despite the large amount of information a node with high connec-
tivity k can receive, the amount of information it shares is not significantly greater than the
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Fig 1. Graphical representation of a diffusion tree on SinaWeibo. This is a graphic representation for one of the popular messages onWeibo, and the
branching process can be seen. It has been shared more than 190,000 times. The purple dots represent users who have shared the message, and green
lines represent the paths through which the messages are spread. If a user A shared the message from user B, a green line is drawn between both. The
clusters of purple dots corresponds to a user with a large number of followers who have shared the message from this user.

doi:10.1371/journal.pone.0126090.g001
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amount of information shared by a node with low connectivity k. Thus the total amount of
attention a node can pay to the total information received from all of its neighbors is limited,
irrespective of the node’s connectivity (there is a cognition limit). If all nodes thus have approx-
imately the same cognition limit, an increasing overload of information will cause the higher-
degree nodes to pay a decreasing amount of attention to information received from each of its
contacts.

Our model assumes a network of N nodes, each representing a user account on the OSN in
which the number of contacts k of a node is given by a degree distribution P(k). In the real-
world Weibo network the links are directed because the follower of a user account can see its
posts but the user account cannot see the posts of its followers. For simplicity we use undirected
networks in our analysis. Reference [40] shows that on the microblog site Twitter the users
sharing the most messages are also the ones receiving the most messages despite the fact that
the number of their followers differ from their number of followees. Hence an undirected net-
work is a good approximation of message flow in a social network. The spreading mechanism
in our model is as follows:

1. A node has information (is infected) at step t = 0. At a subsequent time t, for each node i
that has not shared the information (has not been infected but is susceptible) but has friends

Fig 2. Plot of hk_i for each of the the most popular messages as a function of Ni.Messages are the most popular ones from SinaWeibo in December
2012. Majority of the most popular messages have average preceding sharing neighbors smaller than 2, which contradicts the SIR model. This hints that the
mechanismmight be different from SIR models for disease spreading for scale-free network of OSN type.

doi:10.1371/journal.pone.0126090.g002
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that have (have been infected), the probability that i will subsequently share the information
(the infection) from each infected (sharing) friend (followee) is γ/ki, where ki is the degree
of node i.

2. τ time steps after sharing (infection), an infected individual recovers and cannot be infected
again (is no longer visible to its neighbors on the Internet). Hence the probability a suscepti-
ble node will be infected by a sharing friend is Tkj = 1 − (1 − γ/kj)

τ, where kj is the degree of
the susceptible node j.

3. At the final steady state nodes can no longer be infected, and all of the nodes in are in the
recovery or susceptible state. The message is no longer being shared.

Here γ is the intrinsic attractiveness of the information, and τ is the visible duration on the
feeds of a user’s followers.

Step one of our model differs from the corresponding step in the SIR model. In the SIR
model, the probability of infection is γ (and is independent of the degree of the susceptible
node), and the effective probability of infection is T = 1 − (1 − γ)τ and is independent of k. In
contrast, the infection probability in our FSIR model is determined by the individual node
degree γ/k. Thus a node of degree k can be infected with probability Tk = 1 − (1 − γ/k)τ. In a
real-world OSN, k� γ, and thus Tk � γτ/k = Γ/k, with Γ� γτ. In the case of SIR, T� Γ for
any node of any degree k.

We perform FSIR and SIR simulations on a scale-free network of size N = 100,000 and
degree distribution P(k)* k−λ, with λ = 2.5, which is the approximate empirical degree distri-
bution of real-world OSNs. We fix the average degree at hki = 50 to stay close to real-world
OSNs. Since the popularity of the empirical data is typically less than 0.5% of the total popula-
tion of users (200,000 shares out of 40,000,000 active users), i.e., R� 0.5%, we use Γ values in
our simulations that give similar R values, which corresponds to Ni� 500. We run 5000 reali-
zations for both the FSIR and the SIR model, and select out the realizations in which Ni > 200,
which corresponds to the R values of the highly popular messages selected from real-world
data.

Fig 3 shows the simulation results for FSIR and SIR models with Γ values that give outbreak
fractions around 0.5%. In order to match the empirical R value of 0.005, we assume Γ = 0.7 for
FSIR and Γ = 0.15 for SIR. Comparing A, D, and G in Fig 3, we see that FSIR produces hk_i val-
ues below 2 that do not change significantly with Ni, which is similar to the empirical observa-
tion in A. In contrast, the range of hk_i values in the SIR model is mostly above 2 and the
values increase with Ni. Later we show that the FSIR has a phase transition at Γc� 1. This sug-
gests that the most popular messages will spread below a critical threshold, which is similar to
the FSIR mechanism but not to the SIR. Comparing B, E, and H, we see that the FSIR model
produces a distribution of Ni that decreases as Ni increases, which similar to the empirical dis-
tributions. In contrast, the distribution of the SIR model is uniform. Fig 3C, 3F and 3I show
that the number of messages with values of hk_i< 2 in the empirical data clearly resemble
those of the FSIR simulations, not the SIR simulations in which most of the k_ values are above
2. Thus the FSIR simulations capture the statistical properties of real data closely and the SIR
simulations do not.

Our analysis thus strongly suggests that highly popular messages spread with a mechanism
closely modeled by FSIR simulations but not conventional SIR simulations. This supports the
hypothesis that a user with a larger number of neighbors will be proportionally less influenced
by each of them, a clear contrast to SIR behavior. Note however that there are a small number
of messages in which hk_i> 2. Perhaps this indicates that while most of the highly popular
messages will follow the FSIR mechanism below the critical threshold, there are some that are
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above it. These do not tend to be among the most widely spread, however, and this could be
due to their overall short lifespan. For example, a message about an upcoming election will be
of interest to users prior to the election day. After the election the message disappears.

The phase transition of the FSIR model
We next analyze the impact of the FSIR mechanism on information epidemics. On scale-free
networks (or networks with broad degree distributions) the SIR mechanism has a critical
threshold for epidemics of Γc� 0. This means that any disease is able to infect a considerable

Fig 3. Comparison between empirical data and simulation results of FSIR and SIRmodels. In the simulation, the total number of nodes is N = 100,000.
The degree distribution is chosen at P(k)* k−2.5, kmin = 20 and hki � 50. With these parameters this distribution is close to the empirical distribution of OSNs.
The chosen parameter Γ = 0.7 for FSIR and 0.15 for SIR is such that the fraction of infected nodes R = Ni/N� 0.5%, is close to the empirical R values of the
most popular messages. As we can see, for empirical and FSIR, hk_i values does not change significantly with Ni as seen in A and D. However, as seen in G,
SIR shows a clear increase of hk_i as a function of Ni. As seen in D and F, most of the real messages and FSIR result have hk_i < 2, meaning they are small
outbreaks below epidemic threshold. But in I, we see that for SIR simulations, hk_i > 2. This means the messages are epidemics spreading rather than small
outbreaks. In B and E, we show that both real data and FSIR have similar distributions of Ni values, with number of messages decreases significantly with
increasing popularity Ni. This is in contrast to SIR result in H. Hence through simulations, we show that FSIR captures the statistics of real data from popular
messages, yet SIR does not.

doi:10.1371/journal.pone.0126090.g003
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proportion of a population regardless of its intrinsic ability to spread. As suggested above, the
spread of information in a OSN follows the FSIR mechanism, and thus, as we will show below,
the critical threshold is Γc� 1. Below this critical Γc threshold, information “outbreaks” can
develop but not information “epidemics”. Above this threshold the information can diffuse to
a much wider finite fraction of the user population. Fig 4 plots the FSIR simulation results for
scale-free networks with two different values of λ. In these simulations N = 100,000, τ = 2, and
kmin = 20 for λ = 2.5 and λ = 3. As Γ increases the FSIR shows a critical phase transition at Γc�
1, which differs from the SIR [12] in which Γc � 0 for N!1.

For a random network with degree distribution P(k) in the FSIR model, Tk � Γ/k. Using the
generating function formalism [10, 41–43] for an inhomogeneous Tk, we can derive the proba-
bility f1 that a branch of infection reaches infinity using the self-consistent equation

f1 ¼ 1� G1 1� G
k
f1

� �
; ð1Þ

Fig 4. R as a function of Γ for τ = 2 withN = 105 on SF networks with λ = 2.5 (black) and λ = 3 (red) and kmin = 20. As shown in the plots FSIR has a
critical point around Γc � 1, independent of the degree distribution. The same critical value Γc is observed for other degree distributions with different
parameter settings.

doi:10.1371/journal.pone.0126090.g004
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where

G1 1� G
k
x

� �
¼

X
k

kPðkÞ
hki 1� G

k
x

� �k�1

: ð2Þ

The non-trivial solution of Eq (1) gives the value of f1 for a given value of Γ that corre-
sponds to the intersection between the identity and the right side of Eq (1). At criticality there
is only one root that corresponds to f1 = 0. Thus the left side of Eq (1) must be tangent to the
identity at f1 = 0. In other words, the derivative of Eq (1) evaluated on this root must be one.
Thus

Gc

P
kðk� 1ÞPðkÞ

hki ¼ 1; ð3Þ

and

Gc ¼
hki

hki � 1
; ð4Þ

independent of the degree distribution P(k) (see Fig 5). In a real OSN in which hki is of the
order of 100, Γc� 1.

The fact that Γc = 1 has a significant impact on information epidemics means that, in an
OSN, most messages cause small information outbreaks at best, and only highly attractive and
interesting messages (Γ> 1) reach a significant fraction R of the user population. The Γ value
of individual messages depends not only on how attractive, interesting, or novel a particular
message is, but also on how attractive, interesting, or novel all the other messages being shared
during the same period are. The novelty and attractiveness of all messages can theoretically
double, i.e., the Γ value of every message can double, but the attention of the users cannot.
Thus what matters is the Γ value of a particular message as compared to the Γ values of all the
other messages, because all messages are competing for attention from the same user popula-
tion. In other words, γ values can indicate the weighted novelty of a message compared to all
other messages. If there are too many messages with similar a level of novelty, it is probable
that none of them will have Γ> 1, and thus none will prevail. When there is an individual mes-
sage that much more interesting than all the other messages, it may capture a considerable frac-
tion of the user population.

Discussion
Note that the FSIR mechanism is more likely to be present in situations of information over-
load. When there is an information overload, users select what they will share and what they
will ignore. This is what makes information spreading distinctively different from the spread of
disease. A piece of information competes with all other pieces of information for the attention
of users (“nodes”), but disease epidemics can utilize every opportunity to spread to other indi-
viduals irrespective of the presence of other diseases. In fact, an individual who has been
exposed to many diseases ismore likely to be infected. In contrast, an individual inundated by
an overload of messages is less likely to view, remember, or pass on any of them.

Information overload also shortens the visibility duration for popular messages. Because
messages come to a user every day, new messages appearing above old messages, an informa-
tion overload means any message, however popular, will rapidly lose its visibility, thus effec-
tively shortening the τ value. Even extremely popular units of information content die quickly.
An outstanding example was the immensely popular but short-lived “Gangnam Style”music
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video that quickly spread across the world—receiving over one billion views on Youtube—and
then soon after lost its popularity. There are many other current examples in pop culture and
on the Internet of subjects that quickly become world-wide topics and then quickly disappear.
In marketing also, many products compete with each other and overload consumers with
advertising messages, which may influence them, and their choices may in turn influence their
friends, but the result is usually a handful of brands dominating a market with the rest of the
brands fighting for survival.

Because this critical phenomenon is present irrespective of network structure, and because
people encounter information overload in many settings, the FSIR mechanism and its associ-
ated phase transition phenomenon are present in many other real-world contexts. As informa-
tion spreads across an OSN according to either the SIR or FSIR mechanism, any attempt to
predict the popularity of a unit of information content must first determine which mechanism
is present. Only then can business or government institutions, for example, obtain useful
insights into the behavior of information speading.

Fig 5. Plot of R as a function of Γ for different types of random networks.Regardless of the types of networks, the critical threshold for phase transition
Γc is always larger than 1.0. For networks with larger hki values, Γc is closer to 1.0 as predicted by Eq (4).

doi:10.1371/journal.pone.0126090.g005
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The bigger question raised from this work is what determines the spreading mechanism of a
message, and what contributes to its novelty value (Γ value). Related empirical studies [44, 45]
on social contagion of products provided valuable insights into some important features of
marketing campaigns that induces viral spreading. Our work provides a systematic framework
to mathematically relate such features to adoption rates. We believe that, combining our math-
ematical framework with large pool of data and the right methodology from machine learning
and text mining, more can be achieved in this field with immense social values.

Supporting Information
S1 File. Microblog spreading data. This zip file contains the sharing details of all of the micro-
blogs we have used in the Figs 2 and 3. Among the files, ‘Instruction.txt’ describes the contents
of the files.
(ZIP)
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