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Abstract

Genomic selection is a well-investigated approach that facilitates and supports selection decisions for complex traits and has meanwhile
become a standard tool in modern plant breeding. Phenomic selection has only recently been suggested and uses the same statistical pro-
cedures to predict the targeted traits but replaces marker data with near-infrared spectroscopy data. It may represent an attractive low-
cost, high-throughput alternative but has not been sufficiently studied until now. Here, we used 400 genotypes of maize (Zea mays L.) com-
prising elite lines of the Flint and Dent heterotic pools as well as 6 Flint landraces, which were phenotyped in multienvironment trials for
anthesis-silking-interval, early vigor, final plant height, grain dry matter content, grain yield, and phosphorus concentration in the maize ker-
nels, to compare the predictive abilities of genomic as well as phenomic prediction under different scenarios. We found that both
approaches generally achieved comparable predictive abilities within material groups. However, phenomic prediction was less affected by
population structure and performed better than its genomic counterpart for predictions among diverse groups of breeding material. We
therefore conclude that phenomic prediction is a promising tool for practical breeding, for instance when working with unknown and rather
diverse germplasm. Moreover, it may make the highly monopolized sector of plant breeding more accessible also for low-tech institutions
by combining well established, widely available, and cost-efficient spectral phenotyping with the statistical procedures elaborated for ge-
nomic prediction - while achieving similar or even better results than with marker data.
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Introduction
Plant breeding was revolutionized by the advent of genotypic in-
formation in the form of marker data. The seemingly obvious ad-
vantage was to introduce science to a subject formerly largely
deemed as art (Jiang et al. 2020). This development has only oc-
curred in the last decades with many approaches from quantita-
tive trait loci (QTL) mapping (Würschum 2012) to genome editing
developed since then (Benavente and Gim�enez 2021). Among
these approaches is genomic selection, which was first imple-
mented in animal breeding (Meuwissen et al. 2001), but has
meanwhile also become a standard breeding tool for the predic-
tion and subsequent selection of complex traits in plant breeding.
Selection using genomic predictions was shown to lead to higher
gains compared to pure phenotypic selection (Bernardo 2021b).
There are different models that can be applied to perform geno-
mic selection (Heffner et al. 2009) and many studies elaborating
on, refining and comparing genomic selection approaches differ-
ing in their assumption with regard to the marker effect distribu-
tion are available (e.g. Resende et al. 2012; Thavamanikumar
et al. 2015). Ridge regression best linear unbiased prediction

(RR-BLUP), which assumes a homogeneous variance of all marker
effects on the entire genome, has proven to be a robust method
for predicting traits with many small-effect QTL (Heslot et al.
2012), as it generally results in high predictive abilities, expressed
as the correlation between predicted and observed trait values.
Besides QTL effects, the methods used for genomic prediction
also exploit relatedness among individuals to achieve their pre-
dictive ability (Schopp et al. 2017; Bernardo 2021a). Special atten-
tion was also given to the role of the training set in genomic
selection as its composition and relatedness to the prediction set
are known to strongly impact prediction accuracies (e.g.
Riedelsheimer et al. 2013; Schopp et al. 2015; Zhu et al. 2021). In
general, genomic prediction is utilized to assist in a better use of
available financial resources within the breeding process. It
should be noted though, that generating marker data by genotyp-
ing is still cost-intensive and - if not outsourced - requires a cer-
tain laboratory infrastructure. There have been several advances
and attempts in different crop species to include omics data
other than genomics as predictors, but to date these are more dif-
ficult to obtain and more expensive than genotypic data
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(Riedelsheimer et al. 2012; Westhues et al. 2017; Schrag et al.
2018; Stich et al. 2020; Knoch et al. 2021).

Relatively new is the concept of phenomic selection, which was
first proposed by Rincent et al. (2018) with the species poplar and
wheat. The basic principle is to use near-infrared spectroscopy
(NIRS) data instead of the marker data of each genotype for pre-
diction. Hence, all wavelength information is used jointly. By
this, the approach differs by definition from the traditional and
ordinary NIRS application, which makes use of calibrations of
only few wavelengths to predict specific traits (e.g. Melchinger
et al. 1986). Several studies have successfully incorporated a set
of wavelengths into the prediction models (Aguate et al. 2017;
Hayes et al. 2017; Montesinos-López et al. 2017; Krause et al.
2019; Parmley et al. 2019; Galán et al. 2020); however, very few
have investigated the innovative approach of phenomic selection
as an alternative or complementary tool to facilitate selection
decisions in breeding (Rincent et al. 2018; Lane et al. 2020). As a
consequence, several questions with regard to the potential of
applying phenomic selection in plant breeding still remain open.
By providing answers to these questions, we might be able to
broadly and routinely utilize this approach in breeding and
thereby eliminate the need for genotyping (Lane et al. 2020). This
might specifically empower less high-tech breeding companies
and institutions, since an NIR spectrometer is rather easy to buy
and maintain compared to a genotyping laboratory.

Hence, this study was motivated to contribute filling this gap,
particularly regarding the performance of genomic and phenomic
prediction within and among diverse groups of breeding material.
To this end, we employed a set of 400 genotypes of maize - half
elite material from two heterotic groups, half from 6 diverse land-
races - to predict 6 traits relevant for maize breeding, i.e.
anthesis-silking-interval, early vigor, final plant height, grain dry
mattercontent, grain yield, and phosphorus concentration in the
maize kernels. We particularly aimed to (1) estimate the predic-
tive abilities of phenomic and genomic prediction within groups
and among groups and to compare both approaches, (2) assess
how population structure may influence predictive abilities of
both approaches, (3) evaluate the impact of training set composi-
tion on the predictive abilities obtained by phenomic and geno-
mic prediction, and (4) draw conclusions for practical plant
breeding.

Materials and methods
For a better overview, the different steps of data processing are
visualized in Supplementary Fig. 1. Overall, 3 threads were de-
fined, namely phenotypic, genotypic, and NIRS data processing.

Phenotypic data
Field experiments
In total, 400 genotypes were investigated in this study. These
comprised 100 elite Dent (ED) lines, 100 elite Flint (EF) lines and
200 lines from 6 Flint landraces (LR) (Fig. 1a). The genotypes of
the landraces group were immortalized as doubled-haploid lines
and are comprised of the following 6 landraces: Campan-Galade
(CG; n¼ 11) originating from France, Gelber Badischer (GB; n¼ 33)
from Germany, Sankt Galler Rheintaler (RT; n¼ 14) from
Switzerland, Satu Mare (SM; n¼ 53) from Romania, Strenzfelder
(SF; n¼ 30) from Germany, and Walliser (WA; n¼ 59) from
Switzerland. The plant material has been described in previous
studies (Böhm et al. 2017; Würschum et al. 2021). Three different
location-year-combinations served as environments for the phe-
notypic data used in this study, the experimental station for

plant breeding in Hohenheim (HOH; 48�43005.700N, 9�11020.800E;

389 m above sea level) during the field seasons 2019 and 2020 and

the experimental station Eckartsweier (EWE; 48�32024.700N,

7�51015.100E; 139 m above sea level) during the field season 2020.

Average precipitation and mean temperatures over the last 5

years of the two locations amounted to 663.3 mm, 10.3�C and

683.3 mm, 11.5�C, respectively (Agrometeorology Baden-

Württemberg 2021). The field trials were laid out as alpha latti-

ces, designed with the software CycdesigN (VSN International

2018), and each genotype was replicated twice. Standard seed

and field treatments were applied before and during the field sea-

son. The net plot size was 6 m2 and the sowing density was 8.66

plants/m2. The following 6 phenotypic traits were assessed in

this study in all location-year-combinations corresponding to

2,400 plots in total: anthesis-silking interval (ASI; days between

50% pollen shedding and 50% visible silks of a plot), early vigor

(EV; 1 ¼ “very poor” to 9 ¼ “very vigorous” score), final plant

height (Final PH; for HOH measured as the mean of 3 single

plants, for EWE as one estimated value over the whole plot, given

in cm), grain dry matter content (in %), grain yield (GYield in

t/ha), and P concentration in the maize kernels [Pconc; for

HOH_2019 and EWE_2020; milled to 1 mm, measured by means

of X-ray fluorescence (Bruker, Billerica, MA, USA) in ppm].

Best linear unbiased estimation
The raw data were subjected to the Bonferroni-Holm outlier de-

tection (Bernal-Vasquez et al. 2016) using the R-package

“multtest” (Pollard et al. 2005). The hereafter described mixed

model was applied for the multiple environment analyses using

the software ASRemL-R 3.0 (Butler et al. 2009):

yijkl ¼ lþ gi þ ej þ ðgeÞij þ rjk þ bjkl þ eijkl (1)

where the phenotypic trait value yijkl is explained by the overall

mean l, the factor genotype gi, the location-year-combinations

denoted here as environments ej, the interaction of genotype and

environment ðgeÞij, the design variables replication rjk and block

effect bjkl each nested within the environment, and the error term

eijkl; for which a homogeneous variance was assumed.
By taking all factors as random into the model, broad-sense

heritabilities (Cullis et al. 2006; Piepho and Möhring 2007) of the

traits were calculated. For the case of calculating the group-

specific variance components, we introduced dummy variables

and derived broad-sense heritabilities for each group by the for-

mula (Hallauer et al. 2010):

H2 ¼
r2

g

r2
g þ

r2
g�e

ne
þ r2

e
ne� nr

(2)

where r2
g denotes the genotypic variance in the group, r2

g�e

denotes the group-specific genotype-by-environment interaction

variance, r2
e denotes the variance of the error, and ne and nr de-

note the number of environments and replications, respectively.

Using the factor genotype as fixed in the mixed model of

Equation (1), we then calculated best linear unbiased estimates

(BLUEs). These BLUEs were subsequently used as phenotypic trait

values for all further analyses. The R-package “agricolae” was

used to perform significance tests (a¼ 0.05) of the group means

(de Mendiburu 2020). The phenotypic raw data as well as the

hereof calculated BLUEs are provided in Supplementary Table 1.
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Genotypic data
All 400 genotypes were characterized with a 50K SNP array by
Illumina (Ganal et al. 2011), resulting in total in 57,840 calls.
Genotypic raw data are provided in Supplementary Table 2.

Quality control
As a first step, all marker data were filtered for their information
content and 8,254 markers were found to only consist of missing
values. The threshold of >50% for missing marker information
and >5% for heterozygous state led to the exclusion of additional
844 markers and 637 markers, respectively. In addition, 2,222
monomorphic markers were detected of which 2,093 were not yet
included in the missing and heterozygote filter steps and there-
fore also removed from the genotypic data, leaving 46,012
markers in the overall genotypic data. Next, we checked that no
individual genotype fell under the criteria of having >20% miss-
ing marker data and/or >5% heterozygous markers. No filtering
of genotypes due to these criteria was necessary. Finally, the ge-
notypic data were split up according to the elite dent (n¼ 100),
elite flint (n¼ 100), and landraces (n¼ 200) categorization. In each
of these groups, markers containing only missing and/or mono-
morphic markers, and markers with a minor allele frequency
(MAF) of <3% were once again removed from the subsets.
Heterozygous marker information was in contrast to the com-
plete marker data set not excluded but instead set to NA. All
these filtering steps led to a total of 34,145 markers for the ED,
33,422 markers for the EF, and 38,284 markers for the LR group.

Imputation
The 3 groups were kept separately for imputation. Therefore, all
3 files were loaded into TASSEL (Bradbury et al. 2007) in HapMap
format and transformed to the Variant Call Format. This format
was then used for imputation by the software Beagle 5.2
(Browning et al. 2018). Standard settings for the imputation

procedure were chosen, except for the effective population size
ne, which was reduced to 1,000. After successful imputation, all 3
files were filtered and markers with MAF <5% were removed. The
so obtained files were then merged, which resulted in a total of
17,845 imputed markers for the investigated 400 genotypes.

Genomic selection
We performed genomic selection with the R-package “rrBLUP”
4.6.1 with the basic model written as: y ¼WGuþ e (Endelman
2011), where the phenotypic value y is calculated by the product
of the design matrix W, the genotype matrix G, and the vector u
of marker effects with e being the error term. Ridge regression
keeps all markers in the model and shrinks their estimated
effects by a constant factor (Whittaker et al. 2000). In general, we
can distinguish between predictions within a group, where 5-fold
cross-validation was performed and predictions among groups
without cross-validation. Single landrace populations were only
considered for �30 individuals. To perform 5-fold cross-
validation, the dataset was for each run divided randomly into
80% training set and 20% prediction set. For the heterogeneous
group “landraces”, consisting of 6 single populations, propor-
tional sampling was performed per landrace and then the train-
ing set and the prediction set were combined accordingly. For
within-group predictions, the number of cross-validation runs
was 1,000, if not mentioned otherwise. The predictive ability was
calculated as the Pearson correlation between predicted values
and the BLUEs of each prediction set.

NIRS data
NIRS data were obtained with a SpectraStar (Unity Scientific,
Milford, MA, USA). The device covers the wavelength range be-
tween 1,250 and 2,400 nm with a stepsize of 1 nm (NIRS raw data
are given in Supplementary Table 3 and are depicted in
Supplementary Fig. 2a). In addition to seed samples from all 3

Fig. 1. Population composition and discriminant analysis of principal components (DAPC). a) Elite material (n¼ 200) with ED and EF, landraces (n¼ 200)
as a whole (LR) with CG, GB, RT, SM, SF, and WA. The size of each group is represented by the circle size and given as the number of individuals. b) DAPC
of all 400 individuals from the 8 groups, performed with marker data (top) and NIRS data (bottom). The amount of variance explained by the first two
discriminant analysis functions DA1 and DA2 is given in brackets.
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environments, NIR spectra of seedling biomass samples grown in
EWE_2020 were recorded. Seed samples were obtained from ca.
375 g of the open-pollinated harvest sample used for the determi-
nation of grain dry matter content. All samples were ground to a
final fineness of 1 mm filling a 200-ml tube (RETSCH GmbH,
Haan, Germany). Of these subsamples, one NIR cup per plot was
assembled and measured with 24 repetitions.

Quality control
First, the NIR spectra were cut at each side of the spectra by
18 nm to exclude undesired border effects, leaving 1,114 wave-
lengths to be further analyzed. Subsequently, Savitzky-Golay
smoothing and first derivative of the NIR spectra were applied by
means of the R-package “prospectr” 0.2.0 (Stevens and Ramirez-
Lopez 2020). Afterwards, starting from wavelength 1,268 to wave-
length 2,382, BLUEs were calculated of each single wavelength
following the mixed model denoted in Equation (1). Heritabilities
per wavelength were calculated (Supplementary Fig. 2b) and vari-
ance components per wavelength checked (Supplementary Fig.
2c).

Phenomic selection
All NIRS BLUEs were centered and scaled using the function
“scale” in R before the so obtained values were subjected to fur-
ther analyses. The standardization of the data is paramount for
assuming a common variance of the regression coefficients
(Piepho 2009). Exactly the same procedure as described for geno-
mic prediction was carried out for phenomic prediction, except
for using NIR data instead of marker data. Again, within group
predictions were performed with 1,000 cross-validation runs. For
predictions within and among groups, the two smallest popula-
tions with <30 individuals, namely CG and RT were not consid-
ered as a separate group. Hence, the following 7 groups were
used for all genomic and phenomic predictions: elite Dents (ED),
elite Flints (EF), landraces as a whole (LR) as well as the single
landraces Gelber Badischer (GB), Satu Mare (SM), Strenzfelder
(SF), and Walliser (WA).

If not specified otherwise, we used RStudio version 3.5.3 for all
described data analyses (R Studio Team 2020) and the R packages
“ggraph” (Lin Pedersen 2021), “ggpubr” (Kassambara 2020),
“adegenet” (Jombart 2008) as well as basic R plot functions.

Results
Characterization of the material groups by
phenotypic, genotypic, and NIRS data
The 400 genotypes that were investigated in this study can be dif-
ferentiated into 8 groups: 100 elite lines of each of the two heter-
otic groups Flint and Dent, and 200 lines from 6 European Flint
landraces (Fig. 1a). The discriminant analysis of principal compo-
nents (DAPC) showed that the marker data reflected this underly-
ing population structure, whereas no distinct clustering of the
groups was apparent with NIR spectra (Fig. 1b).

Furthermore, we assessed the phenotypic variation present in
the plant material (Fig. 2 and Supplementary Table 4). This
revealed that the single landraces exhibited significant differen-
ces between each other for certain traits and can therefore also
phenotypically not be considered as one homogeneous group. As
expected, the elite material showed on average significantly
higher yields than the landraces. Overall, it could be observed
that the higher the grain yield was, the lower were the P concen-
trations in the kernels. Notably, the elite Dent lines are generally
later maturing under European field conditions than the elite

Flint lines, which explains the grain dry matter content values
and may also underlie their observed lower P concentrations in
the maize kernels. Broad-sense heritabilities for the multienvir-
onment analysis were overall high, ranging from 0.48 for grain
dry matter content to 0.97 for final plant height, both in the land-
race CG (Fig. 2 and Supplementary Table 4). Moreover, the geno-
typic variance components in each group illustrated the larger
variation of landraces compared to elite material for the traits
anthesis-silking interval, early vigor, and final plant height. For
the trait grain yield, it was the other way around, with the broad-
est variation observed in elite material.

When correlating the BLUEs of the phenotypic data with those
of the NIR spectra, we observed rather low correlations for most
wavebands and different correlation patterns for the different
traits (Supplementary Fig. 2d). Interestingly, opposed correlations
for grain yield and P concentration with the NIR reflectance val-
ues were observed. Collectively, these results underpin that mo-
lecularly and phenotypically diverse breeding material was
represented in this panel, which is therefore well suited to ad-
dress the objectives of this study.

Predictions within groups
We first performed genomic and phenomic prediction within
groups (Fig. 3). This revealed no consistent pattern, as for most
traits and groups the phenomic and genomic predictive ability
was comparable, with sometimes one or the other being better,
but often only slightly. Genomic prediction achieved generally
better results for the traits final plant height and grain dry matter
content. Conversely, grain yield was overall better predicted by
phenomic prediction and for the trait P concentration phenomic
prediction outperformed genomic prediction substantially for all
groups. The predictive ability values obtained by cross-
validation, confirmed for genomic and phenomic prediction alike
that smaller groups (the landraces GB, SM, SF, and WA), and
therefore smaller training and prediction sets, resulted in lower
mean predictive abilities with a generally larger variation.

We then focused on the cases where we observed the most
prominent discrepancies between the genomic and the phenomic
prediction approach in the 3 major groups. Large differences be-
tween both approaches were observed for predictions in the
group of landraces. For early vigor, genomic prediction outper-
formed phenomic prediction by 0.46. On the other hand, P con-
centration was characterized by a 0.40 higher phenomic
predictive ability compared to genomic prediction. In order to il-
lustrate the cause for these differences, we plotted for 10 cross-
validation runs the predicted and observed values of the traits
early vigor and P concentration for each individual genotype of
the 6 landraces (Fig. 4). For early vigor, the overall correlation co-
efficient of the genomic approach was relatively high with
r¼ 0.69. However, the mean trait performance was quite different
among the landraces and the correlations assessed within them
only averaged to r� ¼ 0.03. This low predictive ability within each
landraces was reflected by phenomic prediction, for which the
overall correlation coefficient r was indeed low with 0.05, hence
only slightly deviating from the average r� across the landraces
that was 0.13 and thus even higher compared to the genomic ap-
proach (r� ¼ 0.03). In the case of P concentration for which phe-
nomic prediction yielded a much higher predictive ability than
genomic prediction, the genomic approach resulted in low
within-landrace correlation coefficients (r� ¼ �0.19), but also a
low overall correlation (r¼ 0.28), as the phenotypic differences
among the landraces were minor. By contrast, phenomic predic-
tion showed a high overall correlation coefficient of r¼ 0.79,
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which was again mirrored by the correlation coefficients ob-
served in each single landrace (r� ¼ 0.72).

Predictions among different groups
We next assessed predictions among groups, i.e. using one group
as training set and another one as prediction set (Fig. 5 and
Supplementary Figs. 3 and 4). In general, the phenomic predictive
abilities surpassed the genomic ones when one of the 3 major
groups was used as training set. An exception was the prediction
of final plant height when using elite Dents as training set, as for
this scenario the predictive ability was negative for prediction in
all other groups, whereas positive predictive abilities were
achieved for the genomic approach except for the elite Flints.
However, especially for the traits grain dry matter content, grain
yield, and P concentration, phenomic prediction yielded substan-
tially higher predictive abilities compared to genomic prediction.
The same trends as observed for the 3 major groups, though po-
tentially slightly less pronounced, were observed when the two
largest landraces, SM or WA, were used as training set
(Supplementary Fig. 3). Phenomic prediction yielded overall more
stable results, which can also be well seen in the visualization of

the predictive abilities separated by group (Supplementary Fig. 4).
Here, we can also conveniently compare reciprocal predictions,

which substantiated the much lower robustness of genomic com-

pared to phenomic among-group predictions. The phenomic pre-

diction results, by contrast, yielded similar patterns no matter in
which direction the prediction took place.

Phenomic predictions were also performed with NIR spectra of

maize seedling biomass for the environment EWE_2020.

Predictions based on biomass generally achieved lower predictive

abilities than seed-based ones. This held true for the comparisons
of the seed NIRS BLUEs across all 3 environments (results not

shown) as well as for the seed NIRS data of EWE_2020 alone

(Supplementary Table 5).
In summary, phenomic prediction resulted in much higher

predictive abilities than genomic prediction for the prediction
among groups.

Evaluation of composite training sets
The trait grain yield was chosen to investigate the potential of

combining groups into composite training sets, which were

then larger but also composed of material from different

Fig. 2. Phenotypic variation in the 8 groups. Groups are abbreviated as WA, SM, SF, RT, GB, CG, EF, and ED. Distribution of the phenotypic trait values for
ASI (anthesis-silking-interval), EV (early vigor), Final PH (plant height at harvest), GDM (grain dry matter content), GYield (grain yield), and Pconc
(phosphorus concentration in kernels) shown per group. The letter display indicates significant differences of the means; groups with the same letter
are not significantly different from each other (a¼ 0.05). H2 denotes the broad-sense heritability.
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groups with different trait performance (Fig. 6). To predict elite
Dents and elite Flints, the following scenarios were compared
with each other: (1) 5-fold cross-validated prediction within the
respective elite group, (2) across prediction from the other elite
group as well as from the landraces group as a whole, and (3)
combinations of 80% of the lines from the elite group to be pre-
dicted with one or both of the other major groups to predict
the 20% remaining lines of the respective elite group. Phenomic
prediction resulted in highly similar predictive abilities for all 6

scenarios for both the elite Flint and elite Dent lines. As shown
before, genomic prediction was on a comparable level for the
cross-validated within-group prediction, but performed poorly
for the among-group prediction. Interestingly, genomic predic-
tion then resulted in similar or even slightly higher predictive
abilities compared to phenomic prediction for the 3 composite
training sets. The predictive abilities achieved with these com-
posite training sets were similar to that obtained by the within-
group prediction.

Fig. 3. Multiple comparisons of the predictive abilities by within-group prediction. Cross-validated predictive abilities obtained by 1,000 runs are shown
for each trait and group. Groups are abbreviated as ED, EF, all LR, GB, SM, SF, and WA. GS and PS abbreviate genomic and phenomic prediction,
respectively. The mean of each scenario is given underneath the boxplots. Traits are denoted as ASI, EV, Final PH, GDM content, GYield, and Pconc.
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Discussion
Comparison of genomic and phenomic prediction
First, it has to be stated that a high quality of phenotypic data is

and will remain the basis for all breeding activities (Bernardo

2021a). This was given in this dataset, which showed a large ge-

notypic variation and high to very high trait heritabilities in the

multienvironment analysis (Supplementary Table 4).
Looking at the obtained cross-validated predictive abilities

within groups, genomic and phenomic prediction generally

yielded comparable results (Fig. 3). This performance was, how-

ever, also dependent on the trait (Knoch et al. 2021) and the ge-

netic group. It should be mentioned here, that no general

conclusion should be drawn solely from the results of the single

landraces with their rather small population sizes. Final plant

height, for example, was much better predicted by marker than

by NIRS data, but mainly in the elite material. This material is

somewhat taller than the landrace lines, but otherwise there is

no apparent difference. For grain dry matter content, the differ-

ence in predictive ability was most pronounced for the elite

Dents and the landrace SM from Romania, which are the two lat-

est maturing groups as can be seen by their lowest means for this

trait (SM ¼ 72.81%, ED ¼ 70.88%). All seed samples were

completely dried before NIR spectra were measured and one

might assume that drying maize kernels containing more water

at the beginning might change their properties in a way that al-

tered the NIRS assessment. However, for other traits like early

vigor or grain yield, phenomic prediction was as good or even

better than genomic prediction for these two groups. For grain
yield, we found that both approaches performed similarly, which
is promising as grain yield is a central trait in every breeding pro-
gram. In line with this, Lane et al. (2020) reported prediction abili-
ties above 0.7 for grain yield obtained by phenomic prediction of
whole-kernel maize samples. For the trait P concentration, we ob-
served higher phenomic predictive abilities compared to the ge-
nomic approach for all groups. Notably, P concentration is also
an endophenotype of the seeds, which may have contributed to
this performance.

Taken together, the reasons for the discrepancies observed be-
tween the two approaches for some traits and groups are not
clear and require further research. Nevertheless, our results con-
firmed the potential of phenomic prediction for NIRS-assisted se-
lection in breeding, as the phenomic predictive abilities were
generally competitive with those from genomic prediction. NIRS
data can already be obtained from early- or mid-generation selec-
tion candidates before any yield trials in multiple environments
have been performed. Phenomic prediction can thus be used to
predict more resource-intensive traits such as grain yield and
thereby assist the identification of the most promising candidates
to be advanced to the next generation.

Population structure can lead to overestimation of the
genomic predictive ability
The greatest differences between the genomic and phenomic pre-
dictive abilities were often observed for the panel of landraces,
where for the 3 traits anthesis-silking interval, early vigor, and

Fig. 4. Predictive ability in the heterogenous group of landraces. Comparison of genomic (GS) and phenomic (PS) prediction for the traits EV and Pconc.
For EV, the genomic predictive ability was much higher, whereas for Pconc the phenomic approach resulted in a much higher predictive ability than
genomic prediction. The Pearson correlation coefficients within each group are indicated as r. In bold, the Pearson correlation coefficient across all
genotypes is given and r� denotes the mean of all correlation coefficients of the single landraces. The dots represent the observed and the predicted trait
values from 10 cross-validation runs.
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final plant height genomic prediction appeared to perform much
better. We exemplarily used early vigor to further investigate this
different performance. Analyzing the correlations between the ob-
served and the predicted trait values per landrace revealed that the
high predictive ability of early vigor by genomic prediction was an ar-
tifact (Fig. 4). While the overall correlation coefficient was high with
0.69, each single landrace showed only weak correlations that aver-
aged 0.03. The reason for this is the confounding of population struc-
ture and trait performance, here in the form of the different
landraces and their mean performance, a phenomenon which has
been described in previous studies (Windhausen et al. 2012). All 3
traits showed clear differences in their means among the landraces
(Fig. 2). In addition, the marker data can clearly separate landraces
as shown by the discriminant analysis of principal components
(Fig. 1B). In contrast to the marker data, the NIRS data do not distin-
guish the LR as groups in the DAPC as clearly as the marker data and
are therefore less prone to this kind of artifact. For the NIRS data, the
low overall correlation coefficient for early vigor of 0.05 much more
accurately reflected the predictive ability in the single landraces.

For the reverse case of phenomic prediction outperforming geno-
mic prediction in the landraces for the trait P concentration, by con-
trast, the high overall correlation coefficient of the former correctly
portrays the high predictive ability in each of the landraces. In sum-
mary, this confirms previous results concluding that genomic selec-
tion is sensitive to population structure (Thorwarth et al. 2017). As a
consequence, seemingly high genomic predictive abilities achieved

with panels showing population structure should be interpreted with

caution and always in combination with the trait performance of the

populations.

Phenomic prediction works well among different breeding
material
A major advantage of phenomic prediction became apparent

when predicting from one group to another (Fig. 5). Genomic pre-

diction has been described to strongly depend on the relatedness

between training and prediction set (Albrecht et al. 2011;

Riedelsheimer et al. 2013; Li et al. 2021; Zhu et al. 2021). Our

results corroborate these findings, as the prediction among

groups resulted in only low predictive abilities, even for the pre-

dictions among the more closely related Flint material. The phe-

nomic predictive abilities, on the contrary, were much higher,

especially for the traits grain dry matter content, grain yield, and

P concentration. For these 3 traits, the among-group predictive

abilities were often as high as the cross-validated within-group

ones.
Collectively, these findings illustrate that phenomic prediction

is very promising for rather diverse breeding material with more

or less unrelated groups, whereas genomic prediction has been

shown to work best if the material in the training and prediction

set are from the same group (Schopp et al. 2015).

Fig. 5. Predictive ability of among-group predictions. Results are shown for the ED, EF or the landraces being used as training set for genomic (GS) or
phenomic (PS) prediction to predict each of the other groups. Groups are abbreviated as ED, EF, all LR, GB, SM, SF, and WA. Traits are denoted as ASI, EV,
Final PH, GDM content, GYield, and Pconc.
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Composition of the training set with diverse breeding
material
These findings rose the question on how different compositions
of the training set would affect the prediction of grain yield of the
elite lines. Notably, grain yield differed substantially between the
elite material and the landraces. As phenomic prediction
appeared to be tolerant to unrelated material being used as train-
ing set, we hypothesized that increasing the training set with lines
from other material groups than the one to be predicted would im-
prove or at least not hamper the predictive ability of phenomic pre-
diction. While the other elite group and the landraces both yielded
predictive abilities similar to the cross-validated within-group phe-
nomic predictions, adding them to the training set did not enhance
the predictive ability. For the prediction of both elite groups, the
phenomic predictive abilities were more or less unchanged for all
tested scenarios of training set composition. It might be that even
though the predictive abilities of all 3 groups are highly similar, the
effect estimates are different and combining them does not yield an
advantage or that even with the smallest training set size of the 80
lines (80%) sampled from the same group, the predictive ability al-
ready reached a plateau stage. Our results of phenomic predictive
abilities between 0.33 and 0.43 with combined training sets are

consistent with a former study, which reported a phenomic predic-
tion ability based on maize kernel NIRS of on average 0.28 for grain
yield in elite material, when a diversity set and 10% of each group
to be predicted were used as training set (Lane et al. 2020).

While the genomic prediction using one of the other two major
groups virtually failed, adding them to the training set resulted in
similar or even slightly higher predictive abilities as the cross-
validated within-group predictive ability. This is in line with pre-
vious findings that showed that adding less related lines to a
training set did not reduce the predictive ability (e.g. Brauner
et al. 2020; Li et al. 2021; Zhu et al. 2021) and increasing the train-
ing set size generally results in higher predictive abilities of geno-
mic selection (e.g. Zhao et al. 2012; Thorwarth et al. 2017; Li et al.
2021; Zhu et al. 2021).

Nevertheless, if all scenarios are considered, phenomic predic-
tion showed a higher robustness of the predictive abilities for dif-
ferent compositions of the training set and thus relatedness
between training and prediction set. This result is also worth
mentioning as it suggests that the general assumption that pre-
dictive breeding strongly relies on estimating the genetic related-
ness among individuals (Bernardo 2021a) may not hold true for
the approach of phenomic prediction.

Fig. 6. Evaluation of composite training sets. For the 3 major groups, ED, EF, and landraces, different training set compositions were tested for grain
yield for genomic (GS) and phenomic (PS) prediction. The boxplot on the left shows the differing level of phenotypic performance for the 3 groups. The
bar plots on the right depict the predictive ability of the different scenarios for either the ED (top) or the EF (bottom). The superscript numbers 80 and 20
reflect the proportion of individuals in the training set (TSet) and the prediction set (PSet). Predictions within the respective elite groups were obtained
with 1,000 5-fold cross-validation runs; for the composite training sets, 100 cross-validation runs were used.
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Possible effects of the NIRS sample material on the trait
prediction
Spectral data can not only be obtained from seeds but also from
other plant material, thereby potentially allowing selection at dif-
ferent stages of a breeding program. We derived NIR spectra from
maize kernels as well as for one environment from seedling bio-
mass samples, both ground to 1 mm. In our study, the results
obtained with the seed sample NIRS data were generally better
(Supplementary Table 5). This is in line with previous findings
that in addition showed higher genotypic variances for grain in
comparison to leaf samples, which may underlie the higher pre-
dictive abilities of the former (Rincent et al. 2018). Interestingly,
when looking at the single traits separately, we observed higher
predictive abilities based on NIRS of seedling biomass for early
vigor and final plant height, whereas anthesis-silking-interval,
grain dry matter content, grain yield and P concentration were
clearly better predicted by seed samples. The picture this
presents is that the closer the sampled tissue is in relation to the
trait of interest, the better the prediction works based on this tis-
sue. Our data set is clearly too small to substantiate this conclu-
sion, but this warrants further research. We also correlated the
NIRS BLUEs of the seedling biomass with the trait BLUEs for each
genotype, but could not discern a pattern between these correla-
tions and the goodness of the trait prediction (data not shown). It
should be noted here that grain yield is often the most important
trait for breeders and therefore seed-based NIR spectra appear
more promising for application in breeding programs.

Application of phenomic prediction in practical breeding
Rincent et al. (2018) showed in simulations that for different sce-
narios regarding the costs and reliabilities of phenomic and geno-
mic prediction, the expected selection gain was in most cases
higher for phenomic compared to genomic selection. The advan-
tages of performing predictions based on NIRS data compared to
genotypic data are the low requirements for infrastructure such
as specialized laboratories and the strongly reduced costs, both
coupled with the benefit of an increased speed and efficiency of
selection in the breeding program. The first point challenges the
assumption that became prevalent in the last years, namely that
the most cost-efficient tool for trait prediction is found in genetic
marker data (Bernardo 2021b; Knoch et al. 2021). Supposed that
seeds represent the most suitable material to obtain NIR spectra,
we are much faster to capture all data with a state-of-the-art
spectrometer compared to the DNA extraction and subsequent
genotyping. If we have to take decisions that are time-critical, as
for example, frequently encountered in winter cereals between
harvest and sowing or in maize in between shuttle breeding sea-
sons, phenomic prediction results can be obtained quicker than
genomic prediction results. Moreover, the phenomic selection ap-
proach appears particularly attractive for comparatively low-
tech institutions because less investments and resources are
needed for NIRS measurements compared to genotyping.

A main finding of this study is that phenomic prediction also
reliably works for designs of training sets that show a population
structure as well as for the case that the training set and the pre-
diction set include less related material. In breeding programs
that stay within their established material, as for example in
maize within the existing heterotic groups, this is of no relevance.
So, when could this become relevant in practical breeding? For
instance, if we were to start a breeding program in a new environ-
ment by combining material from different origin. After an initial
field evaluation and yield trials with the labor- and/or resource-

intensive traits being assessed only on a subset of lines, phe-
nomic prediction based on the NIR spectra of the harvested mate-
rial of all lines could support the identification of further
candidates to be more intensively tested. Likewise, broadening
the genetic basis of a breeding program by introgression of less
related material from different groups, as exemplified here with
the landraces, will require testing this material but may also
profit from the additional prediction of the expected perfor-
mance. Furthermore, crops with yet undefined heterotic pools or
the presence of subpopulations such as wheat (Boeven et al.
2016) or sorghum (da Silva et al. 2021) could benefit from the in-
dependence of the performance of phenomic prediction with re-
gard to the training set composition and its possibly underlying
population structure. In addition, breeding programs are driven
by the different selection cycles, which by nature imply a de-
creasing relatedness of the individuals from one cycle to the next
(Schopp et al. 2015; Auinger et al. 2021) . Further research is re-
quired to investigate whether phenomic prediction can provide
higher predictive abilities than genomic prediction when using
the current cycle as training set for the prediction of the individu-
als of the next cycles. Eventually, the decision of whether to use
the genomic or the phenomic approach will be made in very prac-
tical terms, depending on the available resources and infrastruc-
ture, as well as the characteristics of the particular breeding
program.

Conclusion
While a large number of studies is available on different aspects
of genomic prediction, the use of NIRS or other spectral data for
phenomic prediction is still in its beginnings. We therefore com-
pared both approaches under different scenarios for a set of 6
traits relevant in maize breeding. Apart from being cost-efficient
and amenable to high-throughput, the potential of phenomic se-
lection lies in its reliable predictions also under structured train-
ing sets as well as for predictions into unrelated material. In the
end, however, it is not about a competition of the two
approaches, but rather to expand the breeder’s toolbox and ide-
ally one can choose from different approaches the one that is
best suited for a given situation. Thus, resources can be allocated
in the best possible way in order to maximize selection gain. Just
as seen for genomic prediction over the past years, further re-
search is required to better understand and refine the approach
of phenomic prediction toward a broader application in plant
breeding. Specifically, NIRS sample material and the environ-
mental effect on the spectra should be investigated in the future.
Nevertheless, our results demonstrate the value of phenomic
prediction as a low-cost and efficient tool to support selection of
complex traits in plant breeding.

Data availability
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Crossa J, Rooney DK, Barrero-Farfan ID, de la Fuente GN, Morgan

CLS. Phenomic selection and prediction of maize grain yield from

near-infrared reflectance spectroscopy of kernels. Plant

Phenome J. 2020;3(1):e0117737.

Li D, Xu Z, Gu R, Wang P, Xu J, Du D, Fu J, Wang J, Zhang H, Wang G.

Genomic prediction across structured hybrid populations and

environments in maize. Plants (Basel). 2021;10(6):1174.

Lin Pedersen T. An Implementation of Grammar of Graphics for

Graphs and Networks. 2.0.5: RStudio, PBC; 2021 [accessed 2021

Jul 28]. https://ggraph.data-imaginist.com, https://github.com/

thomasp85/ggraph.

Melchinger AE, Schmidt GA, Geiger HH. Evaluation of near infra-red

reflectance spectroscopy for predicting grain and stover quality

traits in maize. Plant Breed. 1986;97(1):20–29.

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic

value using genome-wide dense marker maps. Genetics. 2001;

157(4):1819–1829.
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