
Citation: Nji, Q.N.; Babalola, O.O.;

Mwanza, M. Aflatoxins in Maize:

Can Their Occurrence Be Effectively

Managed in Africa in the Face of

Climate Change and Food

Insecurity? Toxins 2022, 14, 574.

https://doi.org/10.3390/

toxins14080574

Received: 3 July 2022

Accepted: 3 August 2022

Published: 22 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxins

Review

Aflatoxins in Maize: Can Their Occurrence Be Effectively
Managed in Africa in the Face of Climate Change and
Food Insecurity?
Queenta Ngum Nji 1 , Olubukola Oluranti Babalola 1 and Mulunda Mwanza 1,2,*

1 Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University,
Private Bag X2046, Mmabatho 2735, South Africa

2 Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University,
Private Bag X2046, Mmabatho 2735, South Africa

* Correspondence: mulunda.mwanza@nwu.ac.za

Abstract: The dangers of population-level mycotoxin exposure have been well documented. Climate-
sensitive aflatoxins (AFs) are important food hazards. The continual effects of climate change are
projected to impact primary agricultural systems, and consequently food security. This will be due to
a reduction in yield with a negative influence on food safety. The African climate and subsistence
farming techniques favour the growth of AF-producing fungal genera particularly in maize, which is a
food staple commonly associated with mycotoxin contamination. Predictive models are useful tools in
the management of mycotoxin risk. Mycotoxin climate risk predictive models have been successfully
developed in Australia, the USA, and Europe, but are still in their infancy in Africa. This review aims
to investigate whether AFs’ occurrence in African maize can be effectively mitigated in the face of
increasing climate change and food insecurity using climate risk predictive studies. A systematic
search is conducted using Google Scholar. The complexities associated with the development of
these prediction models vary from statistical tools such as simple regression equations to complex
systems such as artificial intelligence models. Africa’s inability to simulate a climate mycotoxin risk
model in the past has been attributed to insufficient climate or AF contamination data. Recently,
however, advancement in technologies including artificial intelligence modelling has bridged this
gap, as climate risk scenarios can now be correctly predicted from missing and unbalanced data.

Keywords: aflatoxin; climate change; maize; regulation; food insecurity; predictive model

Key Contribution: This study reviews existing models that have been successfully applied in other
regions of the world to predict and control mycotoxin risk in the face of climate change. Hence, the
possibility now exists to develop a similar model in Africa, despite insufficient applicable data. This
will help stakeholders to predict future mycotoxin contamination risks in maize and, consequently,
improve its management.

1. Introduction

According to the Food and Agricultural Organization (FAO), globally, more than
197 million hectares of land are cultivated with maize, with a yield of 1.13 billion tons [1].
Therefore, the quality and safety assurance of maize for human and animal consumption is
very important, especially with the growing concern of global food insecurity. One major
quality and safety concern is the infection of maize kernels with mycotoxin-producing
fungi. These are known to be climate-sensitive. Maize contamination is of global concern
because of its significant role in the food and feed supply chain and its vulnerability to AF
contamination [2]. Increased attention has been paid to AFs due to their role in reducing
yields in agriculture, resulting in huge global economic losses [3,4], and their threat to
food safety due to their highly toxigenic and carcinogenic nature [5–8]. Aspergillus flavus
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has both virulent and non-virulent strains, and under different climatic conditions may
produce particular AFs, with aflatoxin B1 (AFB1) being the most carcinogenic AF [5].

Climate change (CC) has caused the alteration of fungal strain distribution and their
associated mycotoxins that grow in a maize cultivation with different growing seasons.
Kos et al. [9] concluded that increased AF levels in maize are mainly due to climatic
extremes such as severe drought and high summer temperatures. Predicting the mycotoxin
contamination of maize during its developmental stages or close to harvest allows for
proper AF risk management in the industry by partners such as farmers, distributors, or
feed producers. Preventive measures against AF contamination can be informed at the
pre-harvest stage with field information. Post-harvest practices including prompt and
proper drying methods and storage in appropriate conditions will minimize fungal growth
and mycotoxin contamination. Global warming is significantly driving altered temperature
distributions and extreme precipitation patterns. Agreement exists on the important role of
drought, high temperatures, and extreme precipitation patterns on increased AF production
in maize [10–13]. Other studies have found significant correlation between increased
AF levels and insect-damaged crops [14,15]. The perception that a warmer year would
automatically lead to an increased AF contamination risk has been debunked by the results
obtained by Kaminiaris et al. [16], increasing the complexity of the problem. Other factors
that contribute to the problem’s complexity include mycofloral profile and interactions,
differences in each crop’s pathosystem, and interaction with an ever-changing climate. It is
therefore essential to carry out predictive studies (using climate models with variables such
as rainfall, humidity, and temperature) on the effects that CC may have on the presence
of AFs in maize. This will address future uncertainties and highlight AF risk situations in
order to handle escalated mycotoxin incidence in agricultural products and in the long run
to ensure food safety with increasing CC. Researchers have long anticipated that predictive
models would be useful tools in the management of plant pathogens and mycotoxins. The
rise in mathematical forecasting models allows for the prediction of AF contamination
risks and is widely used by stakeholders in the maize supply chain. The complexity of
these prediction models varies from statistical tools such as simple regression equations to
complex systems such as artificial intelligence models. A lot of these prediction models
have been developed in the USA, Europe, and Australia. Predictive model development
in Africa is not commonplace, and those that are in development are still in their infancy.
This review seeks to explore existing AF contamination risk predictive models that have
the potential of being extrapolated to help control AFs in maize cultivated in Africa. This
may aid in the quest to develop similar novel models in Africa.

2. Climate Change and Aflatoxin Contamination of Maize

Climate change influences interactions among distinct mycotoxigenic species, and
their toxins, produced in foods and feeds [17,18]. Countries within the temperate climatic
zone that seem safe today, may become more vulnerable to the risk of disease and loss in
crop production because of contamination such as changing climatic conditions [9,19]. The
impact of CC on agricultural production is greatest in the tropics and subtropics, with sub-
Saharan Africa showing high vulnerability to these impacts because of changing stresses
and low adaptive capacity [20]. Africa is warming faster than the global rate and maize
growing season temperatures are typically increasing [21]. Changes in climatic variables
such as precipitation, increase in seasonal and extreme temperature events, and the intensity
of droughts during maize growing seasons vary greatly and might result in changes in
the yields of maize production [20]. In sub-Saharan Africa, maize is mainly cultivated in
subsistence farming systems under non-irrigation conditions; therefore, reliance on rainfall
increases the susceptibility of maize crops to CC effects [22]. Low yields in this region are
mainly attributable to drought stress, low soil fertility, weeds, pests, diseases, low input
availability, and inappropriate seeds. These conditions enable fungal growth and mycotoxin
production, making sub-Saharan Africa a vulnerable region to the mycotoxin contamination
of crops. The Mediterranean basin is experiencing noteworthy changes in rainfall, giving
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rise to drought, increased temperatures and elevated CO2, allowing for the occurrence of
many adverse effects that influence food production and AF contamination in maize [23].
Rainfall variability and increased temperatures are the most significant variables of CC that
have severe effects on agriculture, and by extension maize production. Particularly, high
temperatures, greater CO2 concentrations, drought stress, and altered rainfall directly affect
maize and A. flavus prevalence, favouring fungal growth, conidiation and spore dispersal,
thereby affecting the growth of maize [24,25]. The recurrent and persistent occurrence
of drought stimulates AF production by A. flavus in both pre-harvest and post-harvest
conditions [11–13,26]. For example, in 2015, hot and dry climatic conditions contaminated
6% of maize fields in France with AFs and 69% of isolated strains were known A. flavus
strains [27]. Similar results have been reported in African countries [12,28,29].

Fungal development and AF production in agricultural products is primarily based on
temperature, moisture, soil type, and storage conditions [9,30]. These fungi colonize many
crops and adapt to different environmental conditions, having specific and overlapping
ecological niches [31]. Understanding the different climatic factors influencing fungal
survival, development, metabolic activity, and interaction with other organisms such as
host plants, is vital for deterring their overall behaviour, leading to toxin contamination [26].
In a study by Zuma-Netshiukhwi et al. [32], it was determined that a temperature rise
by 1 ◦C or 2 ◦C will result in a roughly 20% to 25% decrease in grain yield as a result
of CC. Kachapulula et al. [12] reported high levels of AFs in maize and groundnuts in
a drier and low rainfall zone as compared to cooler and high-rainfall zones. Likewise,
Sirma et al. [33] reported that crops cultivated in semiarid tropical regions were more prone
to AF contamination than those in temperate regions. Indirect effects of CC on mycotoxin
contamination include increased drought stress and insect damage to the plant. The
phenology of the crop can be altered. The reproductive stages (germination, silking, pollen
shedding, and grain filling) are sensitive stages of crop development, for this reason, the
extent and gravity of drought during this stage can decrease crop yield to approximately
50% [34,35]. Chauhan et al. [36] postulated that the grain filling period is critical for
agronomic practices in order to decrease the effects of drought and high temperatures on
yield, and to lower the risk of AF contamination. Ding and Wang [37] reported high AF
levels in groundnuts grown in regions with limited rainfall and high daily temperatures,
or those exposed to heat stress, during the last month of the growing season. Overall, CC
drives alterations in factors that have a critical impact on maize growth and yield including
rainfall, pests, diseases and temperature [38]. These same conditions are favourable for
fungal development and mycotoxin production. Table 1 presents AF contamination levels
in maize found in some African nations between 2017 and 2022. All these countries have
AF levels above their respective set standards with high contamination rates. This is a clear
food safety concern.

Table 1. Mycotoxin contamination of maize in some African nations over a 5-year period.

Country Mycotoxin Contamination
Levels (ppb)

Contamination
Rate (%)

Regulatory Limit
(ppb) References

Burkina Faso AF 0.93-59 70 20 [39]
Burundi AF LOD-117 100 10 [40]

Cameroon AFB1 6-645 22 20 [41]
Côte d’Ivoire AF 30-91 96 20 [42]

Ghana AFB1 0.38-348 80 15 [43]
Kenya AFB1 1.69-403 97 5 [44]

Malawi AF 0.7-140 21 3 [45]
Nigeria AF LOD955 57 20 [46]
Rwanda AFB1 2-52 66 5 [47]

South Africa AF LOD-1082 28 5 [29]
Tanzania AF LOD-162 80 10 [48]

Togo AF 0.17-1600 100 20 [49]
Uganda AF 22.2-268 74 10 [44]
Zambia AF LOD-7408 73 10 [12]

Zimbabwe AF LOD-1369 52 10 [50]
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3. Aflatoxin Regulation and Food Security in Africa

Due to the carcinogenic and toxigenic nature, including hepatic toxicity, of AFs, reg-
ulatory limits are placed on the quantity of AFs permitted in food and feed in several
countries [51,52]. The intake of AF-contaminated staple foods is a serious health risk as
the consumer will be exposed to the effects throughout their lives. Agriculture remains
the main contributor to the livelihoods of the rural populations of developing countries.
Subsistence farmers and their households consume high quantities of homegrown maize
and the rest is sold to their immediate community, creating a milieu conducive to the
increased risk of mycotoxin exposure. The regulation of mycotoxins in African countries
is lacking, and where these regulations exist, they are typically only applied to export
crops. Only fifteen African countries currently have mycotoxin regulatory standards [22].
Most subsistence farmers are not aware of mycotoxin regulations, and crops they consider
useless as a result of mould infestation are mostly solely based on visual analysis, which is
highly subjective. The enforcement of these regulations in an informal environment such as
subsistence farming is unclear and possibly impractical. Therefore, regulatory standards in
African countries will be difficult to enforce because of economic and food security reasons.
For example, Ambler et al. [53] stated that farmers who report that their crops have lost
quality usually do not dispose of them, but use the crop for household consumption.

The food and feed movement across the world, including mycotoxin-contaminated
products, highlights the importance of global and country-specific mycotoxin occurrence
surveys on foods. Regulatory standards are a barrier to business, particularly in regions
with high levels of AF contamination, such as the case of Malawi, where it is only possible
to export 4% of the maize produced to countries with stricter AF legal limits, such as the
European Union and South Africa [54]. Senerwa et al. [55] estimated losses of millions of
US dollars in the Kenyan dairy industry because of AF levels exceeding legal limits. Hence,
AFs regulations hinder trade in these countries as contamination levels are often above legal
regulatory levels (Table 1). As mentioned before, mycotoxin regulations are most enforced
in African nations in crops destined for export purposes; however, many African traders are
mainly concerned with domestic and regional trades rather than exports [56]. Since maize
quality is reduced by mycotoxin contamination, its monetary value will be diminished
because maize that was destined for food will now be degraded and directed toward feed.
Hence, the anticipated financial returns based on the quantity of maize produced cannot be
fulfilled due to mycotoxin contamination. This low return on investment will negatively
affect the livelihood of the seller, resulting in poverty.

Food security is a serious global issue topping the development agendas of most coun-
tries, especially those in Africa. The prevalence of severe food insecurity in sub-Saharan
Africa is common. For instance, one in four households in sub-Saharan Africa cannot access
adequate food [57]. This worsening of the food security of this region has been attributed
to climate shocks, conflicts, and economic slowdowns [1,58]. Millions of Africans could
be stripped of their food supply if mycotoxin regulations were effectively enforced [28]. It
has been projected that, by 2027, maize consumption will increase by 16%, especially in
sub-Saharan Africa where human and livestock populations are growing rapidly. Whether
this growth will increase maize exposure to mycotoxins is a matter of ongoing research [59].
This increase in maize consumption will increase the demand for maize. Factors such
as CC and farming systems could directly influence mycotoxin contamination of maize.
If the 2027 projections hold true, if conscious decisions are not made now to control the
mycotoxin contamination of crops, for example, through substituted irrigation, the use of
fungicides, and improvements in storage facilities, among others, mycotoxin contamination
risk will keep on increasing, resulting in severe food insecurity.

Hoffmann and Moser [60] showed that products with a higher price are less contami-
nated than products sold at a lower price. Thus, in the face of food insecurity, food safety
measures should not be disregarded. When managing AF levels in foods, food producers
a charge higher price than other firms without this management action. Ayyat et al. [61]
concluded that, when feed is treated with AF-absorbent materials, the treatment reduces
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toxicity in Nile tilapia, resulting in increased body mass and higher monetary value. The
pertinent question is: in the current atmosphere of food insecurity, how many people are
willing to pay higher prices for food where cheaper substitutes exist? The lack of awareness
and farmers’ experiences are considered to be the underlying factors that contribute to
their unwillingness to pay for AflaSafe food [62]. Studies carried out in centres of AF
endemism in Africa showed that close to 90% of the population understood that mould
poses a risk to human health. Few, however, understood what that risk is, and half believed
that any toxins would be destroyed by cooking. It is also common practice for farmers
who report crops as damaged by AFs to redirect the crop from the market to their personal
consumption [53,63,64].

4. Aflatoxin Predictive Models in Africa

Since AF contamination occurs at different stages (pre-harvest and post-harvest) of the
food production chain, control measures are based on these contamination stages. Some of
these preventative techniques are knowingly or unknowingly implemented by subsistence
farmers in Africa, either to reduce the effects of mycotoxins or as routine agronomic prac-
tices at the different crop growth stages. Proper disposal methods of aflatoxin-contaminated
feed and crops is uncommon, even though the East African Community policy advises
that incineration or the burial of contaminated crops or feed be practiced [65]. Care has to
be taken because previously infected residues can be re-introduced into the system if not
buried properly. A lot of research has concentrated on the pre-harvest and post-harvest
control of AF contamination in crops, especially in Africa. Despite all the existing mitiga-
tion methods available, AF contamination still continues to be a global food safety issue,
with high incidences continually being reported in Africa. Climate change remains the
primary factor that drives altered fungal proliferation and mycotoxin contamination [22].
The climate is rapidly changing, which makes it more difficult to rely on mycotoxin research
data of a particular season due to high interseasonal variability. Anticipatory studies at
this point in time seem promising for addressing and highlighting AF risk situations on a
regional basis within the African continent in the face of CC.

Mycotoxin contamination risk predictive models, incorporating AF field and climate
data, will offer future solutions. Based on model application techniques, mycotoxin predic-
tive models may be grouped as follows: mechanistic, empirical, or hybrid. Mechanistic
models replicate the fundamental systems of crop and fungal developmental stages. Such
models require an advanced understanding of each living system and substantial experi-
mental research under different environments to obtain the needed input data, including
temperature, rainfall, and soil properties [23]. Empirical modelling, on the other hand,
uses mathematical functions to explain field conditions and the connected response vari-
ables [23]. Such a model will identify the particular environment, weather, and seasons
that was involved in the model development and will require recalibration when applied
in another area. Empirical models are used for conditions in an area represented by ob-
servational data. Thus, these models are unable to forecast situations that never occurred
in the model development dataset, such as extreme weather events as a result of CC or
new cultivation techniques. Hybrid models apply the principles of both mechanistic and
empirical models. Since there are always speculations made about biophysical information
and some amount of statistical analyses applied, all models are, to some extent, hybrid
in nature. Therefore, their categorization is mainly based on their primary method of
prediction. Keller et al. [66] proposed a hybrid model for AF prediction risk to include
the advantages of both empirical and mechanistic modelling by the extension of these
models to different spatial and temporal domains. Cross-validation of the three modelling
methods will be useful to better comprehend the merits and drawbacks associated with
each, and to help come up with a simplified model that can easily be used in the prediction
of mycotoxin contamination in a given crop.

Recently, modelling techniques have been upgraded. For instance, machine learning
algorithms have lately been introduced in food safety domains [67,68]. Such techniques
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can learn from data inputs and make data-driven forecasts. One such machine learning
algorithm is Bayesian network (BN) modelling, which has been used to predict mycotoxin
contamination in cereals in Serbia [69]. Bayesian network models can blend statistical
relationships and expert knowledge. A BN model is a probabilistic model that is based on
Bayesian statistics and decision theory in addition to graph theory. BN models can deal well
with irregular data [69]. This gives BN modelling an edge over other models in predicting
mycotoxins because it allows the model to run in the early maize growing period, when
details of the entire growth period are unavailable. It is, therefore, useful for early warning
purposes. Unlike linear regression models, BN models effortlessly analyse dependencies
between variables: they manage non-linear relationships and blend numerous types of data,
such as measurement data, expert skill, and consumer feedback [70]. BN models can include
expert’s skill, and are pliable in adding new data to the prediction process. Additionally,
BN models can provide results with incomplete data on the model input variables, with
the caveat that this may influence the accuracy of the outputs. On the other hand, a simple
logistic regression equation could provide accuracy of above 60% in the prediction of AF
concentration in crops from a particular region [71]. Logistic regression is an advanced
modelling approach that has been applied to numerous research fields, including food
safety. Logistic regression estimates the parameters of the log odds of the probability of a
binary event (e.g., the presence or absence of mycotoxins) [72]. BN models can be contrarily
formulated without the speculations of linearity in logit or additivity [69]. This method is
highly data-dependent, and the data cannot be used for agricultural conditions other than
those introduced in the model development process before actual validation.

The APSIM model, a hybrid model which was first developed in Australia, has the
potential of being used in Africa as the authors are extending their research to Kenya [36,73].
Peanut was used as the substrate for cardinal temperatures and, therefore, it needs to be
verified for maize to increase its accuracy. The design of a practical prediction model for
pre-harvest AF contamination from the APSIM model is a challenge because of its inability
to reconcile the water activity parameter in field conditions [73]. The AFLA-maize model, a
mechanistic model, was developed on maize grown in Italy [74]. It has been successful in
predicting aflatoxin contamination in crops and is very adaptable for use in other regions
and crops. The ability to assess the impact of climate change on mycotoxin risk is not
restricted to Europe [74], but is being extended to other areas. Recently, the AFLA-maize
model was effectively adapted to predict AFB1 occurrence in maize in Malawi [75]. In
Greece, the AFLA-maize model was replicated in another pathosystem known as AFLA-
pistachio. The AFLA-maize model is “based on two sub-models, one accounting for the
host crop phenology and the other for the A. flavus infection cycle”. Each has their own
associated advantages and disadvantages and requires different degrees of calibration
and validation.

Table 2 presents different models that have been developed for mycotoxin prediction
in crops, most of these models were developed in the USA, Asia and Europe.

Table 2. Aflatoxin predictive risk models in maize with the potential of application in Africa.

Name of
Model

Type of
Model Country Crop Sample

Size Accuracy Reference

APSIM Hybrid Australia Maize 1379 69% [36]
APSIM Hybrid Kenya/Australia Maize N/A N/A [73]

Maxent2 Empirical Kenya and Mali Any crop N/A N/A [76]
AFLA-maize Mechanistic Italy Maize 352 68% [74]
AFLA-maize Mechanistic Europe Maize N/A Future projection [77]

Stacked gaussian Empirical USA Maize N/A Quantified
uncertainty [78]
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Table 2. Cont.

Name of
Model

Type of
Model Country Crop Sample

Size Accuracy Reference

Multi-level
modelling Empirical Kenya Maize 2466 Not

predictive [79]

AFLA-pistachio Mechanistic Greece Pistachio 130 80% [16]
AFLA-maize Mechanistic Malawi Maize N/A Future Projection [75]

PREMA Mechanistic and
Bayesian Network Serbia Maize 867 83 [69]

Spatial Poisson
profile

regression
Empirical USA Maize 45

counties
Not a predictive

model [80]

Drought index
(ARID) Empirical USA Maize N/A 82% [81]

Risk in
storage Empirical China Maize 28 93.3% [82]

AFLA-maize
+ carryover Mechanistic Ukraine and

Netherlands Maize N/A Future projection [83]

N/A = Not applicable.

5. Conclusions

The rationale behind the present review was to evaluate if AFs’ contamination of maize
can be controlled or monitored in Africa in the face of CC and food insecurity. From litera-
ture, the AFLA-maize model is appropriate, since the same pathosystem i.e., the A. flavus
infection cycle and maize phenology is being dealt with, albeit in a different geographic
location. The maize plant phenology in Africa differs from those in Europe, where the
model was initially developed, because of factors such as degree of growth, maize variety,
prevailing weather conditions, and the employment of different farming techniques. Hence,
the need for recalibration in a new location. High levels of interaction between agricultural
practices complicate the undertaking of developing mathematical functions to be included
in the creation of a predictive model [77]. With advancements in technology, other machine
learning algorithm models or well-designed simple classic logistic regression can be used
on African soil. Since all of the different modelling procedures have advantages and disad-
vantages, a single model that blends all the model types could be a possible solution. This
will merge the models in a distinctive way and this will strengthen their merits.

6. Methodology

A literature review was conducted, using PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines [84] to gather information on the
contamination of maize, foods, and feeds with mycotoxins in Southern Africa. A literature
search was performed, using Google Scholar and key words and phrases used to extract
peer-reviewed studies on mycotoxin predictive models. Key words and phrases used to
access the information were: mycotoxin; aflatoxin; maize; model; prevention; and cereals.
Sixty-nine articles with information related to this review were downloaded and evaluated.
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